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1 Introduction

Viral infection is a significant challenge to human
health, local and national economies, and the bio-
process industry. Human immunodeficiency virus
(HIV) infection alone causes 3.5% of annual deaths
worldwide [1]. Furthermore, viral contamination of
cell-based production of biological and chemical
goods has been responsible for up to $200 million
in lost revenue per year per contamination [2]. Cur-
rent methods for combating viruses have been met
with limited success or have substantial drawbacks.
For example, vaccines are very effective at fighting
viral infection, but often a working vaccine is not
easy to develop and is reliant on a host immune
system. Antibody- [3] and RNAi-based therapies
[4], while promising, have had relatively little suc-
cess to date. For industrial processes, the typical re-
sponse to contamination is massive discard and
disinfection, incurring huge monetary and time
losses. Thus, there is a great need for new anti-vi-
ral strategies.

Viral proliferation requires a significant com-
mitment of host resources to reproduce viral parti-
cles, including nucleic acids, proteins and mem-
brane, as well as energy to enable viral synthesis.
Much of the early work in virology focused on the
impact of viral infection on cellular metabolism,
and recently this aspect of infection is being re-ap-
preciated. Large-scale forward genetic screens are
identifying many metabolic host dependencies and
metabolomic profiling studies reveal metabolic
shifts in infected cells.

The ability of the virus to alter metabolism of its
host to produce new viral products has several par-
allels with metabolic engineering (Fig. 1). Metabol-
ic engineering is the effort to understand, perturb
and design metabolic networks for the production
of pharmaceuticals, food and specialty chemicals
[5]. The virus has a similar objective to the engi-
neer: increased production of a desired by-product
– in this case, itself. In pursuing their objectives, the
viral resources, like the engineer’s, include the host
background and a set of proteins that may be in-
troduced. The virus and engineer also face similar
constraints. One constraint is the trade-off between
maximum yield of the desired product and the via-
bility of the host. In particular, increasing produc-
tion rate might mean a lower growth rate and less
overall product. Additionally, the engineer and
virus must determine ways to avoid the defense
mechanisms of the host. In response to these and
other constraints, viruses have evolved complex
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methods to reproduce, including for example: (1)
control of gene expression; (2) hypermutation to
create previously unknown proteins, which can be
introduced into the host, or to modify existing pro-
teins to evade an immune response; or (3) tempo-
ral control of the infection to produce virus and exit
the host only under the most optimal circum-
stances. Similarly – and often inspired by or using
viral methods [6, 7] – the metabolic engineer is able
to control gene expression, evolve proteins and
employ inducible promoters for temporal control.

Of course there are also significant caveats to
this comparison. For example, thanks to advances
in DNA sequencing, gene annotation, and DNA
synthesis, metabolic engineers have a much broad-
er resource library, including vast existing cDNA li-
braries as well as the ability to locate desirable pro-
teins in virtually any sequenced organism and syn-
thesize the corresponding DNA de novo. Another
resource specific to engineers is the availability of
rational and computational approaches, which can
accelerate the process of strain design. Finally, en-
gineers have a significant financial constraint in
their work, both in terms of development cost but
also in scale-up to industrial production rates of
the desired product.

Nevertheless, given the similarities between
metabolic engineering and viral infection, can en-
gineers leverage their tools and unique perspective
to devise novel antiviral strategies? Others have
noted the value of using engineering approaches to
adapt viruses for biological applications [8]. The
specific focus of this review is to highlight the com-
mon goal of engineers and viruses in manipulating

cellular metabolism, and to discuss how metabolic
engineers might use these similarities to combat
viral infection in health and cellular culture.We be-
gin with a discussion of the metabolic aspects of vi-
ral infection. This is followed by a brief review of
the accomplishments and approaches of metabolic
engineering, intended primarily for virologists new
to the field. We then discuss current engineering
efforts to bring these fields together, as well as pos-
sible future directions.

2 Metabolic aspects of viral infection

Viruses are obligate parasites completely depend-
ent on their host’s cellular metabolism to repro-
duce.Viral infection has been shown to inhibit oth-
er cellular processes such as replication and cellu-
lar macromolecular synthesis to redirect valuable
resources to their own mass production [9]. Studies
primarily from mid 1950s to the early 1960s estab-
lished that uptake of a broad range of viruses, in-
cluding Rous sarcoma virus [10], feline leukemia
virus [11], and poliomyelitis virus[12], increase the
rate of glycolysis of infected cells, in some cases by
as much as 370% [13]. As a notable exception, in-
fluenza was found to inhibit glycolysis by blocking
the glucose-6-phosphate isomerase (GPI) reaction
[14]. However, later studies found that influenza
could also increase glycolysis in early stages of in-
fection [15].

Other aspects of metabolism were likewise
shown to be altered by viral infection. These early
studies demonstrated that in addition to increasing

Figure 1. A comparison between
viruses and metabolic engineers in
terms of objectives, resources, con-
straints and methods. The viral
properties are shown in the middle
column and the metabolic engineer
in the right column.
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ATP production through glycolysis, viral infections
redirected cellular resources to viral replication. In
particular, poliomyelitis virus infection was shown
to alter cellular metabolism by increasing the rate
of RNA breakdown and, thereby, expanding the
available nucleotide pool by the possible release of
a ribonuclease [16]. Similarly, during Rubella infec-
tion, the quantity of available ATP was observed to
rapidly diminish [17]. Other viruses have been
shown to penetrate mitochondria, hijacking mito-
chondrial production to virus-specific products
[18].

Although the results from these studies were
compelling, the molecular revolution soon led to a
shift away from a metabolic focus to a genetic ap-
proach to virology, with very few major viral meta-
bolic studies in the last four decades. However, re-
cent development of new techniques in metabolic
profiling, as well as forward genetic screens, have
produced new data that emphasize the critical role
of metabolism in infection. These results have in-
spired a renewed focus on the impact of host me-
tabolism on viral infectivity. Studies based on
metabolite profiling have been published about the
impact of infection by viruses including reovirus
[19], dengue 2 virus [20], and Mayaro virus [21]. As
before, the results often highlight central metabo-
lism. Metabolite profiling of human cytome-
galovirus (HCMV) dynamics confirmed increases

in glycolysis and pyrimidine nucleotide biosynthe-
sis seen in earlier studies, and found increased
rates in the citric acid cycle [22]. Further studies
have also shown that both HCMV and influenza A
additionally hijack the fatty acid biosynthesis path-
way, and identified this pathway as a target for an-
tiviral therapy [23].

The development of certain knockout libraries
[24, 25] and RNAi screening technologies have en-
abled the rapid survey for viral-host dependencies.
Within the last few years, many genome-wide
screens looking at host dependencies for HIV
[26–29], influenza [30–34], West Nile virus [35],
dengue virus [36] and HCV [37–39] have been re-
ported. Interpretation of these data has only just
begun, with recent reviews comparing the results
of the HIV [40–44] and influenza screens [45]. In
addition, these screens have emphasized the im-
portance of experimental design and analysis in
RNAi-based screens [46–49].

Recently, we performed a screen for host de-
pendencies in bacteriophage lambda and Es-
cherichia coli.We performed plaque assays for 3985
knockout strains contained in the “Keio Collection”
[24] and found a surprising 57 host dependencies.
Forty-nine genes had previously been shown to
play a role in lambda infection (Fig. 2). Of these, 20
were identified by our screen. An additional 18
genes were not in the Keio Collection, presumably

Figure 2. Host genes in central metabolism that play an important role in viral infection. A central metabolic network is shown, where each arrow repre-
sents a reaction that is denoted by the corresponding Enzyme Commission (EC) number. Reactions that were found in one of several screens for host ge-
netic requirements in viral infection are highlighted with a gray box, and the genes are noted in parentheses (human genes are all caps, and E. coli genes
are italicized). A table is inset that provides more information about the highlighted genes, including which screen identified them as essential. HIV (Br)
refers to [26], HIV (Ko) refers to [27], HIV (Zh) refers to [29], Flu (Br) refers to [30], Flu (Ko) refers to [33], Flu (Ka) refers to [32], Dengue (Se) refers to [36],
Lambda (MA) refers to [74].
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because the knockout strains were not viable. Of
the remaining 11 genes not identified, several of
these strains grew too slowly to be properly as-
sessed using our methodology and were excluded
from the analysis (e.g., ΔdnaK). Others, like recA,
play a specific role in lambda infection, which was
not assayed under our experimental conditions
[50]. On the other hand, 37 of the 57 genes that we
identified had not previously been directly linked
to lambda replication. These 37 additional genes
expand the list of potential host dependencies from
the approximately 49 that have been previously es-
tablished to 86 genes — an increase of approxi-
mately 76%.

One of the key findings of this study was the
pervasive role of metabolism in E. coli infection by
phage lambda. Among the 86 E. coli genes that
function in lambda replication, 31 have functions
related to metabolism. These included several
genes for enzymes in central metabolism (glk, pgm,
pgi, and talB), carbon transport into glycolysis
(lamB, crr, and manZ) and regulators of central me-
tabolism (cyaA, malT, malI, fruR, and bglG). Addi-
tionally, in our study, we identify a new potential
regulator of lamB expression in the unannotated
gene yneJ. One potentially important aspect of
these knockout strains is the disproportionate af-
fect on lambda phage replication in rich media. E.
coli knockouts for most of these genes continue to
grow relatively unaffected, but lambda phage repli-
cation is significantly inhibited.

Given the critical role of metabolism found in
lambda infection, we suspected that the same
might be true for other viral-host systems. Further-
more, metabolic genes are typically conserved in a
broad range of organisms, so we wondered whether
some of the genes identified in our study would
also be found in the large-scale human studies. In
fact, 15 genes involved in central metabolism were
found within a compiled gene list from the RNAi
studies (Fig. 2). The two viruses with the most host
dependencies within central metabolism (HIV and
influenza) have very different dependency lists. In
agreement with early work on influenza — show-
ing influenza to reduce glycolysis by inhibiting GPI
[15] — all host dependencies for influenza lie up-
stream of GPI and within the pentose phosphate
pathway. Nearly reciprocal to influenza, the HIV
host dependencies lie within glycolysis and the cit-
ric acid cycle, while no genes in the pentose phos-
phate pathway were identified. This observation
highlights a dramatic divergence in metabolic re-
quirements between the two viruses.

3 Metabolic engineering methods

Over the years metabolic engineering has innovat-
ed and optimized a number of important experi-
mental and computational methods to achieve its
goals. One experimental focus of the field is the
measurement of metabolite concentrations and
subsequent inference of flux through specific path-
ways, using liquid chromatography-tandem mass
spectrometry with or without isotope labeling [51,
52]. Flux and metabolome data, together with oth-
er approaches such as transcriptomics and pro-
teomics, can lead to a deeper understanding of cel-
lular responses to perturbation [53, 54].

Beyond measurement, metabolic engineers also
focus on cellular manipulation, from the deliberate
modification of a few specific network nodes to the
implementation of random mutagenesis under se-
lection pressure [55]. Increasing production of a
particular metabolite or other desired product of-
ten involves adding new genes to and/or removing
competing pathways from a host. If the metabolic
enzymes for a desired pathway are not known or
are insufficiently active, cycles of random point
mutation or sequence shuffling can be used to gen-
erate mutants. Under selection, these mutants can
be screened to identify strains that are able to pro-
duce the desired product, produce it more effi-
ciently, or better survive the potentially harsh con-
ditions foreseen for implementation.To ensure that
the enzymes are expressed adequately, constitutive
or inducible promoters may be included to control
the imported genes.

A great challenge in strain design lies in the fact
that perturbations of individual genes or enzymes
are typically introduced into a network context, and
therefore the resulting production strain may ex-
hibit unexpected behaviors. To address this issue,
in particular, computational modeling has been de-
veloped by metabolic engineers. Such computa-
tional models are used to simulate and predict
metabolic behaviors as a vehicle to gain a better
understanding of metabolite data, and to efficient-
ly select manipulations to direct the production of
a desired product. Beyond modeling metabolic net-
works as sets of ordinary differential equations
[56], methods such as metabolic flux analysis have
been used to predict cellular fluxes using experi-
mental metabolite concentration measurements
[57], and significant efforts have been made to
quantify the complex control of metabolic flux [58].
One method, called flux-balance analysis (FBA)
[59] is based on conservation of mass and linear
optimization, and has the great advantage of en-
abling genome-scale analysis of metabolic network
behavior [60].
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Systems metabolic engineering is a relatively
new endeavor to combine these experimental and
computational tools into an integrated develop-
ment platform [61]. Such integration enables engi-
neers to consider the network consequences of dif-
ferent design scenarios [62]. One example of sys-
tems metabolic engineering is the recent break-
through in producing the biodegradable plastic
alternative polylactic acid (PLA) using a one-step
fermentation in engineered E. coli [63]. The engi-
neering effort began experimentally, as proteins
that could convert lactic acid to PLA or a lactate
copolymer were not known, and had to be evolved
[63].The resulting strain was able to produce PLA,
but at low efficiency; therefore, rational and com-
putational design was used to optimize PLA pro-
duction [64]. First, rational design was used to route
carbon to lactate production, by deleting two genes
and overexpressing a third. The overall effect of
these modifications was a strain producing a
copolymer with an increased fraction of lactate.
Next, computational methods based on FBA were
used to guide further optimization of PLA and
copolymer production. Possible gene deletions
were considered in silico using FBA to identify gene
deletions that would significantly enhance PLA
production with minimal impact on growth rate.
FBA was also used to determine further genes
whose promoters could be exchanged with consti-
tutive high expression promoters to increase PLA
production. The analysis pointed to two further
strain modifications, which resulted in a significant
increase of specific PLA copolymer production.
The less intuitive nature of the modifications —
particularly the synergy of mutation combinations
and ability to predict mutations deleterious to
growth rate — strongly supports a systems-level
approach like FBA in designing metabolic engi-
neering strategies.

Taken together, these experimental and compu-
tational tools have made a dramatic impact on our
ability to produce important substances biological-
ly, from drugs to fuels to chemicals [65–67].

4 Using metabolic engineering to
understand viral infection

The metabolic aspects of viral infection, as well as
the significant advances made by metabolic engi-
neers over the years (described above), suggest
that metabolic engineering approaches may be
particularly useful in combating viral infection. For
example, several groups have begun to explore
metabolic host dependencies for the development
of antiviral therapies with the rationale that by tar-

geting the host, the virus is less likely to mutate and
continue to proliferate. For example, HCV was
found to use host lipid metabolism in its infection
cycle [68], and several anti-HCV therapies directed
specifically at host metabolic pathways have been
developed [69]. These results support the use of
metabolomics and fluxomics to gain a deeper un-
derstanding of host metabolism in viral infections.
As many other viruses also require host metabolic
proteins to replicate, this strategy should be broad-
ly applied to other viruses.Additionally, these tech-
niques could improve target selection by predicting
outcomes including possible harmful side effects.

One critical asset for metabolic engineers in de-
veloping antiviral strategies is expertise in compu-
tationally modeling viral propagation. Viral infec-
tion models fall into two categories: unstructured
and structured models [70]. Unstructured models
are essentially variations on a core three-compart-
ment model, which keeps track of virus as well as
the uninfected and infected host populations [71].
Such models have been used to model viral-host
interaction over a broad range of infections, from
HIV [72] to bacteriophage [73].

The results generated by these unstructured
models can be useful in interpreting large data sets
and identifying useful new experiments to per-
form, as we found in our work with E. coli and bac-
teriophage lambda [74]. Four of the genes identi-
fied by our initial screen for E. coli genes that were
required for lambda infection had not been previ-
ously annotated.To gain insight into lambda infec-
tion dynamics, we monitored E. coli growth, and in
some cases viral concentration, over the full course
of infection.We then built an unstructured model of
lambda infection, and fit the model parameters to
our experimental time courses. Based on these re-
sults, we were able to predict the function of yneJ as
a transcriptional regulator of lamB.This prediction
was confirmed experimentally [74].

On the other hand, structured models of viral
replication which include information about gene
expression, protein interaction and other molecu-
lar details, can be useful to capture the underlying
mechanism of infection. Some of the most detailed
models involve bacteriophage, including a detailed
structured model of the bacteriophage T7 life cycle
[75] and a stochastic model of the lambda phage ly-
sis/lysogeny decision switch [76]. Structured mod-
els have also been used to describe the develop-
ment of energy and substrate limitation during vi-
ral growth in mammalian cells [70], as well as viral
transcription, translation, replication, and assem-
bly processes by vesicular stomatitis virus [77].

In addition to the structured virus models creat-
ed, in many cases a structured model of the host
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metabolism already exists. For example, 29.9% of
the E. coli genes identified as having lambda de-
pendencies are found in an FBA model [78], and
five more genes encoding metabolic transcription
factors are found in a regulated FBA model that in-
cludes transcriptional regulation [79]. In total,
35.6% of the host dependency genes could be in-
cluded if both models are combined (Fig. 3). The
question then becomes how to adapt these flux-
balance models to the context of viral infection.

One approach might be to implement creation
of viral biomass into flux-balance models as a
pseudoflux. A first step was taken in this direction
by modeling the impact of viral production on E.
coli metabolism by bacteriophage MS2, a single-
stranded RNA E. coli virus with a genome of only
3569 nucleotides [80]. Beginning with an FBA mod-
el of E. coli metabolism [78], a new objective was in-
troduced to represent replication of the MS2 RNA
viral particles.The objective included production of
the four viral proteins as well as the positive- and
negative-strand RNA required for genome replica-
tion. This model predicted that infection by MS2
would result in an increase in pentose phosphate
pathway flux concomitant with decreased flux
through the citric acid cycle and no significant
change in glycolytic flux [80].

FBA depends on the articulation of an objective
function, such as the maximization of cellular bio-
mass or of ATP production [52, 81]. In the above
case with MS2, the authors used FBA to define a
time period during which they assumed that all of
the host machinery was being used only to produce
viral particles. This assumption enabled them to
substitute a purely viral objective for the cellular

objective function. In other cases, it might seem
counter-intuitive that viruses are able to complete-
ly subvert the cellular objective. Often, the cellular
and viral objectives are in competition to one an-
other, similar to the trade-off between PLA pro-
duction and cell growth described earlier.

This conflict between the host’s and hijacker’s
objectives is well known to metabolic engineers,
and therefore an innovation from engineering
might be useful for gaining a better understanding
of this aspect of viral infection. Specifically, bilevel
optimization approaches such as OptKnock [82]
and RobustKnock [83] have been developed to de-
termine sets gene knockouts that parallelize com-
peting objectives. For example, these methods
might be used to determine an E. coli strain that has
coupled production of a desired by-product, such
as ethanol, to its own production of biomass. Simi-
larly, viral infection entails the effective knockout
of many genes by transcriptional repression, and it
may be that in certain cases this serves to paral-
lelize the viral objective of virion production with
the cellular objective of biomass production. In
such cases the host cell would be driven to produce
virus until lysis is induced, and the OptKnock and
RobustKnock algorithms would be well suited to
helping in understanding this process.

Another significant new direction in this area
could be to integrate the viral models with the ex-
isting host metabolic models – from E. coli to hu-
man [84]. The challenge in this case is to somehow
incorporate very different simulation methods,
such as linear optimization and differential equa-
tion-based models.We recently developed a frame-
work, called “integrated FBA”, that incorporates dy-

Figure 3. Venn diagram categorizing 
E. coli genes required for optimal lamb-
da phage infection. The genes in the
right circle were identified by several
groups over many years. The genes in
the left circle were identified in a for-
ward genetic screen recently performed
by our lab [74]. Genes highlighted in
gray are found in either the Feist flux
balance model [78] or the Covert regu-
lated flux balance model of E. coli [79].
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namic FBA [59, 85] with Boolean logic (as in regu-
lated FBA, see [86, 87]), as well as ordinary differ-
ential equations (ODEs) [88] into one simulation.
The model is able to outperform both the ODE- and
FBA-based models, and is available open source
[89]. With this approach, existing FBA models
could be incorporated with the viral models to ob-
tain a comprehensive model of viral infection and
its effect on host metabolism.

5 Concluding remarks

In summary, we find overlap between the goals and
methods of viruses and the goals of metabolic en-
gineers, and therefore believe that a metabolic
engineering approach to fighting viral infection
would be useful. Significant effort at this interface
could lead to better understanding of the important
metabolite concentrations and host pathways in vi-
ral infections, as well as methods for diverting flux
away from critical pathways to create super-resist-
ant hosts. In this way, the same tools that currently
enable metabolic engineers to produce desired
products might be adapted to prevent the viral
products from forming.

Of course, these approaches will not apply
equally to all viral infections, or even to all stages of
viral infection. Comparison of the required E. coli
genes for lambda versus T7 infection, for example,
reveals a relatively minor role for core metabolism
in the T7 life cycle [74].Additionally, the large-scale
RNAi screens to identify host gene dependencies
for West Nile and hepatitis C viruses did not iden-
tify a significant number of metabolic genes [30, 35,
38]. Nevertheless, in cases where viral infection de-
pends significantly on metabolic factors, the meta-
bolic engineering approach to virology could lead
to critical new insights with applications to human
health and biotechnology.
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