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Although metabolic networks can be readily reconstructed

through comparative genomics, the reconstruction of regulatory

networks has been hindered by the relatively low level of

evolutionary conservation of their molecular components.

Recent developments in experimental techniques have allowed

the generation of vast amounts of data related to regulatory

networks. This data together with literature-derived knowledge

has opened the way for genome-scale reconstruction of

transcriptional regulatory networks. Large-scale regulatory

network reconstructions can be converted to in silico models that

allow systematic analysis of network behavior in response to

changes in environmental conditions. These models can further

be combined with genome-scale metabolic models to build

integrated models of cellular function including both metabolism

and its regulation.
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Introduction
There are three types of intracellular biochemical reac-

tion networks where significant reconstruction efforts are

underway: metabolic, transcriptional regulatory and sig-

naling networks. Ultimately all three have to be inte-

grated to generate whole-cell models of microbes and

other organisms. Large-scale metabolic networks can be

reconstructed relatively easily for any organism that has a

published genome sequence and for which a sufficient

amount of biochemical and physiological information is

available [1]. These metabolic network reconstructions

can be converted into mathematical models that can be

used to simulate and analyze the behavior of the organism

[1]. The models constructed in this fashion have found

applications both in studying fundamental aspects of

biology, such as evolutionary adaptation [2], and in

designing microbial strains for the industrial production

of biochemicals [3]. In addition to defining the metabolic

interconversions, however, studying the integrated func-

tion of a microbial organism also requires a systematic

description of the processes that regulate metabolism. In

microbial organisms, key cellular processes such as meta-

bolism are regulated at multiple levels, including tran-

scriptional control of mRNA abundance and by a variety

of post-transcriptional regulatory mechanisms such as

kinetic regulation of enzymatic function. Transcriptional

regulation constitutes perhaps the most experimentally

tractable of these regulatory mechanisms, as mRNA

abundance and DNA binding are easier to measure than,

for example, protein abundance and activity. For micro-

bial organisms, the primary role of transcriptional regula-

tion is the response to changes in environmental

conditions, such as nutritional status and environmental

stresses. Owing to the central role that transcriptional

regulation plays in cellular function and the availability of

powerful experimental techniques to elucidate regulatory

networks, reconstruction of these networks has emerged

as a key task in biology [4,5].

Since metabolic network reconstruction primarily based

on genome sequence data has been so successful, we

discuss here the challenges and opportunities associated

with regulatory network reconstruction through a compar-

ison of the two network types. Some of the key differences

between regulatory and metabolic networks and their

respective reconstruction processes are summarized in

Table 1. In addition to discussing progress made in the

reconstruction of regulatory networks, we will also review

current efforts to derive predictive models based on

regulatory network reconstructions and efforts to build

integrated models of cellular function that incorporate

transcriptional regulation as one component.

Fundamental building blocks and network
complexity
Although the fundamental biochemical reaction chemis-

try is the same for metabolic and regulatory networks, the

types of reactions that form the building blocks of these

networks are very different. The basic functional element

of a regulatory network is the promoter region of a gene or

operon, which contains the cis regulatory binding sites for

the relevant transcription factors (TFs) that regulate the

expression of a particular gene. The locations and orien-

tations of these binding sites, as well as the affinity of the

TFs to particular variants of the site, determine the

expression levels of a gene in response to changes in

the active TF concentrations inside the cell. The tran-

scriptional regulatory network is then defined by which
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TFs bind to which promoters and what the integrated

effect of all these TFs is on the expression of all the genes

[6]. It has been demonstrated that the known organization

of promoter regions in bacteria allows the implementation

of a wide class of regulatory logic functions within a single

promoter [7], so that even a single ‘node’ in the regulatory

network can be relatively complex. At the basic level the

mechanisms of transcriptional regulation are the same for

prokaryotes and eukaryotes, but eukaryotic organisms

add an additional level of complexity to the regulatory

network in the form of chromatin-modifying enzymes and

other co-regulators that are typically recruited to promo-

ters by specific TFs [8].

Estimating the scope of a metabolic network reconstruc-

tion task for a given organism can be done relatively

easily, by estimating the number of genes with potential

metabolic function present in the genome on the basis of

sequence similarity. For regulatory networks the number

of TFs cannot be simply used to estimate the complexity

of the network, owing to the fact that TFs can have

multiple target genes and can often act in synergistic

combinations. However, the relative fraction of TF cod-

ing genes tends to be higher for organisms that encounter

more varied environmental conditions during their life-

time [9], indicating that there are limits to the complexity

that can be achieved with a fixed number of TFs. Infor-

mation on well-studied organisms can be used to evaluate

the level of complexity of transcriptional regulatory net-

works in terms of the number of components (e.g. TFs

and target genes) and regulatory interactions (Table 2).

Escherichia coli has been predicted to have 314 TFs [10]

and on the basis of the primary literature 1468 regulatory

interactions have been identified [11��]. In Saccharomyces
cerevisiae, there are 141 verified TFs [12] and large-scale in
vivo protein–DNA binding screens indicate that there are

at least 4000 regulatory interactions [13��]. For both E. coli
and yeast these numbers of regulatory interactions are

most likely to be underestimates, but they give an indica-

tion of the order of magnitude of the regulatory network

reconstruction task.

Evolutionary conservation
From the viewpoint of network reconstruction perhaps

the most significant difference between metabolic and

regulatory networks is the degree of evolutionary con-

servation of the molecular components that form these

networks. There is a high degree of sequence similarity

between metabolic enzymes in different organisms,

which allows functions to be assigned to open reading

frames on the basis of sequence comparison between

genomes. For regulatory networks, the corresponding

Table 1

Some key differences between regulatory and metabolic networks that affect the network reconstruction process.

Network feature Metabolic networks Regulatory networks

Structure Hard stoichiometry Qualitative statements
Evolutionary conservation Enzyme sequences highly

conserved across species

Limited conservation of cis regulatory sites

between closely related species

Malleability Fixed structure in terms of the substrates

that a particular enzyme can process

Adjustable structure, because of the possibility that mutations

in the cis regulatory sites change binding specificity

Level of biochemical

characterization

Fairly complete understanding of most

subsystems in microbial organisms

Most subnetworks have not been well

characterized even in microbial model organisms

Modeling approaches Quantitative constraint-based models

can be constructed at the genome-scale

Quantitative models can be currently constructed only

on a small scale; qualitative discrete network models

can be used to study large networks

Role of noise Relatively small, because of high

concentrations of metabolites involved

in most reactions

Possibly significant in determining both structural

features of the network and the overall response of

the network to a stimulus

Table 2

Examples of reconstructed regulatory network structures in E. coli and S. cerevisiae.

E. coli core

metabolica
E. coli full

metabolicb
E. coli

databasec
S. cerevisiae

core metabolicd
S. cerevisiae

databasee
S. cerevisiae

GWLAf

Regulatory genes 16 104 123 55 109 106

Target genes 43 451 762g 168 418 2343

Regulatory interactions – – 1468g 258 945 3985h

Regulated reactions 46 555 – 117 – –

a[28�]; bMW Covert, et al., unpublished; c[11��]; dMJ Herrgard, BO Palsson, unpublished; e[48�]; f[13��]. gCounting each gene in an operon

separately. hRegulatory interactions with P < 0:001. Core metabolic refers to the regulatory network controlling core metabolism in an organism.

Full metabolic refers to the regulatory network controlling all metabolic processes in an organism.
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concept would be the conservation of either TF coding

sequences or DNA-binding sites on promoter regions.

Sequence similarity between TF coding genes is in itself

of limited use for reconstructing the actual regulatory

network structures, beyond being able to predict which

genes in a genome code for TFs. This limitation exists

because TFs typically utilize a small set of conserved

DNA-binding domains [14] and knowing the sequence or

structure of the domain does not generally allow predic-

tion of the corresponding genomic binding sites.

TF binding cis regulatory sites are usually short (5–25

nucleotides) and degenerate, and small changes in these

sites can lead to major changes in TF binding affinity [15].

For these reasons detecting regulatory sites by sequence

comparison (commonly referred to as phylogenetic foot-

printing) requires access to genome sequences of multi-

ple closely related species [16��,17��]. Even with a

sufficient amount of comparative sequence data available,

the complex structures of promoter regions might prevent

the reliable identification of binding sites [15]. With more

genomes being sequenced, and the development of more

powerful computational approaches for regulatory motif

finding [5,18,19], comparative approaches for reconstruct-

ing regulatory networks will probably become feasible in

the future. However, deriving regulatory network struc-

tures in a semi-automatic fashion for less well-character-

ized organisms through comparative approaches will be

significantly more challenging than the corresponding

task for metabolic networks.

Although the individual TFs and binding sites may not be

evolutionary conserved, there is evidence that certain

patterns of network structure (commonly described as

‘motifs’) such as feed-forward loops have been preferen-

tially selected for in evolution [11��,20]. The existence of

a small class of over-represented network structural motifs

was first established in E. coli on the basis of a literature-

derived regulatory network structure [11��]. Similar motifs

were also found in the experimentally established yeast

regulatory network structure [13��]. In addition to simi-

larity at the network ‘motif’ level, the actual physiological

responses to environmental changes executed by the

regulatory networks can be quite similar between species.

The observation that regulatory network motifs have

arisen by convergent evolution rather than by duplication

of an ancestral motif [21�] appears to support this notion of

convergent responses executed by different molecular

level network elements.

Databases and experimental data
Owing to the ease with which sequence similarity search-

ing can be used to establish hypothetical enzymatic

functions, many well-curated metabolic network data-

bases exist [22–24]. These databases form the basis of

any more detailed metabolic network reconstruction or

modeling task. For regulatory networks similar compre-

hensive databases covering genome-scale regulatory net-

works in multiple organisms do not currently exist. For

individual organisms, however, such network databases

containing experimentally verified regulatory interactions

have been established, the most prominent one being

RegulonDB for E. coli [25]. There are also general data-

bases for individual organisms, such as the Yeast Proteome

Database (YPD) for yeast [12], that contain significant

amounts of regulatory information. In addition to data-

bases describing regulatory network structures, there are

comprehensive databases that specialize in describing

TF-binding sites, such as SCPD [26] for yeast and the

general TF-binding site database TRANSFAC [27].

Although these databases contain valuable information

for regulatory network reconstruction, they are not very

complete and for the most part lack information about the

synergistic effects between TFs acting on one gene.

Nevertheless, these databases and primary research litera-

ture can be utilized to reconstruct regulatory networks for

well-characterized organisms such as E. coli [11��,28�].

The major advantage that regulatory network reconstruc-

tion has over metabolic network reconstruction is the

availability of high-throughput experimental data that

is directly relevant to the network structure. For meta-

bolic processes the only widely available data source is the

genome sequence and its annotation — techniques for

measuring relevant metabolic quantities such as meta-

bolic fluxes and metabolite levels are still not commonly

used and have not been fully scaled to the whole-genome

level [29,30]. By contrast, the two primary data types

useful for the regulatory network reconstruction task —

genome-wide mRNA expression and location analysis

data — are widely available.

Gene expression data can be readily generated for well-

studied microbial organisms using several standard tech-

nologies [31]. Advances in statistical data analysis allow

both significant changes in gene expression under dif-

ferent conditions to be established [32,33] and hypoth-

eses about regulatory interactions or co-regulated gene

modules to be derived directly from the data [34,35�,36�].
In particular, gene expression changes in response to the

deletion of regulatory genes have been productively

used to obtain sets of potential target genes for many

regulatory proteins (e.g. in yeast and E. coli [37–39]).

Genome-wide location analysis [40,41] (GWLA) that

allows the direct detection of genomic target sites for

DNA-binding proteins such as TFs promises to lead to

an even more significant improvement in our ability to

reconstruct regulatory network structures than gene

expression profiling. So far, GWLA has been most exten-

sively applied in yeast, where it has been used to map the

target genes of 106 TFs under one set of conditions

[13��]. In principle, the technique can be readily ex-

tended to other organisms [42]. GWLA has also been

used to study the stimulus-dependent binding of TFs
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[43��], opening up the possibility of using this technique

to map combinatorial interactions between TFs on a

genome-wide scale.

The combination of expression profiling with GWLA as

well as promoter sequence motif analysis has allowed the

generation of hypothetical regulatory network structures

using a variety of data integration methods [13��,35�,
44,45]. Deriving full regulatory network structures solely

based on experimental data appears to be challenging,

however, owing to the large quantities of high-quality

data that would be required for such a task. One alter-

native to this purely data-driven approach would be to

utilize well-curated regulatory network structures derived

from databases and primary literature as a starting point

for expanding the network on the basis of high-through-

put data (Figure 1). For such an approach to succeed, one

first needs to evaluate how well current known regulatory

network structures agree with high-throughput datasets.

This type of analysis has been performed for yeast and E.
coli [46�–48�]. These studies have allowed the definition

of network subcomponents and network structural motif

types that are well supported by gene expression data and

thus are good targets for data-driven model expansion. In

the future, such combinations of knowledge-driven and

data-driven regulatory network reconstruction strategies

may allow the acceleration of network reconstruction in

well-studied organisms.

Both knowledge-driven and data-driven network recon-

struction strategies have so far been primarily applied to

the two best-characterized microbial organisms, E. coli and

S. cerevisiae. Existing network reconstructions for these

organisms are summarized in Table 2, which lists the

numbers of regulatory and target genes as well as the

numbers of regulatory interactions for each reconstruction.

From network reconstructions to
mathematical models
Regulatory network reconstruction can be achieved at

different levels of detail depending on the intended

application of the resulting network model. While dif-

ferent in silico modeling approaches have been exten-

sively reviewed elsewhere [49], we will discuss these

approaches here from the viewpoint of network recon-

struction. The representation of network structure is

another major difference between regulatory and meta-

bolic network reconstruction: the latter are naturally

described through the reaction stoichiometry, whereas

for the former there is no single widely accepted descrip-

tion. Clearly, the more detailed descriptions of regula-

tory networks require increasingly large amounts of

Figure 1
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20

Combining knowledge-based and data-based regulatory network reconstruction strategies. Regulatory networks can be reconstructed by
collecting individual regulatory interactions from relevant databases and the primary literature (knowledge). Alternatively, networks can be derived

directly from high-throughput experimental data and promoter sequence analysis through various data-mining methods. The combination of these

strategies is expected to be the most productive way to achieve large-scale network reconstruction.
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parameters and larger quantities of data that cannot be

easily obtained experimentally [50].

The first class of modeling approaches are primarily

intended to describe the structural features of regulatory

networks and do not accurately predict gene expression

levels in response to changes in regulator activity. Direc-

ted graphs with TFs and target genes as nodes and

regulatory interactions as edges are commonly used to

visualize regulatory networks and to analyze their struc-

tural properties [11��,51]. Most methods for reconstruct-

ing regulatory networks based on gene expression and/

or GWLA data describe the regulatory network as a

directed graph [13��]. These graphs cannot represent

important synergistic interactions between TFs and

they do not allow simulation of model behavior or

effective integration of regulatory networks with models

of other cellular processes. However, the graph-based

models of regulatory networks can also be used as a basis

for building more quantitative models through measur-

ing the regulatory strengths for different regulatory

interactions experimentally [52].

The second class of modeling approaches primarily

focuses on the prediction of gene expression levels at

the expense of the scale of regulatory network subcom-

ponents that can be modeled. Linear differential equa-

tions or linear models relating TF and target expression

levels are the simplest of these approaches. This type of

linear model was utilized in a recent study of the SOS

response system in E. coli, in which experimental gene

expression data was used to directly reconstruct a model

for a small regulatory network without any prior knowl-

edge of the network structure [53��]. Modeling ap-

proaches that go beyond linear models, such as non-

linear kinetic models and stochastic models, are necessary

to understand the full dynamic and stochastic behavior of

regulatory networks [54,55]. The most promising ap-

proach to understanding the nonlinear and stochastic

behavior of regulatory networks has been studying both

in vivo and in silico small engineered regulatory networks

representing prototypical network components such as

switches, autoregulatory loops, cascades and oscillators

[56]. These studies have greatly improved our under-

standing of the dynamics of regulatory networks as well as

the role of noise in these networks. The large number of

parameters required to reconstruct nonlinear and stochas-

tic models, however, have limited their use to small

networks, and it is currently not clear whether individual

models of such subnetworks can be systematically com-

bined to form large-scale network models.

Towards integrated models of cellular
function
As the role of transcriptional regulation is to modulate

other cellular processes, integrating the reconstructed

regulatory networks with models of these other processes

is central to understanding regulatory network function in

the context of the whole organism. Currently, there are

major challenges for achieving this integration, relating

both to obtaining the relevant data and to the modeling

frameworks that are able to support the required large-

scale integration. Possibilities for a suitable modeling

framework include discrete network models, such as

Boolean and Bayesian networks that allow key combina-

torial interactions between regulators acting on the same

gene to be represented either deterministically or prob-

abilistically [57,58]. These qualitative network models

allow the network behavior to be simulated, unlike graph-

based models, but require significantly fewer parameters

than linear or non-linear kinetic models. Boolean network

models can also be readily integrated with, for example,

whole-genome scale metabolic models to formulate inte-

grated models of cellular function [59].

So far, this kind of integrated model has been formulated

for the core metabolism in E. coli based on information in

the databases and research literature [28�]. This model

has also been recently expanded to a genome-scale model

(MW Covert, et al., unpublished), representing the first

large-scale integrated model of multiple cellular functions

in a microbial organism (Table 2). The major advantage

with such integrated models is that even when the

modeling of the regulatory network function is done at

the qualitative level, the integrated regulatory/metabolic

model can be used to quantitatively predict phenotypes

such as growth rates. These predictions can then be

experimentally verified by determining the phenotype

of knockout strains of regulatory or metabolic genes.

Furthermore, comparisons between model predictions

and experimental data can be used to improve the model

systematically. These types of integrated model are a

powerful way to bring together multiple types of high-

throughput data (e.g. gene expression and phenotyping)

and to interpret these datasets, as discrepancies between

model predictions and experimental data can point to

specific inconsistencies in the current reconstructed reg-

ulatory network model.

Conclusions
The reconstruction of large-scale biochemical networks

is necessary for understanding integrated network pro-

perties and for building quantitative predictive models

of these networks. With the increased availability of

high-throughput experimental data, the reconstruction

of transcriptional regulatory networks is becoming fea-

sible at the genome-scale for any organism that has been

sufficiently well characterized and for which suitable

data are available. Specific properties of regulatory net-

works, such as the lack of direct evolutionary conserva-

tion of cis regulatory sites, make both reconstruction

and modeling of these networks more challenging than

the corresponding tasks for metabolic networks. New

developments in both experimental techniques and

74 In silico biotechnology
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computational reconstruction and modeling methods are

still needed to improve our ability to reconstruct quanti-

tative models of regulatory network. Nevertheless, the

first large-scale regulatory network models that have been

constructed show that we are already in a position to build

these models and to utilize them to construct integrated

models of microbial cells.

Update
A novel method for extracting co-regulated gene modules

based on integrated analysis of GWLA and gene expres-

sion data has been developed recently [60�]. In compar-

ison to utilizing GWLA data alone, the integrated

approach is shown to provide improved sensitivity for

identifying regulatory interactions.
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