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Our ability to build computational
models that account for all known
gene functions in a cell has
increased dramatically. But why
build whole-cell models, and how
can they best be used? In this
forum, we enumerate several areas
in which whole-cell modeling can
significantly impact research and
technology.
Introduction
Whole-cell models, or computational
models that account for the integrated
function of every gene and molecule in a
cell, have been described as ‘the ultimate
goal’ of systems biology, and ‘a grand
challenge for the 21st century’ (e.g., [1]).
Although models of biological processes
have been increasing in complexity and
scope, until recently a number of signifi-
cant challenges have prevented the con-
struction of whole-cell models.

A recent study reported the construction
of a whole-cell computational model for
the bacteriumMycoplasma genitalium [2].
The approach combined diverse mathe-
matical techniques from multiple fields to
enable mechanistic modeling at multiple
levels of abstraction in an integrated
simulation. This approach enabled the
simultaneous inclusion of thousands of
heterogeneous experimental parameters
in the model. The resulting whole-cell
simulations captured a wide range of
cellular behaviors and suggested follow-
on experiments that were validated exper-
imentally [3].
A framework for whole-cell modeling has
therefore been established, and other
such models are currently underway.
But why build whole-cell models, and
how can they best be used? What appli-
cations can we look for in the future?
Answering these questions forms the
motivation for the current forum (Figure 1).

Five Applications for Whole-Cell
Modeling
Integrate Heterogeneous Datasets
First, whole-cell models integrate hetero-
geneous datasets into a unified represen-
tation of our knowledge about a given
organism. Biological datasets relevant to
cell and molecular biology appear in many
forms. They may be qualitative or quanti-
tative, large or small, they depend on dif-
ferent technologies (gel electrophoresis,
sequencing, fluorescence, etc.), and they
represent varying aspects of cellular func-
tion. Although these datasets have been
reported in such a way as to appear inde-
pendent from one another (i.e., through
publication in multiple journals at various
points in time and from different laborato-
ries), in fact they are deeply intercon-
nected and are therefore most effectively
considered as a whole.

Recognizing this, multiple groups have
made an effort to generate massive data-
sets under one roof or collaboration, giv-
ing them the opportunity to consider all of
these data together. For example, large-
scale quantitative analyses have been
made to understand Mycoplasma pneu-
moniae comprehensively [4], and similar
analyses have been performed in other
bacteria.

Computational efforts have focused on
the challenge of data integration, which
attempts to derive network structure
and/or parameter values from multiple
datasets. These approaches rely on the
construction of networks that encompass
key biological processes, and may incor-
porate combinations of probabilistic rep-
resentations [5], machine learning-based
algorithms [6], mechanistic constraint-
based models [7], or large-scale ordinary
differential equations [8].

Whole-cell modeling naturally leads to
data integration because it attempts to
incorporate all possible data pertaining
to a particular cell type. The M. genitalium
model accounted for �1700 parameters
culled from the literature and was bench-
marked or validated against such diverse
data as metabolite concentration, flux,
RNA expression, RNA decay, and chemi-
cal composition measurements [1_TD$DIFF]. A major
advantage of whole-cell modeling is that
these data are linkedmechanistically in the
model, through the simulated interaction
of biological processes in the cell. This
mechanistic linkage provides the most
natural, intuitive interpretation of an inte-
grated dataset.

Identify Limits of our Knowledge
Next, whole-cell models identify the limits
of our current knowledge for a given bio-
logical system. With all the data that is
generated for a particular cell or organ-
ism, there remains a dramatic gap
between what is known and what
remains to be discovered. To completely
‘solve’ a cell would ideally involve rigorous
and coordinated statistical design of
experiments to comprehensively identify
the main and interaction effects in a
given network. Anything short of this will
inevitably lead to both underexplored
areas of the network, which are essen-
tially gaps in our knowledge, as well as
controversy when published experimen-
tal results exhibit seemingly inconsistent
results in the absence of sufficient net-
work context.

Whole-cell models can diagnose both
underexplored areas and areas of seem-
ing inconsistency in a network. With
regard to finding gaps in the model, model
predictions were compared with experi-
mental observations in a single-gene dis-
ruption library of M. genitalium, producing
a detailedmap of model–experiment com-
parisons for all 525 genes in the chromo-
some [3]. This map highlights poorly
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Figure 1. Applications of Whole-Cell Modeling
to Academia and Industry. Heterogeneous data-
sets are integrated into a unified representation and
are reconciled against each other in order to identify
potential gaps in our current knowledge. Next, com-
plex, multi-network phenotypes are simulated and
predicted, and compared with data, which leads to
model-driven discovery as hypotheses generated by
the model are subject to experimental validation. This
process is analogous to the ‘design-build-test-learn’
cycle in industry (see dashed lines), where whole-cell
models can provide a framework to accelerate the
creation of genetically-modified organisms.
understood cellular functions gene-by-
gene to suggest possibly fruitful areas of
inquiry. Others have found ways to identify
and fill in metabolic network gaps auto-
matically (e.g., [9]).

In terms of areas of high inconsistency in
the network, the totality of existing data
for an organism is rarely self-consistent
and reproducible. For example, kinetic
parameter measurements for a particular
enzyme can vary over orders of magnitude
[3] – not to mention the variability that can
occur when values are obtained from
different types of measurements. This
can be due to variation in laboratory tech-
niques, but it also often reflects limitations
in our understanding of the system. In the
above case of kinetic parameter variation,
for example, a simple Michaelis–Menten
representationmaynot adequatelydescribe
a more complex underlying phenomenon.
Constructing mathematical models that
integrate massive amounts of data forces
these inconsistencies to the foreground and
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requires them to be resolved, whether on
the experimental or the modeling side, or
both.

Predict Complex, Multi-Network
Phenotypes
The most compelling application of whole-
cell modeling to date has been the ability
to identify and even elucidate emergent
behaviors that cross traditional network
boundaries. In the origins of this field, a
minimal cell model was described that
could predict changes in cell composition,
cell size, cell shape, and the timing of chro-
mosome synthesis in response to environ-
mental changes [10]. More recently, the
completewhole-cellmodel ofM.genitalium
has demonstrated the potential to reveal
complex phenomena that are difficult or
prohibitive to investigate experimentally
in the context of the entire cell, including:
the instantaneous protein chromosomal
occupancy as well as the temporal
dynamics and interactions of every
DNA-binding protein at the genomic scale
at single-cell resolution; a novel, emergent
control on the duration of the cell cycle;
quantitative assessments of cellular ener-
getics and the synthesis dynamics of
the high-energy intermediates; and the
‘molecular pathologies’ of single-gene
disruption strains [2]. Another novel
approach to simulating whole-cell behav-
iors in Escherichia coli, based on spatial
stochastic simulations, was used to
quantify variation in how individual cells
in a population express a set of genes in
response to an environmental signal [11].
All of these predictions remain to be
experimentally validated, and may even
motivate the development of novel mea-
surement technologies in the future. Never-
theless, in each case, the biological insights
generated in these studies would have
been impossible to identify or quantify
without a comprehensive model.

Suggest Future Experiments that May
Lead to New Knowledge
The early promise of systems biology was
that mathematical modeling could be
used to suggest new experiments through
testable predictions. One effective imple-
mentation of this idea occurs as large sets
of computer simulations are directly com-
pared with experimental outcomes. For
any given complex experiment, whole-cell
models can be used to produce a corre-
sponding simulation, resulting in two sets
of data, one computational and one
experimental. These two datasets can
be directly compared to determine how
well the model describes experimental
observations. The areas in which model
and experiment agree validate the model,
but the discrepancies between predic-
tions and observations hold the true value,
as each discrepancy represents a high-
probability opportunity for a discovery.
Such a premise has been implemented
in the context of genome-scale metabolic
modeling, leading to new functional assign-
ments for genes [12].

Whole-cell models broaden the scope
and increase the diagnostic power of
such studies. For example,M. genitalium
model simulations were compared with
experimentally measured growth rates
to determine discrepancies. The outcome
of this comparison led to the prediction of
specific kinetic parameters for three
enzymes,whichwere then all successfully
validated experimentally [3]. We find it
striking that simply knowing the growth
rates of certain disruption strains was
sufficient to constrain kinetic parameter
values for specific proteins; this observa-
tion highlights the value of an approach in
which all of the biological processes are
connected.

Provide a Framework for the Safe and
Effective Design of Genetically-Modified
Organisms
The advent of rapid and inexpensive DNA
synthesis is leading an era of largely or
even completely synthetic organisms.
Just as computer-aided design (CAD)
and other modeling-based predictive
tools have transformed other engineering
disciplines, we expect ‘Bio-CAD’ tools to
play a major role in the field of synthetic
biology.
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Network modeling approaches have facil-
itated the rational engineering and pertur-
bation of biological systems in academia
[13,14], and are beginning to be applied
in industry as well. In the biotechnology
sector, companies such as the Emerald
Cloud Lab and Transcriptic seek to auto-
mate the entire engineering cycle – and
with it, the model-driven design process.
In parallel, Ginkgo Bioworks and SGI-DNA
offer services, which greatly facilitate the
design of novel organisms. Zymergen,
Genomatica, and Amyris use modeling
to inform their strain designs. As whole-
cell modeling develops, we expect it to
become part of the expanding toolkit for
this new industry.

Despite these advances, synthetic biology
still lacks many predictive tools needed to
enable efficient design. Computational
whole-cell models can provide a useful
guiding framework that could eventually
transform current genome engineering
into a more precise and predictive disci-
pline [15].

Concluding Remarks
As advances in computational methods
related to whole-cell modeling are
developed, the number of applications will
increase dramatically. New approaches
will be required to model more complex
cells, such as pathogenic microbes or
mammalian cells, and eventually even
multicellular systems, tissues, or ecosys-
tems. These and other advances will
enable whole-cell modeling to realize its
potential: to serve as a foundational plat-
form for interpreting complex behaviors
and facilitating discovery across a host
of medical, research, and biotechnological
applications.
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