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ABSTRACT

This chapter describes how to reconstruct functional metabolic and transcriptional regula-
tory networks, as well as the modeling approaches that allow for simulation of network
behavior for networks separately and for networks combined. This process is placed in the
context of model-driven biological discovery, and is illustrated with a detailed case study. In
this study, a genome-scale model was reconstructed and used in conjunction with experi-
mental data to elucidate the regulatory and metabolic networks in Escherichia coli.

I. INTRODUCTION

A major goal of systems biology is to further our understanding of complex bio-
logical systems. Using systems biology to facilitate biological discovery may be
thought of as a simple expansion of traditional biology, as shown in Figure 10.1.
Traditional biology (shaded box) begins with an experimental system of interest.
The "“inputs” to the system are simply aspects of the system that can be controlled.
Thus, the inputs may be external (such as environmental conditions) or internal,
such as perturbations to the genetic makeup of the organism (gene knock-outs or
knock-ins). The “outputs” to the system are aspects that are changed by the system
itself and that are measurable. Outputs can also be external (such as the concen-
tration over time of secreted by-products or biomass) or internal, such as the dif-
ferential expression of genes or activity of regulatory proteins. If the experiment is
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Figure 10.1. The traditional and systems biology approaches to discovery. The systems approach can
greatly expedite the discovery process by incorporating the testable predictions of a mathematical
model.

well-designed, the investigator can make an interpretation of the measured outputs
that (1) gives new insight into the system and (2) suggests new perturbations to the
inputs for a subsequent experiment.

This process has had great success over the last several decades and is the foun-
dation for all of the biological knowledge we have. However, it now has the poten-
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tial to be greatly enhanced by two major factors. First, the development of high-
throughput technologies means that we are now able to vary the inputs and
measure outputs many thousandfold faster than before (although arguably with
different accuracy). The result is a combinatorial explosion of data that would be
impossible to interpret without the aid of a computer. The development of math-
ematical modeling tools is the second factor, enabling a much more rapid charac-
terization of biological systems.

How do these two factors influence traditional biology? First, experimental
systems can be studied more broadly, with much the same detail. Instead of looking
at one small part of the organism, we can consider an entire network. Metabolism
and transcriptional regulation are currently the networks most feasible, but there is
every reason to believe that others (signal transduction networks, for example) will
follow. The annotated genome sequence enables us to obtain most of the com-
ponents of the network, although a substantial minority of components must still
be obtained from the traditional biology literature. The type of measured output
should drive the choice of mathematical analysis tools, as the predictions made by
a mathematical model are of much greater use if they can be directly compared to
experimental data. By analyzing the network with the appropriate mathematical
tools, it is possible to run simulations that predict outputs given a set of inputs.

In sum, once the inputs have been determined they are applied to the experi-
mental system as well as to the mathematical representation. The predicted and
measured outputs are obtained and compared. The reconciliation of experimental
and computational results, which may also be automated, is in actuality interpre-
tation of the experimental data on a grand scale. It can lead to the identification
of many new components and interactions in the system at once.

The incorporation of these elements (high-throughput technology and mathe-
matical modeling) with the traditional biology process is one definition of systems
biology (Cowley 2004). The purpose of this chapter is to show how this integrative
approach can be applied to metabolic and transcriptional regulatory networks.

Il. METABOLIC NETWORKS

For several reasons, the state of metabolic network reconstruction and modeling
is the more advanced. Much of the required information for network reconstruction
can be obtained from the annotated genome sequence and enzyme-to-reaction
databases, and several organisms are quite well characterized biochemically.
Because there is a wealth of literature on this topic, we describe it fairly generally
and refer to the reviews for more detail (Covert et al. 2001; Price et al. 2004; Gagneur
and Casari G 2005; Patil et al. 2004).

A. Network reconstruction

Metabolic network reconstruction begins by compiling a list of all enzymes and
transport proteins identified in the annotated genome sequence of an organism,
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Figure 10.2. Functional network reconstructions. Metabolic and regulatory networks may be
reconstructed in terms of component lists or graphs indicating some interactions, but are most useful
when integrated in such a way that they actually predict behaviors that can be compared with
experimental observations.

as found in a database such as the Comprehensive Microbial Resource (Peterson
et al. 2001) or MetaCyc (Krieger et al. 2004). Each protein or protein complex is
associated with one or more metabolic reactions or transport processes, using a
database such as the ENZYME databank (Bairoch 1994). Missing pieces of the
network may also be found in the biochemical literature or identified by compari-
son with known pathways in other organisms (Overbeek et al. 2000) to obtain a
relatively complete reconstruction.

Although such reconstructions can be very useful for some types of network
analysis (Jeong et al. 2000; Ma et al. 2004), for applications such as phenotype
simulation a more complete network is required. Put simply, the metabolic network
must be “functional”; that is, given a set of known and well-characterized behav-
iors of the organism the reconstruction must contain all proteins necessary to
simulate these behaviors (Figure 10.2). For a vegetative cell, the network must allow
production or transport of biomass components (e.g., all essential amino acids,
nucleotides) given a defined medium, and must be able to take up known sub-
strates and produce known secreted metabolites. The initial reconstruction of a
functional metabolic network therefore requires a thorough integration of genomic,
biochemical, and phenotypic data.

What is in a reconstruction? This depends on several factors, most importantly
the type of analysis to be performed on the network. For a simple graph network
analysis, all that is required is a set of nodes (e.g., metabolites) and the interactions
between the nodes (e.g., reactions). To enable a metabolic flux analysis, it is also
necessary to include the stoichiometry of the reactions as well as some flux infor-
mation, such as a maximum oxygen or substrate uptake rate. Flux balance analy-
sis, described in more detail later in the chapter, also requires definition of the
organism’s biomass composition, in terms of how many moles of all amino acids,
nucleotides, and so on are contained in one gram dry weight of the organism. For
a complete kinetic description, all of the kinetic parameters would need to be
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included. However, the parameters would be extremely difficult to obtain (Bailey
2001). Recently, some of the most detailed metabolic network reconstructions have
been updated to include complete charge and elemental balancing, in addition to

stoichiometry, biomass composition, and some maximum uptake and secretion flux
rates (Reed et al. 2003; Duarte et al. 2004).

B. Analysis and simulation

Once the network is reconstructed it may be analyzed, depending on the detail of
the reconstruction (as described previously). Because other chapters will discuss
graph-based and detailed kinetic modeling approaches, | will focus on the
analysis methods currently applicable to large-scale functional networks, under the
umbrella term constraint-based modeling.

Constraint-based modeling itself has been reviewed thoroughly and frequently
over the past several years (Covert et al. 2003; Price et al. 2004). In brief, because
of the difficulty of obtaining a complete detailed description of all reaction fluxes
in the metabolic networkconstraint-based analysis instead focuses on limiting the
ranges these flux values can have, given a set of constraints. These constraints gen-
erally include those associated with mass balance and the stoichiometry of bio-
chemical reactions, as well as reaction reversibility and certain maximum flux rates.
More recently, the constraints of energy balance have also been added (Beard
et al. 2002).

In practical terms, constraint-based analysis begins with mass-balance equations
for each metabolite, as shown in Equation 10.1.

dX
E = ZVSW - Zvdeg + zvtrans (101)

Here, X is the metabolite concentration, and v represents reaction fluxes that
synthesize (syn), degrade (deg), or transport (trans) metabolites into and out of the
system. It is often assumed that the system is at a quasi-steady state with respect
to metabolism (i.e., dX/dt=0, described in more detail in material following). Incor-
porating this assumption and combining all of the mass balance equations yields
Equation 10.2.

Sv=0 (10.2)

Here, S is the stoichiometric matrix for the system and v is a vector of all fluxes
in the system. Other constraints—such as the reversibility of metabolic reactions
(e.g., vi 2 0), as well as maximum enzyme/transport capacity of proteins (e.g.,
Vi £ Vo )—are incorporated when known.

Once these constraints have been defined, the overall capabilities of the meta-
bolic network may be determined using extreme pathway analysis or elementary
mode analysis (Papin et al. 2004), and flux distributions that optimize network
production of cellular biomass components may be determined using flux-balance
analysis (Price et al. 2004). Recent years have been extremely fruitful in terms of
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developing creative and insightful analysis techniques for studying metabolic net-
works (Price et al. 2004).

It is often assumed that such analyses are limited because one assumption crucial
to all of the approaches discussed here is that the metabolic network is at a steady-
state. However, as the time constants relevant to metabolic reactions are on the
order of milliseconds (McAdams et al. 1998), behavior of the network may be sim-
ulated dynamically. The simulation is simply broken into several time steps just large
enough that the metabolic network may be assumed to be at a quasi-steady state,
and differential equations are solved to calculate the growth, uptake, and secretion
of various metabolites over time (Varma et al. 1994). Such an approach is important
when incorporating the highly dynamic behavior of the transcriptional regulatory
network.

C. Predicted and measured outputs

Because the utility of a mathematical model depends on how directly model pre-
dictions may be compared to experimental data, it is useful to describe the exper-
imental techniques used to study metabolism. Of particular importance are the
measured outputs from such techniques, and whether they can be compared to
predicted outputs. The measurable outputs for metabolic networks are growth rate,
concentrations of external compounds over time, and internal metabolic fluxes. For
metabolic networks, we can now assess growth rate under various environmental
conditions on 96-well plates using phenotype microarrays (Bochner et al. 2001).
Substrate uptake and product secretion rates can be measured using standard
chromatography techniques, and high-throughput metabolomic technologies are
being developed (Kell 2004). The uptake and metabolism of radiolabeled sub-
strates may also be used to calculate internal metabolic fluxes indirectly (Sauer
2004). Current metabolic network reconstructions allow for direct comparison with
all of these data using flux-balance analysis (as described previously).

I1l. REGULATORY NETWORKS

A. Network reconstruction

Regulatory networks differ from metabolic networks in ways that impact the network
reconstruction as well as modeling approaches (Herrgard et al. 2004). First, the com-
ponents are different. Whereas metabolic networks involve metabolites, enzymes,
and transport proteins, regulatory networks involve regulatory proteins and the pro-
moter regions of target genes. Second, most of the metabolic proteins are well
conserved across species. Regulatory proteins may also be conserved. However,
the cis regulatory regions are generally not conserved across species, and tran-
scription factor binding sites are extremely difficult to find in promoter regions due
to their short length, although progress is being made (Beer et al. 2004). In addi-
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tion, the interactions of transcription factors at one promoter region can be
extremely complex (Davidson et al. 2002), and even a single nucleotide difference
in a transcription factor binding site can change the specificity of cofactor binding
(Leung et al. 2004).

Accordingly, the level of characterization of regulatory networks does not
approach that found in metabolic networks. Currently, detailed genome-scale reg-
ulatory networks have been reconstructed only for Saccharomyces cerevisiae (Lee
et al. 2002; Harbison et al. 2004) and E. coli (Shen-Orr et al. 2002; Salgado et al.
2004). These reconstructions are qualitative, including the effect of active tran-
scription factors on target genes (whether the factor acts as an inducer, repressor,
or both). More detailed reconstructions, which would include some of the dynam-
ics of gene expression, are extremely useful but also far more difficult to obtain
(Kalir et al. 2004).

Notwithstanding these challenges to those wishing to study regulation, two high-
throughput technologies have made it possible to reconstruct regulatory networks
at the large scale. First, microarray analysis enables the determination of the expres-
sion profile of an entire genome in one experiment (Gardner et al. 2003). Second,
it is now possible to determine with some accuracy where all of the transcription
factors are binding in the genome under a given set of experimental conditions
(Lee et al. 2002). These two approaches, especially when used in combination with
each other or with the existing literature, are a powerful way of characterizing a
regulatory network (Hartemink et al. 2002; Herrgard et al. 2003).

B. Analysis and simulation

Regulatory network modeling approaches are significantly different from metabolic
network modeling approaches (McAdams et al. 1998; de Jong 2002; Tyson et al.
2003; Herrgard et al. 2004). They include Boolean logic (Thomas 1973), fuzzy logic
(Lee et al. 1999), Bayesian models (Hartemink et al. 2002), kinetic models (Kremling
et al. 2001; Kalir et al. 2004), and stochastic models (McAdams et al. 1998). In
general, the greater the level of detail required by the modeling approach (in terms
of the number of parameters) the less complex the network studied, down to the
extreme simplicity of engineered regulatory networks (Hasty et al. 2002). On the
other hand, the detailed models of small engineered systems have been instru-
mental in developing our understanding of the effect of noise on network dynam-
ics (Elowitz et al. 2000).

For large-scale modeling, an approach that is qualitative is most advantageous,
because of the qualitative nature of the existing literature (Bolouri et al. 2002). The
presence of relevant stimuli, activity of regulatory proteins, and expression of target
genes can all be described in terms of Boolean logic. This framework was demon-
strated to be particularly useful for integrating regulatory and metabolic models,
wherein the effects of regulatory events are represented as time-dependent con-
straints on the metabolic network (Covert et al. 2001).
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C. Measured and predicted outputs

The typical outputs of comparing expression of a gene under two conditions using
microarrays or quantitative real-time RT-PCR are a p-value (derived from appropri-
ate statistical analysis of repeated expression measurements) indicating the
probability that a change in expression occurred, and a ratio of expression levels
or signal intensities, which assigns a quantitative magnitude of the expression shift.
For comparison with genome-wide qualitative gene expression changes, a regula-
tory network need therefore only be expressed in terms of logical rules. More
detailed models also allow comparison with the ratio data for a limited number of
genes (Kremling et al. 2001; Kalir et al. 2004).

IV. EXPERIMENTAL AND COMPUTATIONAL DATA INTERPRETATION

Although there are many reasons to build models (Bailey 1998), one of current
importance is to elucidate the biology of the modeled network. Specifically, models
can be used to identify or indicate the presence of previously unknown compo-
nents or interactions in the network. This occurs through integration and reconcil-
iation of measured and computationally predicted experimental outcomes. The
remainder of this chapter focuses in depth on the use of a combined regulatory-
metabolic model in E. coli, which was used in coordination with high-throughput
experimental studies to facilitate elucidation of the metabolic and regulatory net-
works (Covert et al. 2004) (Figure 10.3).

Step 1: Wildtype 49% model accuracy
oxygen response R 15% model coverage
Step 2 TF el-Driven | 9go, accuracy
dependencies .| [ Discov jy 66% coverage
Step 3: TF "
binding sites I I R
» i »

115 new regulatory network hypotheses

127 unpredicted, 23 incorrectly predicted shifts

Figure 10.3. Model-driven discovery as applied to E. coli. High-throughput experiments and a
mathematical model were integrated using the approaches described in this chapter to determine many
previously unknown interactions in the transcriptional regulatory network.



Markus W. Covert 199

The E. coli model accounts for the products of 1,010 genes, or roughly one-third
of the annotated genes in this organism. It contains 104 regulatory proteins, which
regulate the transcription of 479 metabolic genes. There are 906 genes that con-
stitute the metabolic component of the model. The metabolic network is described
and simulated using flux-balance analysis, and the regulatory model uses logic
statements to describe regulatory events. The two networks interface via the con-
straint-based framework: regulatory events are interpreted simply by imposing
time-dependent constraints on the metabolic network. Such an approach had
previously been shown to result in more accurate predictive capability as well as
broader scope of prediction (Covert et al. 2002).

The model is able to generate predictions of the following outputs: growth rate,
substrate uptake rates, by-product secretion rates, medium concentrations of
biomass and metabolites over time, internal flux rates, and shifts in gene expres-
sion. In addition, it can predict the effects of internal (i.e., deletion of one or more
metabolic or regulatory genes) and external (i.e., change in medium composition,
availability of oxygen, and so on) perturbations on the behavior of the system.
Experimental data corresponding to all of the predictions listed here can also be
obtained with relative ease using standard methods in microbial physiology and
gene expression profiling.

Model predictions were compared to two large data sets for the purpose of
network elucidation. The first was a large set of phenotype data available from the
ASAP database (Glasner et al. 2003). Cells were seeded onto 96-well plates, with
each well containing a medium designed to test one feature of microbial metabolic
capability (e.g., the ability to utilize glucose as a sole carbon source) and allowed
to grow overnight, upon which respiration of the cells was compared to a negative
control as an indicator of growth (Bochner et al. 2001). The data that could be com-
pared to model predictions included 110 different growth environments and 125
knockout strains of E. coli for a total of 13,750 outcomes.

The predicted and measured outcomes agreed in most (approximately 80%) of
the cases. More interestingly, the model failures corresponded to particular envi-
ronments or strains. Closer examination of the failures led to new hypotheses
about E. colimetabolism and regulation. In all, comparison of prediction and exper-
iment for 10 environmental conditions and eight knockout strains led to new
hypotheses about regulatory interactions or uncharacterized enzymes and meta-
bolic pathways.

As an example, one of the environmental tests was the ability of the cells to grow
using thymidine as a sole carbon source. The model predicted that such growth
was impossible. However, the measured data showed that each of the knockout
strains was able to grow. One possible reason for the model failure is that the recon-
structed metabolic network lacks a thymine-reductive pathway (including enzymes
with the following E.C. numbers: 1.3.1.2 or 1.3.1.1, 3.5.2.2, and 3.5.1.6). As includ-
ing this pathway would reconcile the model predictions and measured observa-
tions, one can find the most likely open reading frames to encode the pathway
using sequence and phylogeny comparison tools such as MAST and MEME (Reed
et al. 2003; Covert et al. 2004). In this case, the most likely open reading frames
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(ORFs) for the thymine-reductive pathway enzymes are b2106 for 1.3.1.2 and b2873
or b0512 for 3.5.2.2. Such hypotheses have been verified in past metabolic network
studies (Covert et al. 2001).

The second set of data was a collection of gene expression profiles generated as
part of the study. Based on an earlier study (Herrgard 2003) the aerobic-anaerobic
shift was targeted as a portion of the network with an intermediate level of charac-
terization. The gene expression profile was obtained for E. coli during exponential
growth on M9 glucose minimal medium under aerobic and anaerobic conditions.
The model was used to predict the differential gene expression between the pro-
files, as well as growth rates and the like. In this case, the comparison between model
predictions and experimental outcomes involves two measures: the accuracy (where
a shift was predicted, it was also observed) and coverage (where a shift was
observed, it was also predicted) of model predictions. For the first version of the
model, the accuracy was about 49% and the coverage was only about 15%. These
measurements indicate first that the regulatory network is much less characterized
than the metabolic network, and second that the aerobic-anaerobic part of the
network in particular requires more scrutiny to be fully understood.

The discrepancies between experiment and model were examined in more detail
by determining the transcription factor dependencies of the differential expression
observed in the wild type. This was accomplished via a perturbation analysis (Ideker
et al. 2001) (Figure 10.4). Strains in regulatory proteins involved in the molecular
response to oxygen were constructed, and their gene expression profiles under
conditions identical to the wild type were determined. Using analysis of variance
enabled determination of whether a shift in expression observed in the wild type
was abolished in the knockout strain. This led directly to description of a logical
rule.

For example, the kgtP gene (b2587) was listed without a regulatory rule in the
original model. However, the microarray data indicated a significant shift with a log2
ratio of 2.05 between the aerobic and anaerobic conditions. The perturbation
studies indicated that the differential expression observed in the wild type was abol-
ished in the AarcA and the AarcA Afnr knockout strains. As a result, the rule was
rewritten as kgtP = IF NOT (ArcA) (ArcA, Fnr, and Narl are regulatory proteins that
also have rules that dictate their activity). For the fdnl gene (b1476), a rule already
existed: fdnl = Fnr OR NarlL. However, no differential expression was observed. The
rule became fdnl = NarL. In several cases, the only change made to resolve the
model predictions and observations were in the interactions between regulatory
proteins (e.g., changing an AND to an OR, and vice versa). This is an important
observation, as the regulatory effects of most regulatory proteins to date have been
tested singly and not in combination.

This analysis led to a greatly improved network model. The second-version E. coli
model predicted 67% of the 151 observed expression shifts (coverage), with a pre-
dictive accuracy of 98%. More importantly, reconciliation of the model and the data
led to many new hypotheses about the regulatory network in E. coli that are readily
testable. Finally, the new model was compared to the phenotype microarray study
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Bnum Gene L2R Ar Ap F O S AF Rule Addition Bnum Gene L2R Ar Ap F O S AJF Rule Addition
b0033 carB X OxyR b2463 maeB Oxygen

b0034 caiF -1.37 X' ArcA and Fnr b2530 iscS Oxygen

b0068 SfuA Oxygen b2573 rpoE X Not (OxyR)
b0113 pdhR X X X' Not (ArcA and Fnr) b2587 kgtP X X' Not (ArcA)
b0114 aceE X X X Not (ArcA and Fnr) b2676 nrdF Oxygen

b0115 aceF X X X' Not (ArcA and Fnr) b2677 proV X Not (ArcA or Fnr)
bo116 IpdA X X X' Not (ArcA and Fnr) b2707 sriR X X Fnr

bo118 acnB X X' Not (ArcA) b2747 ispD Oxygen

b0313 betl X X Not (ArcA) b2904 gevH X Not (ArcA or Fnr)
b0336 codB X OxyR b2905 gevT Oxygen

b0401 brnQ Not (Oxygen) b2925 fbaA Not (Oxygen)
b0564 appY X Not (ArcA) and Fnr b3089 sstT Not (Oxygen)
b0653 gitk X X X' Not (ArcA and Fnr) b3423 glpR Oxygen

b0683 fur X' Not (ArcA or Fnr) b3453 ugpB X' Not (ArcA or Fnr)
b0721 sdhC X X X Not (ArcA and Fnr) b3612 yibO -0.90 Not (Oxygen)
b0722 sdhD X X X Not (ArcA and Fnr) b3767 ivG_1 X Not (OxyR)
b0723 sdhA X X X' Not (ArcA and Fnr) b3769 ivM -0.53 X X Fnr

b0726 SUCA X X Not (ArcA) b3805 hemC Not (Oxygen)
b0727 sucB X X Not (ArcA) b3806 cyaA -0.54 X X Fnr

b0733 cydA Not (Oxygen) b3916 PrkA -1.06 Not (Oxygen)
b0734 cydB Not (Oxygen) b3917 sbp Oxygen

b0755 gpmA X X X Not (ArcA and Fnr) b3962 sthA X X Not (ArcA)
b0776 bioF Oxygen b3990 thiH 0.6 Oxygen

b0778 bioD Oxygen b3993 thiE ) X Not (ArcA or Fnr)
b0854 potF X X X' Not (ArcA and Fnr) b3994 thiC 0.6! X' Not (ArcA or Fnr)
b0864 artP Not (Oxygen) b4014 aceB 0 X X Not (ArcA)
b0993 torS Not (Oxygen) b4015 aceA X X Not (ArcA)
b1033 yedW X Not (ArcA or Fnr) b4151 frdD -2.23 Not (Oxygen)
b1221 narL X Not (ArcA or Fnr) b4152 frdC -0.98 Not (Oxygen)
b1241 adhE Not (Oxygen) b4153 frdB -2.31 Not (Oxygen)
b1323 tyrR Not (Oxygen) b4154 frdA -0.80 Not (Oxygen)
b1531 marA X X X X' Not (ArcA and Fnr) or OxyR b4232 fbp Oxygen

b1656 sodB Not (Oxygen) b4322 UXUA Oxygen

b1676 pykF Not (Oxygen)

b1702 pps Oxygen Legend

b1779 gapA Not (Oxygen) L2R > +1.0

b1827 kdgR X ArcA and Fnr 1>L2R>05

b1991 cobT X X Fnr +0.5 > L2R > 0.5

b1993 cobU X X Fnr -0.5>L2R>-1.0

b2040 fbD Oxygen -1 > L2R

b2129 yehX X X X Not (ArcA and Fnr)

b2296 ackA -1.49 X' ArcA and Fnr

b2308 hisQ X X X' Not (ArcA and Fnr)

b2309 hisJ X X X X Not (ArcA and Fnr) or OxyR

b2344 fadlL 0.98 X X Not (ArcA)

Figure 10.4. Determining new regulatory rules using the perturbation approach. A list of genes for
which the computational model failed to predict observed differential expression (false negatives). The
observed aerobic-anaerobic log2 ratio for the wild-type cells (L2R) is shown numerically and color
coded, as explained in the legend. The observed wild-type differential expression was abolished in
certain transcription factor knockout strains (Ar = AarcA, Ap = AappY, F = Afnr, O = AoxyR, S =
AsoxS, A/F = AarcA Afnr), as indicated by an X. These transcription factor dependencies were used to
determine new regulatory rules, as shown. Note that certain transcription factors, such as OxyR, are
generally active in the presence of oxygen, whereas others (such as ArcA and Fnr) are active in the
absence of oxygen.

described previously, with slight improvement to the predictive capabilities there,
and is therefore completely consistent with regard to all of the other available data.

V. CONCLUSIONS

This chapter shows how model-building fits in the context of experimental discov-
ery in terms of metabolism and transcriptional regulation, using a model of E. coli
as an example. How well this approach can be more broadly applied to organisms
and processes more complex and much less understood remains to be seen.
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Protein chips to measure outputs of cell signaling processes (Hall et al. 2004) and
methods for simulating signaling networks at the large scale (Papin et al. 2005) are
also being developed. It can be expected, however, that the success of such efforts
will depend on the ability of models to generate predictions that can be directly
compared to experimental measurements at a large scale. As can be seen from this
case study, such models will have the potential to greatly facilitate biological
discovery.
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