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Constraints-based models have been effectively used to analyse, interpret, and predict the
function of reconstructed genome-scale metabolic models. The first generation of these
models used ‘‘hard’’ non-adjustable constraints associated with network connectivity,
irreversibility of metabolic reactions, and maximal flux capacities. These constraints restrict
the allowable behaviors of a network to a convex mathematical solution space whose edges
are extreme pathways that can be used to characterize the optimal performance of a network
under a stated performance criterion. The development of a second generation of constraints-
based models by incorporating constraints associated with regulation of gene expression was
described in a companion paper published in this journal, using flux-balance analysis to
generate time courses of growth and by-product secretion using a skeleton representation of
core metabolism. The imposition of these additional restrictions prevents the use of a subset
of the extreme pathways that are derived from the ‘‘hard’’ constraints, thus reducing the
solution space and restricting allowable network functions. Here, we examine the reduction
of the solution space due to regulatory constraints using extreme pathway analysis. The
imposition of environmental conditions and regulatory mechanisms sharply reduces the
number of active extreme pathways. This approach is demonstrated for the skeleton system
mentioned above, which has 80 extreme pathways. As regulatory constraints are applied to
the system, the number of feasible extreme pathways is reduced to between 26 and 2 extreme
pathways, a reduction of between 67.5 and 97.5%. The method developed here provides a
way to interpret how regulatory mechanisms are used to constrain network functions and
produce a small range of physiologically meaningful behaviors from all allowable network
functions.

r 2003 Elsevier Science Ltd. All rights reserved.
Introduction

The recent torrent of genome annotations and
subsequent metabolic reconstructions has led
to the development of mathematical modeling
approaches to analyse the integrated behavior of
microbial cells on a genome scale (Tomita et al.,
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1999; Gombert & Nielsen, 2000; Varner, 2000;
Covert et al., 2001a). A constraints-based
approach to studying metabolic models in silico
has proven effective in the analysis of these
genome-scale models (Palsson, 2000). The state-
ment of governing constraints defines a solution
space within which optimal solutions can be
found using linear optimization (Varma &
Palsson, 1994a; Bonarius et al., 1997; Edwards
et al., 1999). This constraints-based approach
r 2003 Elsevier Science Ltd. All rights reserved.
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has been useful in generating hypotheses in silico
which may be tested experimentally (Varma &
Palsson, 1994b, c). The result thus far has been
a surprising degree of correlation between the
predictions of genome-scale models and inde-
pendently obtained experimental data (Edwards
& Palsson, 2000; Edwards et al., 2001). The
study of the characteristics of the solution space
uses principles of convex analysis (Schilling et al.,
1999; Schilling & Palsson, 2000). ‘‘Extreme
pathways’’ are calculated as edges of the solution
space, where the optimal solution must lie
(Schilling et al., 2000a). Taken together, the
formulation of ‘‘hard’’ constraints associated
with network connectivity, reaction irreversibil-
ity, and maximal flux restrictions, has led to the
formulation and testing of what might be called
the first generation of constraints-based models
of biochemical reaction networks.

A logical next step in adding to the function-
ality of these genome-scale models is to incor-
porate regulation of gene expression. Several
approaches have been used to model metabolic
and regulatory events, beginning with Boolean
representation of genetic circuits (Thomas, 1973,
1991; Kaufman et al., 1985; Kauffman, 1993;
Thieffry & Thomas, 1995; Somogyi & Sniegoski,
1996), which is advantageously simple but lacks
the ability to make quantitative predictions. On
the other hand, deterministic approaches (Reich
& Sel’kov, 1981; Fell, 1996; Heinrich & Schuster,
1996; Wong et al., 1997; Stephanopoulos et al.,
1998) may be combined with Boolean logic
(McAdams & Shapiro, 1995), fuzzy logic (Lee
et al., 1999), or cybernetic principles (Kompala
et al., 1986; Varner, 2000) to model regulatory
and metabolic events. Stochastic modeling
approaches have also been developed to account
for the low concentrations, spatial isolation, and
slow reaction rates which characterize metabolic
reactions in a single cell (McAdams & Arkin,
1997, 1998, 1999). Both deterministic and
stochastic modeling approaches have been lim-
ited by the lack of experimental methods to
determine kinetic and other parameters, as well
as the computational difficulties of developing
these models on a genome-scale (Bailey, 2001).

The constraints-based approach to modeling
microbial metabolism has recently been
expanded to incorporate regulatory constraints
(Covert et al., 2001b). Regulatory constraints
differ from the rigid physico-chemical con-
straints in two important ways; they are (1)
self-imposed, meaning that over time, evolution
has selected the development of complex me-
chanisms to restrict the allowable behaviors of
these organisms under various conditions; and
(2) time dependent, in that the state of the
external and internal environment at a given
time point determines transcriptional activity.
As a result of these two features, the effects
of transcriptional regulation can be treated as
temporary constraints on the metabolic system.
These constraints reduce the size of the solution
space and change its shape from one environ-
mental condition to another (Fig. 1).

In this paper we continue the work described
in an earlier manuscript published in this journal
(Covert et al., 2001b), where regulatory events
and gene expression were described using Boo-
lean logic equations. For a given environment,
we determine the corresponding regulatory
constraints (e.g. repression of gene transcription)
and eliminate extreme pathways that are incon-
sistent with the imposed regulatory constraints.
This procedure reduces the solution space and
customizes it for the given environmental condi-
tions. The inclusion of known regulatory
mechanisms effectively moves us toward the
formulation of second-generation constraints-
based models of complex biochemical reaction
networks: models that combine metabolic
flux-balance formalism and regulation of gene
expression.

Methods

SAMPLE METABOLIC NETWORK

A skeleton network of core metabolism was
formulated earlier (Covert et al., 2001b). It
includes 20 reactions, seven of which are
governed by regulatory logic. This network is a
highly simplified representation of core meta-
bolic processes (e.g. glycolysis, the pentose
phosphate pathway, TCA cycle, fermentation
pathways, amino acid biosynthesis and cell
growth), along with corresponding regulation
(e.g. catabolite repression, aerobic/anaerobic
regulation, amino acid biosynthesis regulation
and carbon storage regulation). A schematic of
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Fig. 1. Regulatory constraints reduce the steady-state
solution space of a metabolic network. A solution space
bounded by invariant constraints on the network is shown.
Extreme pathways may be calculated as the unique,
systemically independent generating vectors for the space.
In the space on top, all of the pathways are considered
available to the system (denoted by the highlighted gray
boxes at right). Under certain environments however,
regulatory constraints may cause one or more of the
extreme pathways to be temporarily unavailable to the
system, P1 in the case shown here. This results in a more
restricted space with a reduced volume and/or dimension
(bottom), corresponding to a metabolic network with fewer
available behaviors.
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this skeleton network is shown in Fig. 2, together
with a table containing all of the relevant
chemical reactions and regulatory rules which
govern the transcriptional regulation.

EXTREME PATHWAYS

The steady-state behavior of a metabolic
system may be characterized as

Sv ¼ 0; ð1Þ

where Sm�n (m metabolites� n fluxes) is the
stoichiometric matrix for the network and vn�1 is
a vector of the flux levels through each reaction
in the system. Certain constraints on the system,
such as the thermodynamics of reactions or the
constraints associated with enzyme capacity (e.g.
maximum metabolite uptake and/or secretion
rates) may be represented as upper and lower
bounds on reaction flux levels. If reaction fluxes
are also constrained to positive values by decom-
posing reversible reactions in S into forward and
reverse components, a solution space may be
geometrically defined for the system as a convex
polyhedral cone in n-dimensional space (Schilling
et al., 2000a). Such a space contains every
possible steady-state flux distribution available
to the system, subject to the given constraints.

A minimal set of generating vectors may be
determined for the convex polyhedral cone using
principles of convex analysis. This set is approxi-
mately analogous to a basis in linear algebra.
The generating vectors span the null space of
S and are the edges of the cone (Schilling &
Palsson, 1998). Given that the cone represents
the metabolic flux solution space at steady state,
each generating vector or extreme ray corre-
sponds to a particular pathway or active set of
fluxes in the metabolic network and is termed an
extreme pathway. Every possible steady-state
flux distribution of a metabolic network may
therefore be represented as a positive combina-
tion of extreme pathways:

C ¼ v : v ¼
Xk

i¼1

aipi; aiX0;8i

( )
; ð2Þ

where C is the polyhedral cone representing
the metabolic network at steady state and pi

represents the extreme pathway vectors (Schil-
ling et al., 1999). The algorithm used to generate
extreme pathways has been described in detail
(Schilling et al., 2000b).

BOOLEAN LOGIC DESCRIPTION OF ENVIRONMENTAL

AND REGULATORY CONSTRAINTS

Boolean logic formalism can be used to
represent regulatory constraints (Covert et al.,
2001b) where a gene is considered in one of two
states: active (ON) or inactive (OFF). Here, this
formalism is also used to describe environmental
constraints where a substrate is considered either
present in (ON) or absent from (OFF) the
external medium. The regulatory rules are listed



Oxygen

A

B

ATP

Tc1

R1

C

Biomass

R4

R2a

Rz

2 NADH

0.2 C
2 ATP
3 NADH

10 ATP

2 ATP

3 D

3 E
4 NADH

R6

R7

ATPNADH

O2

Rres

Fext

F

G

R5a,b

R3

Hext

Carbon2

Tc2 Tf

Th
H R8a,b

2 ATP
3 NADH

R2b

Dext

Eext

Td

Te

1 ATP
2 NADH

TO2

Carbon1
REACTION  NAME REGULATION

Metabolic Reactions
A + ATP   B  R1 
B  2 ATP + 2 NADH + C R2a IF NOT(RPb)
C + 2 ATP + 2 NADH   B  R2b 
B   F  R3 
C   G  R4 
G   0.8 C + 2 NADH R5a IF NOT (RPo2)
G   0.8 C + 2 NADH R5b IF RPo2
C   2 ATP + 3 D R6 
C + 4 NADH  3 E R7 IF NOT (RPb) 
G + ATP + 2 NADH   H  R8a IF NOT (RPh) 
H   G + ATP + 2 NADH R8b 
NADH + O2   ATP Rres IF NOT (RPo2)
Transport Processes 
Carbon1  → A Tc1
Carbon2   A Tc2 IF NOT(RPc1)
Fext   F  Tf 
D   Dext Td
E   Eext Te
Hext   H Th
Oxygen   O2 To2
Maintenance and Growth Processes
C + F + H + 10 ATP  Biomass Growth
Regulatory Proteins

RPo2 IF NOT(Oxygen)
RPc1 IF Carbon1
RPh IF Th
RPb IFR2b 

 →
 →

 →
 →

 →
 →

 →

 →
 →

 →
 →

 →
 →
 →
 →
 →

 →
 →

 →

Fig. 2. A schematic of the simplified core metabolic network, together with a table containing the stoichiometry of the
20 metabolic reactions, seven of which are regulated by four regulatory proteins. This network is a highly simplified
representation of core metabolic processes, including a glycolytic pathway with primary substrates carbon1 (C1) and
carbon2 (C2), as well as a pentose phosphate pathway and a TCA cycle, through which ‘‘amino acid’’ H enters the system.
Fermentation pathways as well as amino acid biosynthesis are also represented. The regulation modeled in this study
includes simplified versions of catabolite repression (e.g. preferential uptake of C1 over C2), aerobic/anaerobic regulation,
amino acid (H) biosynthesis regulation and carbon storage regulation, and is also listed. The Growth reaction is indicated by
a dashed line.
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in Fig. 2. Using these restrictions, an extreme
pathway may be determined infeasible (1) if the
external nutrient is absent from the external
medium (e.g. pathways that have oxygen as an
input would be inoperative in a simulation in an
anaerobic environment); or (2) when expression
of the gene responsible for producing a meta-
bolic flux has been repressed (e.g. if extracellular
carbon1 is present, then pathways which utilize
Tc2 are considered infeasible due to the repres-
sion of Tc2 transcription by carbon1). Conver-
sely, a pathway is feasible for a certain condition
if it is consistent with all the applicable environ-
mental and regulatory constraints.

PHENOTYPIC PHASE PLANE ANALYSIS

Phenotypic phase planes (PhPPs) are two-
dimensional representations of the solution
space (Edwards & Palsson, 1999; Schilling et al.,
2000a). Once the axes of the PhPP are set
(generally uptake rates of two nutrients such as
oxygen and a carbon source), flux maps which
are optimal with respect to growth may be
calculated for each point in the plane. The lines
in a PhPP demarcate a change in the flux map;
these lines are determined using the shadow
prices (the dual solution in linear programming).
PhPP analysis has recently been used to demon-
strate the optimal growth of E. coli on succinate
and acetate minimal media (Edwards et al., 2001).

Results

A total of 80 extreme pathways were calcu-
lated for the simplified metabolic system shown
in Fig. 2. They are all shown graphically in the
Appendix. The numbering of the extreme path-
ways is arbitrary and corresponds to the order
in which the algorithm generates them. Given
the five inputs to the metabolic network and
representing these inputs using Boolean logic,
considering each as ON if present or OFF if
absent, there are a total of 25¼ 32 possible
environments which may be recognized by the
cell. These environments are listed in Table 1.
For each environment, the transcription of several
of the enzymes in the network may be restricted
due to regulation. The constraints imposed on
the metabolic system by both the substrates
available to (i.e. the external environment) and
the enzymes expressed in the cell (i.e. the internal



Table 1
A list of all the possible environments which can be recognized by the system shown in Fig. 1, of which six

environments do not enable the cell to produce biomass

Environments Repressed enzymes Pathways Pathway list

C1 C2 F H O2 R5b R8a Tc2 26 P2, P4, P5, P6, P8, P9, P10, P12, P29, P30,
P31, P32, P33, P34, P35, P36, P37, P38,
P45, P46, P47, P48, P49, P50, P51, P52
Detail in Fig. 4.

C1 C2 F H R5a R8a Rres Tc2 10 P39, P40, P41, P42, P43, P44, P49, P50,
P51, P52

C1 C2 F O2 R5b Tc2 8 P29, P30, P33, P34, P45, P46, P49, P50
C1 C2 F R5a Rres Tc2 4 P41, P42, P49, P50
C1 C2 H O2 R5b R8a Tc2 14 P2, P5, P6, P9, P10, P30, P31, P34, P35,

P37, P46, P47, P50, P51
C1 C2 H R5a R8a Rres Tc2 5 P39, P42, P43, P50, P51
C1 C2 O2 R5b Tc2 4 P30, P34, P46, P50 Detail in Fig. 3
C1 C2 R5a Rres Tc2 2 P42, P50
C1 F H O2 R5b R8a Tc2 26 P2, P4, P5, P6, P8, P9, P10, P12, P29, P30,

P31, P32, P33, P34, P35, P36, P37, P38,
P45, P46, P47, P48, P49, P50, P51, P52

C1 F H R5a R8a Rres Tc2 10 P39, P40, P41, P42, P43, P44, P49, P50,
P51, P52

C1 F O2 R5b Tc2 8 P29, P30, P33, P34, P45, P46, P49, P50
C1 F R5a Rres Tc2 4 P41, P42, P49, P50
C1 H O2 R5b R8a Tc2 14 P2, P5, P6, P9, P10, P30, P31, P34, P35,

P37, P46, P47, P50, P51
C1 H R5a R8a Rres Tc2 5 P39, P42, P43, P50, P51
C1 O2 R5b Tc2 4 P30, P34, P46, P50
C1 R5a Rres Tc2 2 P42, P50

C2 F H O2 R5b R8a 26 P3, P4, P5, P7, P8, P9, P11, P12, P57, P58,
P59, P60, P61, P62, P63, P64, P65, P66,
P73, P74, P75, P76, P77, P78, P79, P80

C2 F H R5a R8a Rres 10 P67, P68, P69, P70, P71, P72, P77, P78,
P79, P80

C2 F O2 R5b 8 P57, P58, P61, P62, P73, P74, P77, P78
C2 F R5a Rres 4 P69, P70, P77, P78
C2 H O2 R5b R8a 14 P3, P5, P7, P9, P11, P58, P59, P62, P63,

P65, P74, P75, P78, P79
C2 H R5a R8a Rres 5 P67, P70, P71, P78, P79
C2 O2 R5b 4 P58, P62, P74, P78
C2 R5a Rres 2 P70, P78

F H O2 R5b R8a 5 P4, P5, P8, P9, P12
F H R2a R5a R7 R8a Rres 0
F O2 R5b 0
F R5a Rres 0

H O2 R2a R5b R7 R8a 2 P5, P9
H R2a R5a R7 R8a Rres 0

O2 R5b 0
0

Note: For each environment, there is a set of enzymes which are repressed under the given environmental conditions. The extreme

pathways which remain feasible even under the combination of environmental and regulatory constraints are listed. For a schematic of each

of the pathways, see the Appendix. C1¼ carbon1, C2¼ carbon2, O2¼oxygen. Two of the environments are shown in more detail in Figs 3

and 4 and are labeled correspondingly.
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environment) reduce the number of extreme
pathways accessible to the cell at a given time.

Several interesting observations may be made
from Table 1: first, 21 extreme pathways (P1,
P13–P28 and P53–56, enclosed by a box in the
Appendix), although stoichiometrically feasible,
are always impossible due to regulatory con-
straints. Pathways P13–28 and P53–56 are
infeasible due to the fact that Rres is only
expressed aerobically while R5b is only expressed
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anaerobically. Therefore, any pathway that
includes a flux through both Rres and R5b is
eliminated. Similarly, pathways P1 and P13 are
eliminated because a flux through R2b activates a
regulatory protein that represses transcription
of R7. Therefore, R2b and R7 cannot both be
expressed together. Note that P13 is infeasible
in either case.

Another interesting observation from Table 1
is that several environments have identical or
near-identical sets of available extreme path-
ways. For example, the environment containing
carbon1 (C1), carbon2 (C2), F, H, and oxygen
(O2) has an identical extreme pathway list to
that for the environment containing C1, F, H,
and O2. The reason is that Tc2, the transport flux
for C2, is repressed in the presence of C1.
Furthermore, the extreme pathway list for the
environment containing C2, F, H, and O2 is
similar to the pathway lists for the previously
mentioned environments, different only in that
the pathways which utilize the Tc1 flux
in the former pathway list are replaced by
pathways which utilize the Tc2 flux in the latter.

Finally, Table 1 shows that the highest
number of extreme pathways available to the
cell is 26; the lowest is 2, corresponding to a
reduction in the number of available
extreme pathways between 67.5 and 97.5%. A
relatively simple dual-substrate environment
and the most complex environment were
examined in more detail to more closely in-
vestigate the effect of regulation on available
pathways.

EXAMPLE 1: GROWTH ON C1, C2, AND O2

The metabolic network was given C1, C2, and
O2 as inputs and allowed biomass, Dext and Eext
Fig. 3. Extreme pathway reduction by constraints, using gr
an example. (a) The 80 total extreme pathways calculated for t
with the pathway figures in the Appendix. The number of path
always inconsistent with the regulatory rules (dark gray), the
gray), then by 6 as the regulation corresponding to the spec
pathways which are consistent with all the regulatory and envi
the thick dark arrows represent active fluxes. (c) The solution
with the pathways and the line of optimality (the pathway w
projection of the space, superimposed on a two-dimensional
region at left lies outside of the space and is therefore infeasib
as outputs. These conditions reduce the number
of extreme pathways available to the cell (Fig. 3).
Initially, all 80 pathways are considered, and are
represented schematically in Fig. 3(a). Twenty-
one of the extreme pathways are always re-
stricted by regulation, as discussed earlier; the
boxes representing these pathways are darkened
in gray. By considering only the pathways with
appropriate inputs and outputs based on the cell
environment, 49 more pathways are eliminated
(shaded in light gray). Of the ten remaining
pathways, six are inconsistent with the given
regulation (C1 catabolite repression of the C2
transport protein Tc2 or regulation due to the
aerobic environment) (shown in black) and the
flux maps for the remaining four extreme path-
ways are shown in Fig. 3(b).

The resulting solution space is projected in
three dimensions (C1 uptake rate, oxygen uptake
rate and growth rate), as shown in Fig. 3(c), with
the four feasible extreme pathways labeled. All
the volume defined by these edges is accessible to
the cell. The corresponding range of growth and
uptake rates can be attained by the cell under
these conditions.

The two-dimensional PhPP for growth on C1
and O2 is shown in Fig. 3(d). This PhPP has two
feasible phases between the lines shown, which
represent the four extreme pathways available to
the system. For this case, the two-dimensional
projection of the extreme pathways lies on the
region boundaries of the PhPP; pathways 46 and
50 are both fermentative and therefore overlap
in the PhPP (oxygen uptake rate¼ 0). Pathway
30 is the line of optimality (Edwards et al., 2001,
2002) as none of the carbon is lost in secretion of
by-products; pathway 34 includes secretion of
Dext and therefore gives a lower biomass yield
(inset) than pathway 30.
owth of the sample system in a C1 and C2 aerobic medium as
he system are represented by a grid, arranged to correspond
ways is reduced by 21 when pathways are removed which are
n by 49 due to the specific environmental constraints (light
ific environment is considered (black). The four remaining
ronmental constraints are shown schematically in (b), where
space of the system, projected on a three-dimensional space,
ith the greatest growth yield) noted. (d) A two-dimensional
phenotypic phase plane for the C1 and oxygen uptake. The
le.
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EXAMPLE 2: GROWTH ON C1, C2, F, H, AND O2

The allowable extreme pathways for growth
on a medium containing C1, C2, F, and H in an
aerobic environment were determined. For this
case, the environment offers no restrictionsFall
possible inputs are availableFand therefore the
restriction of the solution space by elimination of
extreme pathways is entirely due to regulatory
effects. From Table 1 it is shown that R2a, R5b,
R7, R8a, and Tc2 are constrained to zero by the
regulatory rules. Consequently, the 33 corre-
sponding extreme pathways were removed from
the solution space, resulting in a list of 26
available pathways which may be used by the
cell under these conditions [Fig. 4(b)]. These
remaining pathways, normalized by the total
input of C1, C2, F, and H for comparison
purposes, are shown in Fig. 4(a).

The 26 allowable pathways shown in Fig. 4(a)
may be grouped by biomass yield. In the top two
sets, all pathways are optimal or very near-
optimal in terms of biomass yield, with no
by-product secretion. The middle pathway sets
involve secretion of either D or E while biomass
is generated, and the bottom set of pathways
represents purely fermentative use of the net-
work. Again, it is seen that even with a higher
number of allowable extreme pathways, the
actual degree of variation in possible network
behavior is surprisingly small once regulatory
constraints are taken into account. The multi-
plicity of extreme pathways with near-optimal
biomass yield gives the metabolic network
robustness characteristics as the cell has many
alternatives with nearly the same outcome.

The reduced solution space is projected in
three and two dimensions, as shown in Fig. 4(c)
and (d), respectively. The dimensions are the
same as in Fig. 3, with the exception of the C1
uptake rate axis, which has been replaced by a
normalized axis of all possible routes for
Fig. 4. Aerobic growth of the sample system in a complex
which are feasible for this enviroment. The four boxes indicate
and yield. Groups 1 and 2 are the sets of pathways with the
complex medium, similar in format to Fig. 3(a). Note that no e
example, and reduction of the solution space is therefore only
normalized by the combined uptake of C1, C2, F, and H in ord
which are also similar in format to their counterparts in Fig. 3(c
the three-dimensional projection (dashed lines).
substrate uptake (C1+C2+F+H). The three-
dimensional projection is bounded by the solid
black vectors, many of which overlap in the
projection (note that these extreme pathways do
not actually overlap; however, in a projection of
the high-dimensional solution space onto a lower
dimension, they share certain characteristics
such as the relationship between growth, sub-
strate uptake rate, and oxygen uptake rate). Five
pathways (P4, P9, P10, P34, P35, shown with
dashed black lines) lie inside the three-dimen-
sional projection. The structure of the solution
space is more complex as compared to the simple
growth condition analysed in Example 1.

The solution spaces are compared on the same
axis to illustrate the concept of solution space
reduction further [Fig. 5(a)]. The solution space
discussed in Example 1 is a subset of the
space defined by the complex medium. Figure
5(b) and (c) shows cross sections of the space
where combined (C1+C2+F+H) uptake and
oxygen uptake are set at a constant rate of
5mmol�1 gDCWhr�1, respectively. The line of
optimality, P30 in Example 1, is shifted to any of
three pathways, P8, P29, and P32, in Example 2.
These three pathways obtain similar growth
yields but exhibit different behaviors in terms
of substrate uptake. With slightly smaller growth
yields, extreme pathways P5, P6, P30, and P31
also bound the space and are in close proximity
to the optimal pathways. The cross section where
the oxygen uptake rate is constant (bottom) is
also unbounded, as shown by the dotted lines.

Discussion

Constraints-based models have been formu-
lated to analyse, interpret, and predict cell
behavior from reconstructed metabolic networks
under given environmental conditions. They
have given useful and surprisingly predictive
results (Edwards & Palsson, 2000; Edwards et al.,
medium. (a) A table summarizing the 26 extreme pathways
significant pathway groupings based on by-product secretion
highest growth yield. (b) Extreme pathway reduction in the
nvironmental constraints are imposed upon the space in this
due to regulatory constraints. Here the pathways have been
er to be represented together in the plots shown in (c) and (d),
) and (d), respectively. In (c), five extreme pathways lie inside

"
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2001). The constraints imposed on the recon-
structed genome-scale metabolic networks thus
far have been the invariant constraints asso-
ciated with stoichiometry, thermodynamics, and
enzyme capacity (Palsson, 2000). These may be
considered as first-generation constraints-based
models of metabolism.

Here we continue to develop second-genera-
tion constraints-based models by including the
temporary and self-imposed constraints asso-
ciated with regulation of gene expression and
environmental conditions that further constrain
allowable functions of the network. A Boolean
logic formalism was used to describe regulation
and derived logic regulatory rules may be used in
conjunction with extreme pathway analysis to
examine the effects of regulation on the allow-
able range of network function. The most
important finding of this study is that the
imposition of regulatory constraints significantly
reduces the size of the solution space. For the
skeleton core metabolic network used, the
number of extreme pathways was reduced from
80 to as few as two, in some cases, as a result of
the imposition of relatively simple environmental
and regulatory constraints. In a simulated rich
medium, the skeleton network was uncon-
strained with respect to the environment and
yet 67.5% of the pathways were eliminated by
regulation. This large reduction in the solution
space seems to indicate that despite the complex
interaction of many genes to produce an
integrated cellular function, simple behaviors
can relatively easily be selected by the cell.

Another noteworthy observation that can be
made from these results regards the extreme
pathways that remain after regulatory con-
straints are applied. In both examples given
here, many fermentative pathways were left
available to the network despite the presence of
oxygen. Although these extreme pathways may
be unused, the ability to implement them with-
out the delays associated with transcription and
Fig. 5. Diagrammatic representation of solution space redu
on one another. The solution space of Example 1 is a subspace
solution space on the oxygen uptake rate–growth rate plan
5mmol�1 gDCWhr�1. (c) Cross section of the solution space
plane where the oxygen uptake rate is set at 5mmol�1 gDCW

3

translation would give the cell the ability to
rapidly adapt to oxygen deprivation.

Finally, the close proximity and even overlap
of optimal and near-optimal extreme pathways
to one another in the three- and two-dimensional
projections of the solution space suggest that the
system has numerous means by which to obtain
its growth objectives. Extreme pathway analysis
of metabolic networks at the genome scale has
indicated a high degree of pathway redundancy
(Papin et al., 2002). Although regulatory con-
straints greatly reduce such redundancy as
has been shown, it seems that a certain amount
of flexibility is beneficial to the cell. Such flexibility
may be useful to an organism, for example, in
colonizing diverse and changing environments.

In summary, the application of transcriptional
regulatory constraints to metabolic networks
results in a large reduction of behaviors available
to the network under a given environment. The
present study leads to the formulation of a
second generation of constraints-based models
that can be used to interpret how regulation is
used to keep a restricted portion of the total
solution space accessible, and thereby, by the
process of elimination, force a particular set of
phenotypic behaviors to be expressed.

The authors would like to acknowledge Christophe
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gard for assistance in drawing the figures. This work
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(MCB-9873384, BES-9814092, and BES-0120363).

REFERENCES

Bailey, J. E. (2001). Complex biology with no parameters.
Nature Biotechnol. 19, 503–504.

Bonarius, H. P. J., Schmid, G. & Tramper, J. (1997).
Flux analysis of underdetermined metabolic networks:
the quest for the missing constraints. Trends Biotechnol.
15, 308–314.

Covert, M. W., Schilling, C. H., Famili, I., Edwards,
J. S., Goryanin, I. I., Selkov, E. & Palsson, B. O.
(2001a). Metabolic Modeling of Microbial Strains in
silico. Trends Biochem. Sci. 26, 179–186.
ction. (a) Schematic of the two solution spaces superimposed
of the space of the complex medium. (b) Cross section of the
e where the combined (C1+C2+F+H) uptake is set at
on the combined (C1+C2+F+H) uptake rate–growth rate
hr�1.



M. W. COVERT AND B. O. PALSSON320
Covert, M. W., Schilling, C. H. & Palsson, B. O.
(2001b). Regulation of gene expression in flux balance
models of metabolism. J. theor. Biol. 213, 73–88,
doi:10.1006/jtbi.2001.2405.

Edwards, J. & Palsson, B. (1999). Properties of the
Haemophilus influenzae Rd metabolic genotype. J. Biol.
Chem. 274, 17 410–17 416.

Edwards, J. S. & Palsson, B. O. (2000). The E. coli
MG1655 in silico metabolic genotype: its definition,
characteristics, and capabilities. Proc. Natl Acad. Sci.
97, 5528–5533.

Edwards, J. S., Ramakrishna, R., Schilling, C. H. &
Palsson, B. O. (1999). Metabolic flux balance analysis.
In: Metabolic Engineering (Lee, S. Y. & Papoutsakis,
E. T., eds), pp. 13–57. New York: Marcel Dekker.

Edwards, J. S., Ibarra, R. U. & Palsson, B. O. (2001). In
silico predictions of Escherichia coli metabolic capabilities
are consistent with experimental data. Nature Biotechnol.
19, 125–130.

Edwards, J. S., Ramakrishna, R. & Palsson, B. O.
(2002). Characterizing the metabolic phenotype: a pheno-
type phase plane analysis. Biotechnol. Bioeng. 77, 27–36.

Fell, D. (1996). Understanding the Control of Metabolism.
London: Portland Press.

Gombert, A. K. & Nielsen, J. (2000). Mathematical model-
ling of metabolism. Curr. Opin. Biotechnol. 11, 180–186.

Heinrich, R. & Schuster, S. (1996). The Regulation of
Cellular Systems. New York: Chapman & Hall.

Kauffman, S. A. (1993). The Origins of Order. New York:
Oxford University Press.

Kaufman, M., Urbain, J. & Thomas, R. (1985). Towards
a logical analysis of the immune response. J. Theor. Biol.
114, 527–561.

Kompala, D. S., Ramkrishna, D., Jansen, N. B. & Tsao,
G. T. (1986). Investigation of Bacterial Growth on Mixed
Substrates. Experimental Evaluation of Cybernetic Mod-
els. Biotechnol. Bioeng. 28, 1044–1056.

Lee, B., Yen, J., Yang, L. & Liao, J. C. (1999).
Incorporating qualitative knowledge in enzyme kinetic
models using fuzzy logic. Biotechnol. Bioeng. 62, 722–729.

McAdams, H. H. & Arkin, A. (1997). Stochastic mechan-
isms in gene expression. Proc. Natl Acad. Sci. U.S.A. 94,
814–819.

McAdams, H. H. & Arkin, A. (1998). Simulation of
prokaryotic genetic circuits. Ann. Rev. Biophys. Biomol.
Struct. 27, 199–224.

McAdams, H. H. & Arkin, A. (1999). It’s a noisy business!
Genetic regulation at the nanomolar scale. Trends Genet.
15, 65–69.

McAdams, H. H. & Shapiro, L. (1995). Circuit simulation
of genetic networks. Science 269, 651–656.

Palsson, B. O. (2000). The challenges of in silico biology.
Nature Biotechnol. 18, 1147–1150.

Papin, J. A., Price, N. D., Edwards, J. S. & Palsson,
B. O. The genome-scale metabolic extreme pathway
structure in Haemophilus influenzae shows significant
network redundancy. J. theor. Biol. 215, 67–82,
doi:10.1006/jtbi.2001.2496.

Reich, J. G. & Sel’kov, E. E. (1981). Energy Metabolism of
the Cell. New York: Academic Press.

Schilling, C. H. & Palsson, B. O. (1998). The underlying
pathway structure of biochemical reaction networks.
Proc. Natl Acad. Sci. U.S.A. 95, 4193–4198.

Schilling, C. H. & Palsson, B. O. (2000). Assesment of
the Metabolic Capabilities of Haemophilus influenzae Rd
through a Genome-scale Pathway Analysis. J. theor. Biol.
203, 249–283, doi:10.1006/jtbi.2000.1088.

Schilling, C. H., Schuster, S., Palsson, B. O. &
Heinrich, R. (1999). Metabolic pathway analysis: basic
concepts and scientific applications in the post-genomic
era. Biotechnol. Prog. 15, 296–303.

Schilling, C. H., Edwards, J. S., Letscher, D. &
Palsson, B. O. (2000a). Combining pathway analysis
with flux balance analysis for the comprehensive study of
metabolic systems. Biotechnol. Bioeng. 71, 286–306.

Schilling, C. H. Letscher, D. & Palsson, B. O. (2000b).
Theory for the Systemic Definition of Metabolic Path-
ways and their use in Interpreting Metabolic Function
from a Pathway-Oriented Perspective. J. theor. Biol. 203,
229–248, doi:10.1006/jtbi.2000.1073.

Somogyi, R. & Sniegoski, C. A. (1996). Modeling the
complexity of genetic networks: understanding multi-
genic and pleitropic regulation. Complexity 1, 45–63.

Stephanopoulos, G., Aristodou, A. & Nielsen, J.
(1998). Metabolic Engineering. New York: Academic Press.

Thieffry, D. & Thomas, R. (1995). Dynamical behaviour
of biological regulatory networksFII. Immunity control
in bacteriophage lambda. Bull. Math. Biol. 57, 277–297.

Thomas, R. (1973). Boolean formalization of genetic
control circuits. J. theor. Biol. 42, 563–585.

Thomas, R. (1991). Regulatory networks seen as asyn-
chronous automata: a logical description. J. theor. Biol.
153, 1–23.

Tomita, M., Hashimoto, K., Takamashi, K., Shimizu,
T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S.,
Yugi, K., Venter, J. C. & Hutchison, C. A. (1999). E-
CELL: software environment for whole-cell simulation.
Bioinformatics 15, 72–84.

Varma, A. & Palsson, B. O. (1994a). Metabolic flux
balancing: basic concepts, scientific and practical use.
Bio. Technol. 12, 994–998.

Varma, A. & Palsson, B. O. (1994b). Predictions for oxy-
gen supply control to enhance population stability of eng-
ineered production strains. Biotechnol. Bioeng. 43, 275–285.

Varma, A. & Palsson, B. O. (1994c). Stoichiometric flux
balance models quantitatively predict growth and meta-
bolic by-product secretion in wild-type E. coli W3110.
Appl. Environ. Microbiol. 60, 3724–3731.

Varner, J. D. (2000). Large-scale prediction of phenotype:
concept. Biotechnol. Bioeng. 69, 664–678.

Wong, P. Gladney, S. & Keasling, J. D. (1997).
Mathematical model of the lac operon: inducer exclusion,
catabolite repression, and diauxic growth on glucose and
lactose. Biotechnol. Prog. 13, 132–143.

APPENDIX

The flux distribution maps for all 80 of the
extreme pathways calculated for the sample
network are shown. The active fluxes are shown
with thick dark lines, inactive fluxes are denoted
by thin light dotted lines and the biomass flux is
shown with a dashed line. Note that reactions
R5a and R5b are isozymes. The 21 extreme
pathways which are infeasible under every
environmental condition are enclosed in boxes.
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