
DMEM. H1299 cells were a gift from J. Chen and were grown in RPMI. All transfections
were carried out using Lipofectamine 2000 (Invitrogen), Oligofectamine (Invitrogen) or
Geneporter 2 (Gene Therapy Systems) according to manufacturer’s recommendations. To
assess the effect of COP1 on steady-state levels of p53, Saos-2 cells were transfected with
increasing amounts of Flag–COP1 or Flag–COP1DRING with 250 ng pcDNA3.1þp53,
and U2-OS cells were transfected with or without increasing amounts (0.5, 1 and 2 mg) of
pCMV–Flag–COP1 or pCMV–Flag–COP1DRING and treated with 50 mM ALLN for 6 h
before cell collection where indicated. For reporter assays, Saos-2 or H1299 cells were
transiently transfected with 150 ng of pcDNA3.1þp53 or pcDNA3.1þp53R175H, 100 ng
of p21–Luc, bax–Luc, COP1–Luc, COP1mut–Luc or NS–Luc, and 10 ng of pCMV–b-Gal,
with or without increasing amounts (0.5, 1 and 2 mg) of pCMV–Flag–COP1 or pCMV–
Flag–COP1DRING. Luciferase assays were carried out according to manufacturer’s
instructions (Promega). For p53-induced cell-death assays, Saos-2 cells were transiently
transfected with 1 mg of enhanced green fluorescent protein (EGFP) and 5 mg of
pcDNA3.1þ, pcDNA3.1þp53, pCMV–Flag–COP1 or pcDNA3.1þp53, and 15 mg of
pCMV–Flag–COP1 for 48 h. Cells were harvested and stained with propidium iodide for
analysis by fluorescence-activated cell sorting (FACS). COP1 siRNA1 (AACUGACCAA
GAUAACCUUGA), COP1 siRNA1 inverted (AAAGUUCCAAUAGAACCAGUC), COP1
siRNA2 (AAGACUUGGAGCAGUGUUACU), COP1 siRNA3 (AAGAGGUGUUGGAG
UGUUGAC), Pirh2 siRNA1 (AACTGTGGAATTTGTAGG), Pirh2 B inverted
(AAGGAUGUUUAAGGUGUCAA), Pirh2 siRNA2 (AAUGUAACUUAUGCCUAGCUA),
Pirh2 siRNA2 inverted (AAAUCGAUCCGUAUUCAAUGU) and MDM2
(AAGGAAUUUAGACAACCUGAA) siRNA oligonucleotides with 3

0
dTdT overhangs

were synthesized by Genentech or Dharmacon. Control siRNA in experiments refers to a
mixture of inverted siRNA oligonucleotides. U2-OS, H1299, Saos-2 and BJ cells were
transfected with siRNA oligonucleotides three times at 24–36 h intervals and expanded as
necessary to prevent contact inhibition.

Immunoprecipitation, GST pull-down assays and pulse–chase analysis
Cells were lysed in immunoprecipitation (IP) lysis buffer (1% Triton X-100, 150 mM
NaCl, 50 mM Tris, pH 7.4, and protease inhibitor mix) or radioimmunoprecipitation
assay (RIPA) buffer (0.1% SDS, 1% NP-40, 150 mM NaCl, 0.5% deoxycholate, 50 mM Tris,
pH 7.4, and protease inhibitor mix), pre-cleared and immunoprecipitated with target
antibody and protein A/G PLUS beads. Identification of COP1-interacting proteins was
carried out as previously described21, except that U2-OS cells stably expressing Flag–COP1
were generated. GST pull-down assays were carried out with GST or GST–p53 combined
with in vitro translated HA–COP1 in PBST (PBS with 0.1% Tween 20) and incubated on
ice for 1 h. GST-bound proteins were subject to SDS–PAGE and immunoblot with anti-
HA and anti-GST. IPs were washed in lysis buffer with high salt as required. Pulse–chase
experiments were carried out as previously described15, except that HEK293T cells were
transfected with pCMV–Flag6a or pCMV–Flag–COP1 for 24 h, and U2-OS cells were
transfected with siRNA oligonucleotides as indicated.

In vitro ubiquitination assays
For in vitro ubiquitination reactions, in vitro-translated p53 was immunoprecipitated with
anti-p53 (DO-1 and FL-393) and washed five times with IP lysis buffer, and reactions were
carried out on protein A/G beads. Ten micrograms of Flag–ubiquitin (Sigma), 20 ng of
UbcH5b (A.G. Scientific), 20 ng of rabbit E1 (Sigma) and 500 ng of GST–COP1 (E3),
which was pre-incubated with 20 mM ZnCl2 for 30 min at room temperature, were
incubated in a buffer containing 50 mM Tris, pH 7.5, 2 mM ATP, 5 mM MgCl2, 20 mM
ZnCl2 and 2 mM DTT. After incubation for 2 h at 30 8C with gentle agitation, reactions
were boiled in PBST with 1% SDS for 5 min and reduced to 0.1% SDS with PBST for re-
immunoprecipitation with anti-p53 (DO-1 and FL-393). Finally, samples were subjected
to SDS–PAGE followed by immunoblotting with anti-Flag–HRP (M2) to detect
ubiquitinated species of p53.
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The flood of high-throughput biological data has led to the
expectation that computational (or in silico) models can be
used to direct biological discovery, enabling biologists to recon-
cile heterogeneous data types, find inconsistencies and system-
atically generate hypotheses1–3. Such a process is fundamentally
iterative, where each iteration involves making model predic-
tions, obtaining experimental data, reconciling the predicted
outcomes with experimental ones, and using discrepancies to
update the in silico model. Here we have reconstructed, on the
basis of information derived from literature and databases, the
first integrated genome-scale computational model of a tran-
scriptional regulatory and metabolic network. The model
accounts for 1,010 genes in Escherichia coli, including 104
regulatory genes whose products together with other stimuli
regulate the expression of 479 of the 906 genes in the recon-
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structed metabolic network. This model is able not only to
predict the outcomes of high-throughput growth phenotyping
and gene expression experiments, but also to indicate knowledge
gaps and identify previously unknown components and inter-
actions in the regulatory and metabolic networks. We find that a
systems biology approach that combines genome-scale experi-

mentation and computation can systematically generate hypoth-
eses on the basis of disparate data sources.

We first validated the model, or ‘in silico strain’ of E. coli
(iMC1010v1; see ref. 4 for conventions for naming in silico strains),
against a data set of 13,750 growth phenotypes5 obtained from the
ASAP database6, and then used this genome-scale model to select

 
 

 

 

 

Figure 1 Growth phenotype study. a, Comparison of high-throughput phenotyping array

data (Exp) with predictions for the E. coli network, both considering regulatory constraints

(Reg) and ignoring such constraints as a control (Met). Each case is categorized by

comparison type (Exp/Met/Reg), and results are listed as ‘þ’ (predicted or observed

growth), ‘2’ (no growth) or ‘n’ (for cases involving a regulatory gene knockout not

predictable by the Met model). The comparisons are further divided into four subgroups

represented by different colours. b, Chart showing individual results for each knockout

under each environmental condition, with results categorized and coloured as in a. The

environments involve variation of a carbon or nitrogen source and are further divided into

subgroups: AA, amino acid or derivative; CM, central metabolic intermediate; NU,

nucleotide or nucleoside; SU, sugar; OT, other. The knockout strains are also divided by

functional group: A, amino acid biosynthesis and metabolism; B, biosynthesis of

cofactors, prosthetic groups and carriers; C, carbon compound catabolism; P, cell

processes (including adaptation and protection); S, cell structure; M, central intermediary

metabolism, E; energy metabolism; F, fatty acid and phospholipid metabolism;

N, nucleotide biosynthesis and metabolism; R, regulatory function; T, transport and

binding proteins; U, unassigned. Each environment and knockout strain is associated with

a fraction of agreement (FA) between regulatory model predictions and observed

phenotypes, as shown in the bar charts to the right and below. c, Table showing all

environments or knockout strains for which FA , 0.60. Of these substrates or knockout

strains, 18 point to uncharacterized metabolic or regulatory capabilities in this organism,

as indicated (see Supplementary Information for a case-by-case analysis).
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transcription factors for prospective gene knockout studies. Com-
parison with the growth phenotypes showed that experimental and
computational outcomes agreed in 10,828 (78.7%) of the cases
examined, which is roughly the same success rate achieved in
previous studies in E. coli and yeast that considered only a few
hundred phenotypes7–9. In addition, 2,512 (18.3%) of the cases were
predicted correctly only when regulatory effects were incorporated
into the metabolic model (see Supplementary Information for
details).

The comparisons in this study identified several substrates and
knockout strains whose growth behaviour did not match predic-
tions (Fig. 1). Further investigation of these conditions and strains
led to the identification of five environmental conditions in which
dominant, as yet uncharacterized, regulatory interactions actively
contribute to the observed growth phenotype, and five environ-

mental conditions and eight knockout strains that highlight
uncharacterized enzymes or non-canonical pathways that are pre-
dicted to be used by the organism (Fig. 1; a detailed analysis of the
discrepancies is provided in the Supplementary Information).

We wanted to determine the utility of this model-driven
approach in elucidating transcriptional regulatory networks. A
previous study, which evaluated the consistency between existing
gene expression data sets and the known transcriptional regulatory
network of E. coli, identified the response to oxygen deprivation as a
partially consistent module10,11. We therefore targeted this part of
the transcriptional regulatory network for further network charac-
terization. Six strains with knockouts of key transcriptional regu-
lators in the oxygen response (DarcA, DappY, Dfnr, DoxyR, DsoxS
and the double knockout DarcADfnr) were constructed. The
messenger RNA expression profiles of these strains, as well as the

                    

(P

   

   

 

Figure 2 Characterization of the regulatory network related to the aerobic–anaerobic

shift. a, The locus numbers, gene names and the log2 ratio (L2R) of gene expression

(aerobic to anaerobic) are shown for all model genes with either predicted or observed

changes in expression (genes were divided into the same functional groups as in Fig. 1).

The L2R values are shaded depending on the magnitude of the expression shift, and those

enclosed by a box indicate a statistically significant change in expression (P , 0.007,

FDR , 5%). Comparisons between the experimental data and model predictions are also

shown, where v1 (i MC1010v1) and v2 (i MC1010v2) designate the model used in the

predictions. Filled and open symbols indicate model predictions and experimental data,

respectively; rectangles indicate no change in gene expression; triangles indicate a

change in expression, as well as the direction of change (upregulated or downregulated).

b, Comparison of the predicted and observed expression changes for the v1 and v2

models. A question mark indicates either that the given gene was not included in the

model or that no expression data were obtained for a given shift; other symbols are the

same as in a. c, Systematic perturbation analysis was used to determine the transcription

factors responsible for the expression change. The transcription factors knocked out in the

six strains are shown on top. Each row indicates a pattern of knockout strains in which

differential expression was abolished. The number of genes that show this pattern is

indicated on the right. Thus, the first row indicates that for 73 of the 437 genes that

showed differential expression in the wild-type strain (or 20 of the 151 genes

accounted for by the model), the observed differential expression was abolished only in

the DarcADfnr knockout strain.
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wild-type strain, were measured in aerobic and anaerobic glucose
minimal medium conditions. The data were analysed12 in the
context of iMC1010v1 predictions to identify new interactions in
the regulatory network (Fig. 2).

Expression profiling of the wild-type strain identified 437 genes
that experienced a significant change in transcription in response to
oxygen deprivation (t-test, multiple testing corrected to give a false
discovery rate (FDR) of less than 5%); of these, 151 genes were
included in iMC1010v1. Computationally, 75 genes were predicted
by iMC1010v1 to show differential expression in response to oxygen
deprivation. These 75 genes could be divided into three categories:
23 agreed with measured expression changes; 24 had a predicted
expression change that was either not found to be statistically
significant in the experimental data (23/24) or in a direction
opposite to that of the experimental data (1/24); and for 28 genes
there were no expression data available (transcript abundance was
determined to be ‘absent’ for two or more of the replicates). Thus, of
the 47 (¼23 þ 24) differentially expressed genes that could be
compared between the model computation and experiment, 23
(or 49% accuracy) agreed. Considering the overall number of genes
in the model for which there were experimental data, the overlap
(23) between the sets of predicted (47) and experimentally detected
(151) differentially expressed genes is significant in comparison to a
model that would randomly predict expression changes (P , 0.005
on the basis of a cumulative binomial distribution). There were
151 genes that were differentially expressed and included in the
model; however, with only 23 (or 15% coverage) correctly com-
puted, there is much room for expanding the transcriptional
regulatory network in iMC1010v1 on the basis of the experimental
data (Fig. 3).

To understand which transcription factors are involved in regu-
lating these differentially expressed genes after oxygen deprivation,
we compared the gene expression data for the wild-type and each
knockout strain separately. Using two-way analysis of variance

(ANOVA), we could determine whether the differential expression
was significantly altered in the knockout strain as compared with
the wild type. A large portion of the expression changes observed for
the wild-type strain were not significantly affected in any of the
knockout strains (195/437 or 44.6% of genes overall, 63/151 or
41.7% of genes in the model, FDR , 5%), suggesting that none of
the five transcription factors studied here regulates the expression of
these genes or that combinatorial interactions between multiple
transcription factors are involved in regulation. For the remainder
of the genes, differential expression was abolished in one or more of
the knockout strains (Fig. 2c).

The ANOVA-based identification of transcription factors that
influence differential expression of specific genes enabled us system-
atically to rewrite, relax or remove various regulatory rules in the
model to resolve the discrepancies between iMC1010v1 and the
experimentally determined wild-type differential gene expression.
For many (81) of the genes, a regulatory rule already existed and had
to be reconciled with our new data to accommodate the newly
determined transcription factor dependencies. For genes where
none of the knockouts abolished differential expression, we simply
based a new regulatory rule on the presence of oxygen rather than a
transcription factor (39 genes). By contrast, for genes where a
change in expression was predicted but not observed, we removed
oxygen dependency from the existing regulatory rule (23 genes). In
addition, for 12 genes the predicted expression changes agreed with
the observed expression in the wild type, but our knockout
perturbation analysis indicated that the transcription factors
involved in the regulation differed from previously reported data
and the model needed to be changed (all new regulatory rules are
detailed in the Supplementary Information).

The updated model (iMC1010v2) was used to recalculate all of the
predictions for both the aerobic and anaerobic expression data and
the high-throughput phenotyping arrays. Note that iMC1010v2

accounts for the same genes as iMC1010v1 but has different
regulatory interactions among the gene products and oxygen as
an environmental variable. We found agreement between model
predictions and the gene expression data to be substantially higher
using the iMC1010v2 model, as expected (Fig. 2c). Specifically, 100
of the 151 expression changes were correctly computed with
iMC1010v2, and the number of false-positive predictions (Fig. 2,
yellow boxes) was reduced to zero. In resolving many of the cases of
unpredicted differential expression (Fig. 2, orange boxes), we found
that implementation of the ANOVA-derived rule resulted in the
inability of the wild-type or knockout in silico strain to grow
aerobically or anaerobically on glucose, or under other conditions
where growth had been previously established (for example, wild-
type and knockout strain average growth rate under aerobic
conditions, 0.68 ^ 0.04 per hour; anaerobic, 0.43 ^ 0.07 per
hour). Such cases may be thought of as an ‘overfit’ of the microarray
data. Accordingly, we relaxed the regulatory rule for these genes (42
in total) to allow for a correct phenotype prediction. Comparisons
for the high-throughput phenotyping data revealed very little
difference from Fig. 1 (only 11 out of 13,750 cases were affected;
see Supplementary Information).

The iterative modification of the regulatory rules led to three
main observations. First, some of the results of the knockout
perturbation analysis are complex enough to make boolean rule
formulation difficult. For example, the interplay of Fnr and ArcA
can lead to complex behaviours where the expression change
observed in wild type is abolished in the DarcA or the Dfnr strains,
but not in the DarcADfnr strain. Such complex interplay among
transcription factors can lead to specialized expression changes, as
observed in the cydAB response to anaerobic, microaerobic and
aerobic conditions13,14.

Second, in revising regulatory rules for transcription factors we
found that whereas in some cases, such as arcA, expression of a
regulatory protein correlates positively with its activity, in several

Figure 3 Biological network elucidation by a model-centric approach. Metabolic and

regulatory networks may be expanded by using high-throughput phenotyping and gene

expression data coupled with the predictions of a computational model. If model

predictions are consistent with experimental observations, the network is adequately

characterized. If not, the model identifies a knowledge gap and may be used to update,

validate and generate hypotheses about organism function. Accuracy refers to the

percentage of model predictions that agree with experimental data; coverage indicates

the percentage of experimental changes predicted correctly by the model.
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cases, including fnr, betI and fur among others, the mRNA level of a
regulatory gene is reduced when the protein is in fact activated. For
example, under anaerobic conditions when Fnr is known to be
active11, its expression is significantly reduced. Such behaviour,
underscored by similar observations of mRNA transcript levels
and corresponding protein product abundance in yeast15, suggests
that the identification of regulatory networks, and transcription
factors involved in regulation in particular, will not be accomplished
by the determination of co-regulated gene sets alone.

Third, many of these gene expression changes involve complex
interactions and indirect effects. Transcription factors may be
affected, for example, by the presence of fermentation by-products
or the build up of internal metabolites. Such effects would be
extremely difficult to identify or account for without a compu-
tational model.

In summary, we find that the reconciliation of high-throughput
data sets with genome-scale computational model predictions
enables systematic and effective identification of new components
and interactions in microbial biological networks. Our study
illustrates only the first round of an iterative model building strategy
where an initial model based on literature-derived information
(iMC1010v1) is used to design informative experiments and then
updated on the basis of the new experimental data obtained
(iMC1010v2). Another round of perturbation experiments will
lead to iMC1010v3, and so on. We expect that after an effort of
some years and many iterations of this process, regulatory network
elucidation for E. coli will be essentially complete. A

Methods
Computational model
We constructed the model of the E. coli metabolic and regulatory network by identifying
network components, their functions and interactions from the primary literature4,9,16.
Many approaches have been developed to analyse large-scale metabolic17–22 and
transcriptional regulatory23–25 networks. Growth and gene expression simulations were
done by regulated flux-balance analysis, which combines linear optimization to determine
a growth-optimized metabolic flux distribution with logic statements to simulate the
effects of regulatory processes over time. The whole model construction and simulation
process has been described elsewhere in detail26.

Strains and culture
The parent strain for knockout strains in this study was K-12 MG1655 (ref. 27), and all
deletion strains were generated as described28. Growth experiments for the gene expression
study were done on M9 glucose medium (2 g l21) under aerobic and anaerobic conditions,
as described17. The growth data contained in the ASAP database were obtained by using
high-throughput phenotype arrays (Biolog)5. In some cases (where the viability of a
particular environment was unclear from the phenotype array data), we cross-validated
the ASAP phenotyping data by culturing the wild-type strain under the given conditions
in our laboratory (see Supplementary Information).

Gene expression profiling and analysis
All gene expression measurements were done at least in triplicate. Samples were stabilized
by using RNAProtect bacterial reagent (Qiagen), and total RNA was isolated from
exponentially growing cells using a RNeasy mini kit (Qiagen) in accordance with the
manufacturer’s protocols (see http://www1.qiagen.com). The RNA (10 mg) was then used
as the template for complementary DNA synthesis, the product of which was fragmented,
labelled and hybridized to an E. coli Antisense Genome Array (Affymetrix), which was
washed and scanned to obtain an image in accordance with the manufacturer’s protocols
(see http://www.affymetrix.com). The image files were processed and expression values
were normalized using dChip software29. We used quantitative real-time polymerase chain
reaction with reverse transcription (RT–PCR) to validate expression changes for selected
genes. The statistical significance of expression changes for each gene and each strain
between aerobic and anaerobic conditions was determined by a t-test (log-transformed
data, equal variance).

For each deletion strain, we used a two-way ANOVA (strain as the first factor and
aerobic or anaerobic condition as the second factor) to determine whether the differential
expression observed in the wild-type strain was significantly altered in the deletion strain
by determining the statistical significance of the strain–condition interaction effect. For
both the t-test and the ANOVA analysis, correction for multiple testing was done by using
the Benjamini–Hochberg false discovery rate procedure30, which determines the P-value
cut-off for each test separately by estimating the FDR resulting from using a particular
P-value cut-off. The false discovery rate refers to the fraction of true null tests out of all the
tests called significant and an FDR of 5% was used for all tests. All gene expression data and

the relevant information (such as the MIAME checklist) are provided in the
Supplementary Information.
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