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Full genome sequences enable the construction of ge-
nome-scale in silico models of complex cellular func-
tions. Genome-scale constraints-based models of Esche-
richia coli metabolism have been constructed and used
to successfully interpret and predict cellular behavior
under a range of conditions. These previous models do
not account for regulation of gene transcription and
thus cannot accurately predict some organism func-
tions. Here we present an in silico model of the central
E. coli metabolism that accounts for regulation of gene
expression. This model accounts for 149 genes, the prod-
ucts of which include 16 regulatory proteins and 73 en-
zymes. These enzymes catalyze 113 reactions, 45 of
which are controlled by transcriptional regulation. The
combined metabolic/regulatory model can predict the
ability of mutant E. coli strains to grow on defined me-
dia as well as time courses of cell growth, substrate
uptake, metabolic by-product secretion, and qualitative
gene expression under various conditions, as indicated
by comparison with experimental data under a variety
of environmental conditions. The in silico model may
also be used to interpret dynamic behaviors observed in
cell cultures. This combined metabolic/regulatory model
is thus an important step toward the goal of synthesiz-
ing genome-scale models that accurately represent E.
coli behavior.

The annotated genome sequence of Escherichia coli and
other organisms (1) has made it possible to develop in silico
models of cellular behavior at a genome scale. One approach to
the construction of in silico models that has proven useful in
studying biological systems is based on the imposition of gov-
erning constraints (2) (Fig. 1A). In the constraints-based ap-
proach, a metabolic network is reconstructed by identifying
metabolic genes and the corresponding reactions from the an-
notated genome sequence as well as from the relevant litera-
ture (3). The capabilities of the reconstructed network are
described by a solution space that contains all possible steady-
state metabolic flux distributions in the network. The solution
space is formed by the imposition of physicochemical con-
straints that restrict the behavior of the network, such as the
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steady-state mass balance of metabolites, the effective irrevers-
ibility of reactions due to thermodynamic constraints, or the
maximum flux capacity of enzymes or transport proteins.
These physicochemical constraints are fixed invariants of the
system, and the resulting constrained solution space may be
thought of as a general solution space wherein every possible
homeostatic state of the cell must lie.

Flux-balance analysis (FBA)! can be used to identify partic-
ular behaviors within the allowable solution space, such as
behaviors that produce the highest possible growth rate or
production of a particular metabolite (4). FBA has been used to
generate quantitative hypotheses about E. coli that have sub-
sequently been tested experimentally, such as the growth char-
acteristics of mutant strains (8), optimality of growth on single-
substrate minimal media (9), and time courses of growth and
metabolic by-product secretion (5).

A previously published genome-scale E. coli in silico model
takes into account the metabolism of the organism based on
660 metabolic genes found in the E. coli K-12 MG 1655 genome
(8). It has been estimated that about 400 regulatory genes exist
in the genome of E. coli (10, 11); of these, 178 regulatory and
putative regulatory genes were found during genome annota-
tion (12). Transcriptional regulation in E. coli has a significant
effect on cell behavior. The incorporation of regulatory con-
straints into flux-balance models has been described (6) (Fig.
1B). External signals, such as the presence of glucose in the
extracellular environment, alter the affinity of regulatory pro-
teins to operator or inhibitor sites on the genome. As a result,
a gene may or may not be transcribed during a given time
interval, and thus the corresponding biochemical reactions
may or may not be active in the metabolic network under the
given conditions. The reduced number of active reactions in the
network leads to a smaller solution space. If the behavior
exhibited previously by the cell is no longer found in the re-
duced solution space, then the solution shifts, meaning that a
new growth behavior must be found and expressed.

In this study, a regulatory network was reconstructed for
central metabolism in E. coli. This regulatory network was
then incorporated into an existing E. coli central metabolic
model and used to simulate E. coli behavior under a variety of
environmental conditions and genome perturbations.

MATERIALS AND METHODS

Metabolic and Regulatory Network Reconstruction—The metabolic
network was reconstructed by identifying a set of biochemical reactions
in the central E. coli metabolism, taken from the annotated genome
sequence (11, 12) as well as from biochemical and physiological litera-
ture (13, 14). The regulatory network was derived from the literature
data (cited in the supplemental material) and represented as a set of
regulatory rules following established procedures (6). These rules were
based on external conditions (e.g. the presence or absence of extracel-

! The abbreviations used are: FBA, flux-balance analysis; rFBA, reg-
ulatory FBA; CRP, cyclic AMP receptor protein.

This paper is available on line at http://www.jbc.org
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Fic. 1. In silico modeling of metabolism and transcriptional regulation using the constraints-based approach. A, the constraints-
based approach to metabolic modeling. The metabolic genotype is defined from the known genes in the genome, as identified in metabolic databases
and in the literature. Once the metabolic network has been defined, known invariant constraints that the network must obey are applied to the
cell, enabling the network to be described geometrically as a closed solution space. Flux-balance analysis can be used to identify particular optimal
solutions (such as optimization of growth) within the space (blue point), which represent possible behaviors of the cell (4). Assuming that
metabolism is in a quasi-steady state relative to cell growth, the dynamic behavior of the cell may be simulated using numerical integration and
flux-balance analysis at each time step (5, 6). As shown in B, transcriptional regulation reduces the steady-state solution space. For example,
external glucose is sensed by various regulatory proteins in the cell, among them CRP, which is activated (red arrow), and Mlc, which is inactivated
(green arrow) by the glucose signal. As a result, transcription of glucose ABC transporter operon ptsHI-crr is not repressed by Mlc, whereas
transcription of a glycerol kinase gene, glpK, is repressed by CRP. The presence or absence of expression of these genes leads to the availability
or unavailability of the respective reactions or transport processes in the metabolic network and possibly to the removal of available extreme
pathway basis vectors from the steady-state solution space. The result is a time-dependent solution space defined by temporary regulatory
constraints in addition to the invariant constraints mentioned previously, which may exhibit a new behavior if the previous solution is no longer
in the space. Dynamic simulations incorporating such time-dependent constraints are able to simulate a wider range of cell phenotypes,
particularly when regulatory effects have a dominant influence on metabolic behavior (6).

lular molecules) and/or internal conditions (e.g. the activity or inactivity
of an enzymatic flux in a given environment) of the system. To accom-
modate the generally qualitative nature of existing transcriptional reg-
ulatory data, regulatory constraints were described using a Boolean
formalism (15) in which gene products are either available (ON) or
unavailable (OFF) to the cell. The regulatory rules can be computed
using commercially available software packages, including EXCEL (Mi-
crosoft Corporation, Redmond, WA).

Transcriptional Regulation and the Calculation of Steady-state Met-
abolic Flux Distributions—Once the metabolic and regulatory networks
were defined, FBA was used to determine an optimal metabolic flux
distribution for the given conditions. FBA has been described and
reviewed in detail (4, 16) and is based on the location of optimal flux
distributions within the solution space defined by a metabolic network
and governing constraints, as described above. For the purposes of
these simulations, capacity constraints included maximum uptake
rates of oxygen as well as substrates such as glucose, acetate, and
lactose, as determined from growth experiments found in the literature
(5, 17) (see Figs. 3-5 for numerical values). It has been demonstrated for
E. coli under various conditions that cell growth may be used as an
objective function (9, 18); the production of growth precursors in certain

ratios was used here as an approximation (19). LINDO was used to
calculate the optimal flux distributions (Lindo Systems, Chicago, IL).

The incorporation of regulatory constraints in the flux-balance
framework has been described in detail (6). Regulatory constraints were
applied to the network under steady-state conditions by evaluating
whether genes were expressed or repressed for the given conditions
(based on the aforementioned regulatory rules) and by constraining the
fluxes of repressed gene products to zero. If a gene product was ex-
pressed, the actual flux value was determined by FBA. Thus, although
the regulatory network is based on qualitative rules, the flux distribu-
tion determined by FBA is a quantitative result.

Changing Environments and Time-dependent Cell Behavior—The
time constants that describe metabolic transients are fast (on the order
of milliseconds to tens of seconds) as compared with the time constants
associated with transcriptional regulation (generally on the order of a
few minutes or slower) or cell growth (on the order of hours to days) (6).
Therefore, dynamic simulations may be performed by considering the
behavior inside the cell to be in a quasi-steady state during short time
intervals relative to the environment (5). Beginning at time zero, the
simulation was run in small time steps (3 s for this study). For each
time step, the regulatory rules were evaluated based on current envi-
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Fic. 2. Combined regulatory/metabolic network for central metabolism in E. coli. All of the metabolic genes considered are shown. The
genes that are regulated are indicated by the color code shown in the legend. Genes or reactions regulated by multiple regulatory proteins or
molecules are shown with multiple arrows. The complete details of the network may be found in the supplementary material.

ronmental and internal conditions of the cell to determine the up- or
down-regulation of every regulated gene. If a gene was determined to be
up-regulated at a given time, the corresponding reactions in the meta-
bolic system were considered unconstrained (by gene regulation) after a
time delay to allow for protein synthesis. Conversely, the down-regula-
tion of a gene resulted in the corresponding reactions being constrained
to zero after a time delay to allow for protein degradation. The resulting
sets of regulated genes that were present or absent for a particular time
interval were used to generate the qualitative in silico expression
arrays, which indicate whether or not a certain gene is being tran-
scribed for a given time interval. Similarly, an in silico protein activity
array was generated to show the activity of a certain regulatory protein
at a given time. The time delay associated with gene transcription and
protein synthesis is a required parameter and was estimated for each
dynamic simulation (see Figs. 3-5).

Once the regulatory constraints for a particular time step were
applied to the system, the optimal flux distribution was calculated as
described above. The optimal flux distribution was then used to calcu-
late cell growth, substrate uptake, and metabolic by-product secretion
using numerical integration as described earlier (5). The time courses of
cell growth, substrate uptake, and by-product secretion were generated
using a spreadsheet software package (EXCEL, Microsoft Corporation).

Mutant Study—To simulate deletion of a metabolic gene from the
network, the flux through the corresponding gene product was set to
zero for all conditions. Regulatory gene deletion was simulated by
setting the expression of the gene to OFF.

RESULTS

The regulatory network associated with the central metabo-
lism for E. coli was reconstructed and combined with a previ-

ously developed central metabolic model (8, 20) (Fig. 2). The
analysis of the combined metabolic/regulatory network using
FBA may be called regulatory flux-balance analysis (rFBA).
The rFBA network accounts for 149 genes, the products of
which include 16 regulatory proteins and 73 enzymes, which
catalyze 113 reactions. The synthesis of 43 of the enzymes in
this model is controlled by transcriptional regulation; as a
result, the availability of 45 of the reactions to the system is
controlled by a logic statement. The details of the rFBA net-
work may be found in the supplemental material.

The metabolic/regulatory network was used in a retrospec-
tive analysis of experimental data to determine the ability of
the rFBA model to make accurate phenotypic predictions. A
mutant study as well as the dynamic simulation of growth
under three environmental conditions (aerobic growth on glu-
cose with acetate reutilization, glucose fermentation, and a
mixed aerobic glucose-lactose batch culture) are described here.

Mutant Study—The rFBA model was used to ascertain the
ability of mutant strains of E. coli to grow on defined media.
For this study, 116 cases were examined and are shown in
Table I. In each case, the experimental data were compared
with predictions of both the rFBA model and the FBA (i.e.
purely metabolic) model (8). The FBA model alone was able to
correctly predict growth characteristics in 97 cases, or 83.6% of
the given cases. Incorrect predictions were made for 16 of the
116 cases, and in three of the cases, predictions were not
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TABLE I TABLE I—continued
Comparison of experimental mutant studies with in silico predictions
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sulting in formation of the bacteriocidal compound methylglyoxal.
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possible for the FBA model alone because rpiR is a regulatory
gene and therefore only included in the rFBA model.

The rFBA model made correct predictions about growth
characteristics in 106 or 91.4% of the 116 cases, an improve-
ment of nine correct predictions over the unregulated metabolic
model. The mutants whose growth capabilities were correctly
predicted by the rFBA model, but not the FBA model alone,
were aceEF, fumA, ppc, rpiA, and rpiR. The remaining incor-
rect predictions are detailed in Table I and are usually due to
accumulation of toxic substances, an effect not yet predictable
by this approach.

The rFBA model was used to examine the above nine correct
predictions in more detail. According to the predictions of the
rFBA model, pyruvate dehydrogenase, encoded by the aceEF-
IpdA operon, is a lethal mutation in E. coli for growth on
minimal glucose and minimal succinate media under aerobic
conditions due to the aerobic down-regulation of its fermenta-
tive counterpart, pyruvate formate-lyase. Similarly, fumarase
A (fumA) is the only fumarase that is generally transcribed
under aerobic conditions. Phosphoenolpyruvate carboxylase
(ppc) was correctly predicted to be a lethal mutation due to the
down-regulation of the glyoxylate shunt.

The ribose phosphate isomerase A (rpiA) and the ribose
repressor protein RpiR illustrate how regulatory gene mutant
phenotypes may be simulated using rFBA. Two isomerases
exist in E. coli for the interconversion of ribulose 5-phosphate
and ribose 5-phosphate, encoded for by the rpiA and rpiB
genes. Although the expression of 7piA is thought to be consti-
tutive, expression of rpiB occurs in the absence of RpiR, which
is inactivated by ribose (29, 34). As a result, rpiA mutants are
ribose auxotrophs, whereas rpiB mutants exhibit a null pheno-
type. The further mutation of rpiR in rpiA mutants disables
repression of 7piB and restores the ability to grow in the ab-
sence of ribose, as correctly predicted by the rFBA model.

Dynamic Growth Simulations—The rFBA model was used to
simulate growth of E. coli quantitatively over the course of
growth experiments. The resulting time courses of growth,
substrate uptake, and by-product secretion were then com-
pared with experimental data.

E. coli has been observed to secrete acetate when grown
aerobically on glucose in batch cultures; when glucose is de-
pleted from the environment, the acetate is then reutilized as a
substrate. Using the rFBA and FBA models, an aerobic batch
culture of E. coli on glucose minimal medium was simulated;
the calculations are shown together with experimental data (5)
(Fig. 3). The major difference between the rFBA and FBA
simulations is in the delayed reaction of the system to depletion
of glucose in the growth medium. The stand-alone metabolic
network does not account for the delays associated with protein
synthesis.

An in silico expression array and a regulatory protein activ-
ity array were also generated (Fig. 3C). The in silico array
predicted the up-regulation of four gene products, aceA, aceB,
acs, and ppsA, as well as the down-regulation of three gene
products, adhE, ptsGHI-crr, and pykF. DNA microarray tech-
nology has been used to detect differential transcription pro-
files on a collection of 111 genes in E. coli (36). The difference
in gene expression for aerobic growth on acetate versus growth
on glucose as reported in Ref. 36 is included in Fig. 3C. The
calculated expression of the eight genes included in the rFBA
model for which expression data were published was in quali-
tative agreement with the predictions of the rFBA model. The
ability of the rFBA model to reutilize acetate depends on the
up-regulation of the glyoxylate shunt genes, aceA and aceB,
which explains the high magnitude of transcription difference
(20-fold) reported in Ref. 36.
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FIG. 3. Aerobic growth on acetate with glucose reutilization. A,
three time plots showing experimental data obtained by Varma and
Palsson (5) as well as the corresponding simulations performed using
FBA and rFBA. In the acetate plot, the regulatory/metabolic model
predictions differ from that of the regulatory plot alone as shown. B, a
table containing the parameters required to generate the time plots. C,
in silico arrays showing the up- or down-regulation of selected genes or
activity of regulatory proteins in the regulatory network (dark gray,
gene transcription/protein activity; light gray, transcriptional repres-
sion/protein inactivity). Data from Oh and Liao (36) showing the exper-
imentally determined transcriptional fold changes for certain genes
(acetate: glucose) are shown where applicable. Note that the regulation
of CRP is represented by a complex set of Boolean statements (see
supplemental material). As a result, CRP activity is represented here as
GLC or AC to denote when glucose or acetate is accepted by the system,
respectively.

Importantly, the rFBA model suggests an interpretation for
the regulation of two genes that were found to be regulated but
by unknown causes, ppsA and adhE (36). The rFBA model
indicates that a second regulatory shift is induced by catabolite
activator protein Cra, which responds to falling intracellular
concentrations of fructose 6-phosphate and fructose 1,6-
bisphosphate once glucose is depleted from the medium. This
second regulatory shift is responsible for up-regulation of ppsA
and down-regulation of adhE, crr, ptsG, ptsHI, and pykF ac-
cording to the rFBA model.

The next case studied using the rFBA model was anaerobic
growth on glucose (5) (Fig. 4). Under these conditions, the FBA
model makes similar predictions as the rFBA model with one
exception: the rFBA model is able to make predictions about
the use of a particular isozyme. For example, both models
require fumarase activity as part of the optimal flux distribu-
tion; however, only the rFBA model is able to specify the fumB
gene product, which is expressed anaerobically (37).

The final case examined for this study involved aerobic
growth of E. coli on glucose and lactose. This case has been
studied in detail by many groups (17, 38, 39). For this study,
mixed batch culture data as well as the predictions of a detailed
kinetic model recently derived by Kremling et al. (17) were used
for comparison. The rFBA model predictions are in good agree-
ment with the data, comparable with the predictions made by
the Kremling model, and far better than the predictions of the
stand-alone FBA model (Fig. 5). The failure of the stand-alone
FBA model to accurately predict the results of this experiment
is due to the concurrent uptake of glucose and lactose, resulting
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to generate the time plots. C, in silico arrays for the simulation (similar
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in much more rapid depletion of the substrates and a higher
growth rate. Interestingly, because of the larger flux of carbon
source uptake, the FBA model predicts that E. coli growth
should be oxygen-limited rather than carbon-limited in this
case. Accordingly, the secretion of acetate and formate is pre-
dicted. The rFBA model predicts that no secretion will occur
under these conditions.

The in silico arrays for the experiment (Fig. 5C) show one
shift in gene expression, occurring just under 5 h. The up-
regulation of the lactose uptake and degradation machinery,
together with key enzymes in galactose metabolism, enables
the system to use lactose as a carbon source once the glucose in
the medium has been depleted.

DISCUSSION

Several approaches have been developed to mathematically
model metabolic regulation and cell dynamics, as recently re-
viewed (40, 41). The majority of these approaches rely on ex-
tensive kinetic and other environmental information that is
difficult to obtain. A combined model of E. coli central metab-
olism and regulation was reconstructed and analyzed using the
constraints-based approach (2). The regulated model was used
to simulate the viability of mutant strains, cellular growth, and
by-product secretion under various environments and internal
regulatory shifts under changing environmental conditions.
The results of this study indicate the following: 1) the addition
of regulatory constraints significantly improves the predictive
capacity of flux-balance models in which regulatory effects
have a dominant role in flux-balance models of metabolism; 2)
regulatory constraints are also useful in the interpretation of
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Fic. 5. Aerobic growth on glucose and lactose. A, four time plots
showing experimental data and simulation results obtained by Krem-
ling et al. (17) lacZ refers to the cell concentration of mRNA encoding
the lacZ gene product (17) together with the corresponding simulations
performed using FBA and rFBA. B, a table containing the numerical
values of the parameters required to generate the time plots for the
FBA models. C, in silico arrays for the simulation, similar in format to
those shown in Fig. 3, where CRP activity is represented as GLC or
LCTS (lactose) to denote when lactose is accepted by the system.

dynamic behaviors observed in cell cultures; and 3) large-scale
metabolic models constructed using the constraints-based
framework can capture the essential behavioral features and
systemic characteristics of an organism with relatively few
parameters.

The imposition of regulatory constraints on the solution
space formed by the reconstructed network for the metabolism
of an organism results in a smaller solution space that more
accurately represents its behavior. This improved accuracy is
readily seen in the results of the mutant study in which regu-
latory constraints were responsible for the correction of six
false predictions made by the stand-alone FBA model. Further-
more, regulatory constraints enable the prediction of pheno-
type for regulatory gene mutations, as demonstrated by the
three rpiR mutant predictions made using rFBA. The time
courses generated for E. coli growth on glucose with acetate
reutilization and glucose-lactose diauxie are examples for
which regulatory constraints have a substantial impact on the
simulation results, causing the simulation to better reflect the
actual phenotype of the cell.

The addition of regulatory constraints can be used to inter-
pret simulation results of cellular growth and by-product se-
cretion. The glucose/acetate simulation clearly suggests that
up-regulation of the glyoxylate shunt enables the reutilization
of acetate and that a second regulatory shift is responsible for
regulation of genes such as ppsA and adhE, both of which were
found to be regulated for unknown reasons in a recent microar-
ray study of these conditions (36). More intuitively, the simu-
lation of glucose-lactose diauxic growth indicates that up-reg-
ulation of the gal and lac operons is vital to the diauxic shift
observed.

By comparing the rFBA simulations with those produced by
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the stand-alone FBA model, it may also be possible to infer
causes of regulatory evolution. For example, in the case of
glucose fermentation, the relatively small effect of regulation
on the observed phenotype could suggest that this organism
has evolved a system which can respond instantaneously to
sudden oxygen deprivation. For the case of glucose-lactose di-
auxic growth, the stand-alone FBA model shows that the com-
bined uptake of lactose and glucose could cause the system to
be oxygen-limited rather than carbon-limited for biomass pro-
duction, resulting in the secretion of acetate and formate and
reducing the growth yield. This finding, combined with evi-
dence that E. coli evolves to optimize its growth yield during
growth on single-carbon source media (9)? and that catabolite
repression does not occur under starvation conditions under
which the cell is carbon-limited rather than oxygen-limited (7),
suggests the hypothesis that regulation of substrate uptake
may have evolved as a means of maintaining optimal growth
yields on single substrates. Such a hypothesis obviously re-
mains to be examined in detail yet is illustrative of the useful-
ness of such a model in generating hypotheses that address
such broad and fundamental topics as regulatory network
strategy.

Finally, the ability of the combined model to accurately cap-
ture the essential behavioral features and systemic character-
istics of central metabolism and regulation of E. coli with
relatively few parameters illustrates the utility of the con-
straints-based framework for modeling microbial systems. This
capability to interpret and predict complex biological functions
in the absence of detailed parameters is particularly evident in
the glucose-lactose example discussed above.

In summary, a central regulatory network for E. coli has
been generated, and the corresponding regulatory constraints
have been applied to central metabolism, resulting in improved
interpretation and prediction of the behavior of this organism
under specified conditions. As this combined metabolic/regula-
tory network is expanded to reflect the entire state of knowl-
edge about E. coli transcriptional regulation, it is expected that
the resulting constraints will further constrict the solution
space and contribute to a fuller understanding of the systemic
properties of this organism. With efforts underway to recon-
struct regulatory networks using microarray data (42), it may
be expected that rFBA models may soon be generated for other
less characterized organisms. Interestingly, such in silico
model development does permit the generation of hypotheses
about the systems biology of metabolism and regulation, which
may be difficult to formulate without an in silico model.

Acknowledgment—We thank Christophe Schilling for assistance in
drawing the figures.
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