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Integrated whole-cell modeling is poised to make a dramatic

impact on molecular and systems biology, bioengineering, and

medicine — once certain obstacles are overcome. From our

group’s experience building a whole-cell model of Mycoplasma

genitalium, we identified several significant challenges to

building models of more complex cells. Here we review and

discuss these challenges in seven areas: first, experimental

interrogation; second, data curation; third, model building and

integration; fourth, accelerated computation; fifth, analysis and

visualization; sixth, model validation; and seventh,

collaboration and community development. Surmounting these

challenges will require the cooperation of an interdisciplinary

group of researchers to create increasingly sophisticated

whole-cell models and make data, models, and simulations

more accessible to the wider community.
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Introduction
Predictive and comprehensive models of cellular physi-

ology are critical to understanding and engineering bio-

logical systems. Such whole-cell models have the

potential to guide experiments in molecular biology,

enable computer-aided design and simulation in syn-

thetic biology, and inform personalized treatment in

medicine. Constructing and validating models with suffi-

cient scope, detail, and predictive power, for a variety of

cells, will be a massive undertaking.

Beginning in the late 1970s [1], researchers began model-

ing cell physiology, primarily using ordinary differential

equation (ODE) approaches, creating increasingly detailed

models over the next three decades [2,3,4�]. Later, other

groups introduced frameworks that generally require

fewer parameters than ODE systems including con-

straint-based [5,6] and Boolean methods [7]. Combining
www.sciencedirect.com 
these approaches for their respective benefits, our group

developed a hybrid methodology: we modeled individual

biological processes, each with its own mathematical

representation, and merged their outputs to compute

the overall state of the cell [8]. Using this approach, we

simulated the life cycle of individual Mycoplasma genitalium
cells, accounting for every molecule and representing the

function of every annotated gene [9��].

Several unforeseen obstacles arose during the modeling

process, which should inform any future whole-cell mod-

eling efforts. Specifically, modeling larger cells and more

complex physiology presents challenges in first, exper-

imental interrogation; second, data curation; third, model

building and integration; fourth, accelerated compu-

tation; fifth, analysis and visualization; sixth, model vali-

dation; and seventh, collaboration and community

development, shown in Figure 1. No single research

group can simultaneously innovate in all these areas.

Rather, a broader community will need to coalesce to

tackle these problems. We address this article to that

community, discussing the challenges and highlighting

notable progress in each area.

Experimental interrogation
Parameterizing and validating the M. genitalium whole-

cell model was particularly challenging due to a lack of

organism-specific data. Many values were estimated from

measurements made in other species. Future efforts will

ideally simulate well-characterized organisms, for

example Mycoplasma pneumoniae [10–13], Escherichia coli
[14], and Saccharomyces cerevisiae [15,16]. Because whole-

cell models simulate the life-cycle of an individual cell,

one would ideally use spatially resolved, genome-scale,

dynamic, single-cell measurements to parameterize and

validate the models. However, many published measure-

ments are static ensemble averages representing a popu-

lation mean at a single time point [17–21]. This lack of

data ultimately presents the modeler with a dilemma:

either infer missing data, or create a less detailed model of

a particular phenomenon. To create the M. genitalium
model, we necessarily inferred some degree of dynamical

behavior. Faced with a similar problem, others have

found ways to incorporate static spatial data in their

efforts to create dynamic 3D cell-scale simulations

[22�]. Promising work in advancing single-cell measure-

ment techniques and technologies [23–26] will ultimately

drive more detailed and accurate modeling. To make

these efforts even more impactful and useful, the exper-

imental community could work to establish standardized

conditions and place a higher value on consistent, repro-

ducible measurements.
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Figure 1
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The interdisciplinary challenges faced by future whole-cell modeling efforts. A community of scientists and engineers will need to innovate together to

surmount these challenges.
Data curation
No single technology exists which can chronically

measure and record the entire state of a single cell. As

a result, heterogeneous data sets must be combined and

unified for model parameterization and validation. While

efforts such as the BioCyc databases have sought to unify

genomic and metabolic pathway information [27], separ-

ate databases contain functional parameters such as

kinetic rates [28,29] and expression levels [30]. To com-

pile the data required to build the M. genitalium model,

which we share via WholeCellKB [31], we had to down-

load and synthesize parameters from these and other

databases as well as the primary literature. For larger

and more complex organisms, the sheer magnitude of

data to collect, and the number of discrepancies to

resolve, will present significant hurdles to parameterizing

a model.

Since parameterization data increases with organism com-

plexity and known physiology, a part-time manual cura-

tion effort will not be tenable. Researchers will need to

exploit advances in natural language processing to extract

information from the primary literature en masse [32], or

outsource part of the effort. Formally interacting with

domain experts, as has been done in the flux-balance

analysis community [33], will be critical to assembling

consensus data sets. Ultimately, a combination of com-

puter-automated and human-augmented approaches will

be necessary to gather and assemble the data for larger

whole-cell models.

A collection of centralized, organism-specific databases

similar to WholeCellKB will be required for subsequent

whole-cell modeling efforts. In the best case, researchers

would go beyond including raw data for each figure in a
Current Opinion in Biotechnology 2014, 28:111–115 
paper [34] and would deposit their results to the appro-

priate database in a machine-readable format. Dedicated

curators would update the database schemas to incorpor-

ate new types of information as needed. In addition, the

databases would alert the community to significant dis-

crepancies between parameters and flag them as critical

issues to resolve. By providing these capabilities, the

databases would link experimental evidence to whole-

cell models.

Model building and integration
Comprehensively representing cell physiology in a single

computational model requires integrating diverse

phenomena over multiple length and time scales, hand-

ling the different levels of understanding associated with

each phenomenon, and representing the state of the cell

in sufficient detail. Our lab’s approach to meeting these

requirements relies on the notion of biological modularity

[35], allowing us to divide the cell into independent state

variables (e.g. representing metabolite counts or the

functional state of macromolecules) and cellular processes

(e.g. transcription, metabolism) [9��]. We create sub-

models of each cellular process using a mathematical

representation informed by available data and current

understanding. We assume that, over a small time step,

each sub-model can independently execute and update a

subset of the cell state variables. To meaningfully com-

bine sub-models in this fashion, we must first establish

and link common variables, and second, ensure that the

combined behavior is consistent with physical laws and

biological phenotypes.

To avoid duplicating work, it is desirable to incorporate

published models of particular biological processes into a

whole-cell modeling framework. This often requires that
www.sciencedirect.com
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the published models be modified to use the common

whole-cell state variables, which may, for example,

involve changing the published model’s quantities from

concentrations to counts, or linking its variables to the

appropriate cell compartment in the whole-cell frame-

work. Establishing mathematical methods for properly

converting a spatially resolved variable, used in a detailed

sub-model, to a bulk quantity, or even to a Boolean value,

used in a less-detailed sub-model, would ease the data

interconversion between sub-models. Numerical analysis

of these methods could be performed to examine factors

which affect stability and accuracy of the simulations, and

to quantify numerical uncertainty in model predictions.

With a collection of sub-models that properly interface

with cell state variables, it must further be enforced that

their aggregate behavior does not violate physical laws.

For example, the aggregate action of multiple sub-models

should not result in the consumption of more resources

than are present. To avoid this situation, we developed a

method to allocate cell state variables to biological pro-

cesses proportional to each process’s need. In the future,

this top-down approach could be replaced with one more

grounded in physical laws.

Furthermore, the aggregate behavior of a collection of

sub-models should be consistent with biological pheno-

types. For instance, the small molecule, RNA, protein,

and DNA mass fractions, must approximately double over

the exponentially growing cell’s life cycle. This require-

ment constrains certain sub-model parameters so that

metabolism, for example, produces nucleotides and

amino acids in the proportions needed by replication,

transcription, and translation. The M. genitalium model

performed this adjustment before simulation; however,

new methods must be developed to update these loosely

coupled parameters during simulation. Importantly, this

will enable proper incorporation of regulatory sub-models

[36,37] which modify the nucleotide and amino acid

demands as the RNA and protein expression profiles

change in response to perturbations.

Accelerated computation
Computational simulation is a powerful scientific and

engineering tool because it enables rapid and inexpensive

exploration of alternative scenarios and hypotheses, as

well as design optimization. Such investigations, how-

ever, hinge on efficient computation in order to explore a

sufficiently large portion of parameter space. The whole-

cell simulations of M. genitalium, which each took approxi-

mately 10 hours to run, do not meet this criteria. We can

extrapolate that, without innovation in this area, simu-

lations of more complex organisms will take considerably

longer to execute. High-performance parallelized com-

puting technologies, such as the compute unified device

architecture (CUDA) [38] or message passing interface

(MPI) [39], or even custom hardware platforms [40], in
www.sciencedirect.com 
the spirit of Anton [41] or Neurogrid [42], should be

adapted and investigated for their abilities to speed-up

the execution of whole-cell simulations.

Data analysis and visualization
Raw simulation data, like raw experimental data, typically

requires extensive analysis to be adequately understood

and communicated. Techniques from machine learning

and dynamical systems analysis could be used to explore

and interrogate simulated single-cell phenotypes. These

analyses could suggest novel hypotheses about the

dynamics of single cells that would not emerge from

static, population-averaged data.

To complement analysis technologies, advances are

needed in large-data visualization. While our group

released WholeCellViz to expose a portion of the M.
genitalium data set [43], going forward more sophisticated

tools must be developed, particularly for exploration,

rather than just communication, of large data sets. This

requires the development of not only new visual motifs

for biological data, but also improvements in data proces-

sing and retrieval to enable interactive interfaces for

manipulating entire data sets. Existing tools [44] offer

these interactive exploratory interfaces, but generally

operate on smaller data sets [45]. Fortunately, these

problems are recognized as pressing issues by the visual-

ization community [46]. Preliminary work has begun to

explore new visual motifs for biological data [47–49], and

the high-performance computing community is support-

ing new techniques to improve data retrieval [50].

Model validation
Model predictions and experimental validation are linked

by an iterative process in which each provides feedback

on the other [51]. For the initial validation of the M.
genitalium whole-cell model, we simply compared model

predictions to as many heterogeneous data sets as possible

that were withheld from model reconstruction. We have

also used the model to predict the outcome of exper-

iments which are performed subsequently [52�]. Never-

theless, the validation process for the M. genitalium model

has been guided more by intuition than by a systematic

methodology. Ideally, a quantitative metric would exist to

specify how much of a model has been validated and

would point to data sets needed to improve the coverage

of validation. More subtly, methods should be developed

which can differentiate novel predictions (e.g. gene

essentiality in the M. genitalium model) from outputs

arising directly from parameter fitting (e.g. biomass com-

position in the M. genitalium model). These innovations

would support more widespread model adoption by

building trust in the predictions.

Collaboration and community development
Whole-cell models of more complex microbes and

cell types will likely become community endeavors,
Current Opinion in Biotechnology 2014, 28:111–115
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particularly as the models grow in scope and detail. To

facilitate interaction with the broader community, we

released the entire code base for the M. genitalium
whole-cell model under the MIT license [53], permitting

open development and re-use. Going forward, we must

engage the broader community in contributing to whole-

cell model development. The interface between cell state

variables and process sub-models must be explicitly

documented in detail to lower the barrier to contribution.

Furthermore, a formal plug-in system must be developed

to simplify the incorporation of alternate sub-models for a

particular process. At the project-management level,

metrics to quantify contribution and guidelines for

authorship need to be proposed and ratified. At the

community level, workshops, conferences, and compe-

titions [54] specifically focusing on whole-cell modeling

need to be organized to engage the breadth of contribut-

ing researchers.

Conclusion
The need to address the aforementioned challenges

provides a wealth of opportunities for interdisciplinary

contribution by experimentalists, modelers, computer

scientists, statisticians, bioinformaticians, and software

engineers. We hope a community will form where scien-

tists and engineers from diverse backgrounds can collab-

orate and innovate together to overcome these obstacles.

Whole-cell modeling can help researchers prioritize

experiments by identifying knowledge gaps and by high-

lighting measurement discrepancies [52�]. Additionally,

the comprehensive scope of a whole-cell model enables

predictions of the pleiotropic effects of perturbation [55�],
critical to the future of synthetic biology and personalized

medicine. Addressing the issues discussed here will

enable whole-cell modeling to realize its potential, and

in the process make an impact on model-guided science,

synthetic biology, and medicine.
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