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Many high-throughput experimental technologies

have been developed in recent years that have

enabled full genomic sequences to be obtained,

genome-wide expression assessment to be performed

and the protein portfolio of particular cells and

organisms examined. It is likely that these

experimental technologies will only increase in 

speed and potential in the coming years. Moreover,

the development of high-throughput phenotyping

technologies is expected. These developments are

having a profound impact on the general thinking 

in the biological sciences. For example, it is becoming

universally accepted that cells should be viewed 

as systems. Such systems represent complex

networks of interacting gene products to produce

physiological functions.

As in many other fields of science and engineering,

the large-scale generation of complex data sets calls

for their mathematical analysis and computer

simulation. In the past, such endeavors were the

curiosity of a few and were hampered by the lack of

good data upon which reliable models could be built.

However, mathematical model building is now taking

the ‘center stage’ in biology, and its use and

importance is likely to grow. How does one begin to

build such models? Knowledge of the list of

The large volume of genome-scale data that is being produced and made

available in databases on the World Wide Web is demanding the development

of integrated mathematical models of cellular processes. The analysis of

reconstructed metabolic networks as systems leads to the development of an

in silico or computer representation of collections of cellular metabolic

constituents, their interactions and their integrated function as a whole. The

use of quantitative analysis methods to generate testable hypotheses and drive

experimentation at a whole-genome level signals the advent of a systemic

modeling approach to cellular and molecular biology.

Metabolic modeling of microbial

strains in silico
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components that comprise cells and how they interact

is growing as evidenced by the large number of

metabolic databases accessible through the World

Wide Web. The consequences of these interactions

must now be analyzed and determined.

In this paper, the process of building

mathematical models of carbon and energy

metabolism for microbial organisms is described, and

is shown schematically in Fig. 1. From the annotated

genome sequence and the experimentally

determined biochemical and physiological

characteristics for a given organism, the network of

metabolic reactions can be reconstructed, as far as it

is known. The reconstructed metabolic network is

then analyzed using various mathematical modeling

techniques. These quantitative analysis methods

enable the simulation of microbial growth and

behavior in silico and therefore have many important

applications in the field of metabolic engineering, in

which organisms are genetically modified to enhance

desirable properties. Achievements in the

mathematical analysis of microbial metabolism, as

well as issues and challenges in the field, are

discussed.

Reconstruction of metabolic reaction networks

Genome annotation
Reconstruction of metabolic reaction networks in an

organism begins with the thorough examination of

the genome. The first step in functional annotation of

a genome sequence is to identify the coding regions or

open reading frames (ORFs) on the sequence. Each

ORF is searched initially against databases with the

goal of assigning a putative function to it. Established

algorithms (e.g. the BLAST and FASTA family of

programs) can be used to determine the similarity

between a given sequence and gene or protein

sequences deposited in sequence databases1,2. As the

number of sequenced organisms rises, putative gene

functions could also be determined by various types of

gene clustering3,4. A large fraction of the genes for a

newly sequenced organism can usually be readily

identified by these methods.

Several high-quality genomic database and

metabolic network reconstruction web sites that

provide access to the annotated genome sequences of

many organisms can be found online5,6. Two types of

metabolic databases are available from the Web:

organism-specific and general-purpose databases.

Organism-specific databases, such as EcoCyc (Ref. 7),

are designed to provide a user-friendly interface for the

inspection of the metabolic characteristics 

(i.e. experimental and sequence data) of a single

genome (see Box 1 for a list of Web addresses). The

general-purpose databases, such as the Metabolic

Pathways Database (MPW)8,9 and the Kyoto

Encyclopedia of Genes and Genomes (KEGG)10,11,

contain sequence data for a large spectrum of

organisms. Once the functional assignment of a

sequenced genome is complete, a software program

such as the What Is There (WIT) system4 or KEGG can

search the general-purpose database for the closest set

of metabolic maps complementing the annotated

genome. The metabolic maps in WIT and KEGG are

then used as templates whereon the metabolic network

reconstruction of the organism can be represented as

an organism-fitted subset of their pathway collections

to be used similarly to an organism-specific database.

The wealth of biochemistry knowledge contained

in general-purpose metabolic databases enables the

automated metabolic reconstruction of any sequenced

organism, including those for which only a partial or

‘gapped’genome sequence is available12. These

reconstructed metabolic networks, based exclusively

on genomic data, can form the backbone of an in silico

organism. However, to build a more comprehensive
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Fig. 1. Integrated process of microbial metabolic model construction. Such construction requires a
comprehensive knowledge of the metabolism of an organism. From the annotated genome sequence
and the experimentally determined biochemical and physiological characteristics of a cell, the
metabolic reaction network can be reconstructed. This network is then modified in the context of
other physiological constraints to produce a mathematical model, which can be used to generate
quantitatively testable hypotheses in silico. As the model is used to direct an experimental plan, it can
be important in further re-examining the biological properties of the organism.

EcoCyc http://ecocyc.panbio.com/ecocyc/ecocyc.html
Metabolic pathways database (MPW) http://igweb.integratedgenomics.com/MPW/
Kyoto Encyclopedia of Genes and Genomes (KEGG) http://www.genome.ad.jp/kegg/
What Is There (WIT) http://wit.mcs.anl.gov/WIT/
Biology Workbench http://workbench.sdsc.edu

Box 1. List of addresses for Web sites relevant to genome annotation 
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metabolic network, these automatically constructed

networks must be evaluated in the context of

experimental data, specifically the biochemical and

growth characteristics of the organism.

Metabolic biochemistry
Genome sequencing and annotation have already

outpaced the generation of biochemical and

physiological data. The time required to make

comprehensive experimental and literature surveys

of the biochemical and physiological characteristics

for each organism of interest can be excessively long.

However, many of the organisms whose genomes

have been sequenced completely have also been the

subjects of extensive biochemical research. After

locating all the known metabolic genes on an

annotated genome, the additional information gained

from experimental data can make the reconstructed

metabolic network more complete. Continued

experimental investigation of the metabolic

biochemistry of an organism is important and has

three main purposes. These are: (1) to assign

pertinent biochemical reactions to the enzymes found

in the genome; (2) to validate and scrutinize

information already found in the genome; and (3) to

determine the presence of reactions or pathways not

indicated by current genomic data.

The use of a reconstructed metabolic network

depends largely on its accuracy. Biochemical

evidence helps to assign a function to a particular

gene, and validates the corresponding links in the

reconstructed network. Also, functionality can

sometimes be determined more easily by biochemical

than by genomic studies. The sequencing of many

organisms has shown that 20–30% of all eubacterial

genes annotated so far are found to be species specific

having, as yet, no known homologs13. It follows from

this observation that various organisms might have

evolved widely different methods of catalyzing

similar reactions or pathways. The proteins involved

in these reactions would have disparate sequences

despite their similar function, and would thus be

undetectable by sequence comparison. The substrate

specificity of many enzymes can also introduce

serious errors into the metabolic reconstruction if

genomes are annotated by sequence similarity alone.

Combining the findings of experimentalists with the

information contained in an annotated genome will

reconcile these issues and lead to the most complete

reconstruction of the metabolic network.

Cell physiology
At the current state of knowledge in genetics and

biochemistry, a number of the metabolic genes that

contribute significantly to the metabolic phenotype of

an organism cannot be identified. The identification

of these additional genes depends on the inclusion of

cell-physiological data.

Knowledge of the physiology of an organism gives

indirect evidence to the presence or absence of certain

metabolic reactions in a cell. For example, if

experiments suggest that an organism can grow

without a certain essential amino acid, but the

reconstructed metabolic network is not able to

produce that amino acid in silico, perhaps for lack of a

single enzyme, then for the metabolic reaction

network to have any practical meaning, the missing

steps in the pathway must be included. Once a

network reconstruction has been developed and

evaluated in the context of available biochemical and

physiological information, it can be applied to various

types of mathematical analysis.

Model construction and analysis

Mathematical models and their computer simulation

allow us to examine the integrated function of the

reconstructed metabolic network. A well-defined

network by itself is not sufficient to describe the

behavior of a system quantitatively, as shown in

Fig. 2. Here, an analogy is drawn between simulating

traffic conditions in a typical city and simulating the

behavior of a microbial metabolic network. The first

step for both situations is to generate a list of the

functional components for the system. For traffic

simulation, this could be represented by a list of all

the major roads in the city, together with the places

that are connected by these roads. For a cell, gene

products are discovered and characterized as

described earlier. In both situations, the next step is

to determine how these functional components are

connected. This information can be integrated into a

‘map’, that is a road map or a reconstructed metabolic

map. Once a network has been described in sufficient

detail, some qualitative predictions can be made. For

example, a road map is used to determine the route in

travelling from one place to another. Relative

distances can be compared. Similarly, the

reconstructed metabolic network can be used to study

the connectivity of metabolites and other

characteristics of network structure14–16.

The completed road map, however, has limitations.

For example, although the possibility of driving from

one destination to another can be ascertained, the

actual travel time is unknown. The travel time

depends partly on traffic conditions, which in turn

depend on the road, the time of day, the weather and

several other contributing factors. Obtaining all the

necessary data to specify each contributing factor is

not feasible. However, by estimating or

approximating many of these conditions, thereby

creating a realistic model for traffic conditions, it is

possible to obtain a reasonable calculation of the

travel time. Such a calculation could not be made with

a road map alone.

Similarly, without including more information, the

reconstructed metabolic map of an organism is

limited in its ability to generate quantitative

predictions about the phenotype. The behavior of a

cell depends on many factors such as temperature,

substrate availability, the presence of signaling
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molecules, and other environmental parameters,

many of which have yet to be specified completely.

Properties such as stoichiometry are relatively easy to

establish, whereas kinetic properties of bacterial

metabolism are typically much more difficult to

obtain under all possible environmental conditions.

Several approaches to dynamic cellular modeling

have been developed17–22. However, it is clear that for

detailed dynamic model building to succeed on a

whole-genome scale, much progress must be made in

estimating kinetic parameters of enzymes, either

from first principles23 or by correlation to known

properties of similar enzymes24.

Although kinetic constants are hard to obtain, the

network structure can be established as outlined

above. From the traffic analogy given in Fig. 2, it is

clear that the study of fluxes through such a network

is important and can be accomplished without having

detailed kinetic information. Metabolic fluxes can be

seen as a fundamental determinant of cell physiology

because they show quantitatively the contributions of

various pathways to overall cellular functions17.A

common way of relating cell genotype to phenotype is

therefore by analyzing the fluxes in the metabolic

network. Some approaches to cellular flux analysis are

described in Box 2.

The ability of flux-based analytical techniques to

generate quantitative hypotheses has given these

techniques a wide range of applications in the field of

metabolic engineering, whether in the large-scale

microbial generation of valuable substances or in

pollutant degradation. For example, they have been

used effectively to model penicillin production by

Penicillium chrysogenum25,26, to improve the yield of

aromatic amino acids by Escherichia coli27 and lysine

by Corynebacterium glutamicum17 through metabolic

engineering of central metabolism, and to model

enhanced biological phosphorus removal for

wastewater treatment28. Flux-based approaches also

lend themselves easily to genotype–phenotype

studies in silico and can be used to analyze enzyme

deficiencies or identify drug targets as has been

shown in gene deletion and metabolite connectivity

studies for E. coli29 and Haemophius influenzae14,30.

Used in conjunction with an experimental study, the
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Fig. 2. An analogy between simulation of traffic conditions in a typical
city and simulation of a microbial cell using systems analysis. For 
both simulations, the first step is to generate a list of all the relevant
components (e.g. roads or gene products) of the system, after which
the integration of these components must be determined and
specified. At this point some qualitative predictions can be made 
about the performance of the system. Finally, mathematical modeling
is used to quantitatively analyze the system as it responds to a number
of environmental factors or a change in the network. Abbreviations
and explanations: F6P, fructose-6-phosphate; G6P, glucose-6-
phosphate; pgi (phosphoglucose isomerase) is the enzyme that
catalyzes the reaction.
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metabolic outcome and growth of E. coli using acetate

and succinate as single-carbon sources has been

accurately predicted31. Further applications of 

flux-analysis techniques have been reviewed17,32,33.

Although the goal of developing a completely

specified cellular model will require the inclusion of

kinetic parameters, the development of flux-analysis

methods and other approaches has many applications

and will continue to lead to the generation of novel

and important quantitative hypotheses about

microbial behavior, even in the absence of detailed

kinetic information.

Model characteristics

A comparison of the genomic characteristics and

in silico metabolic model characteristics for three

bacterial strains is shown in Table 1 (Refs 14,29)

(C.H. Schilling, PhD Thesis, University of California,

2000). These in silico models represent between 25%

and 40% of the known ORFs in their in vivo

counterparts. Figure 3a shows the reaction complement

of the gastric pathogen Helicobacter pylori 26695 in

greater detail. The Venn diagram is used to categorize

the inclusion of reactions in the reconstructed network.

Many of them have been included with a combination of

different kinds of evidence, as shown by the overlap in

circles. In better-known organisms, such as E. coli and

Saccharomyces cerevisiae, the overlap between the

circles is expected to be much greater.

As shown in the figure, the bulk of reactions in the

network were derived from genomic evidence (almost

73% in the case of Helicobacter pylori). Approximately

half of the remaining reactions in the reconstructed

metabolic network were included on the basis of

observations found in the literature, whether from

direct biochemical evidence or indirect physiological

evidence. The remaining reactions, labeled as

inferred reactions in Fig. 3a, have been included on

the basis of the metabolic demands of the

reconstructed network, but without experimental or

genome evidence. Each inferred reaction added to the

reconstructed metabolic network will eventually

require further experimental justification.

Modeling issues

There are two primary issues regarding the

construction of microbial metabolic models. First, not

all of the reactions suggested by these models are

found directly in the databases or the biochemical

Review

Table 1. Comparison of genomic characteristics and in silico metabolic model

characteristics between three bacterial strainsa

Properties Bacterial strain

E. coli K-12 H. influenzae Rd H. pylori 26695

Genome characteristics

Genome length (bp) 4 639 221 1 830 135 1 667 867  

G + C content 51% 38% 39%

Open reading frames 4288 1743 1590

Identified database match 2656 1011 1091

No database match 1632 732 499

In silico metabolic networks

Genes included 660 (~25%) 400 (~40%) 290 (~27%)
(% of known ORF)

Associated reactionsb 697 412 272

Other reactionsc 42 49 109

Metabolites 442 367 332
aAbbreviations: E. coli, Escherichia coli; H. Influenzae Rd, Haemophilus influenzae Rd; H. pylori, 
Helicobacter pylori.
Reactions included in the network are grouped bas associated with a particular gene, in which their 
inclusion is on the basis of direct genomic or biochemical evidence, or con either indirect cell 
physiological evidence or inferred by the demands imposed on the metabolic reaction network.

Methods that fall into this category are pathway
analysisa, flux-balance analysis (FBA)b–d and
metabolic flux analysis (MFA)e. All are based on the
principle of conservation of mass for the metabolites
of a given metabolic network. Pathway analysis is a
method for generally defining the structure of the
metabolic network as it relates to the overall
metabolic capabilitiesf,g of the organism. In contrast,
FBA examines the metabolic network from a
performance perspective, using linear optimization
to determine optimal cellular behaviors under
changing environmental and genetic conditionsh.
MFA characterizes the flux distribution in more
experimental detail, estimating internal fluxes
based on a combination of isotope labeling
techniquesi and mathematical analysisj.

References

a Schilling, C.H. et al. (1999) Metabolic pathway analysis: basic

concepts and scientific applications in the post-genomic era.

Biotechnol. Prog. 15, 296–303

Box 2. A brief description of flux-based analysis methods

b Schilling, C.H. et al. (1999) Towards metabolic phenomics: analysis

of genomic data using flux balances. Biotechnol. Prog. 15, 288–295

c Varma, A. and Palsson, B.O. (1994) Metabolic flux balancing: basic

concepts, scientific and practical use. Bio/Technology 12, 994–998

d Bonarius, H.P.J. et al. (1997) Flux analysis of undetermined

metabolic networks: the quest for the missing constraints.

Trends Biotechnol. 15, 308–314

e Stephanopoulos, G. et al. (1998) Metabolic Engineering,

Academic Press

f Schilling, C.H. and Palsson, B.O. (2000) Assesment of the

metabolic capabilities of Haemophilus influenzae Rd through a

genome-scale pathway analysis. J. Theor. Biol. 203, 249–283

g Schuster, S. et al. (1999) Detection of elementary flux modes in

biochemical networks: a promising tool for pathway analysis

and metabolic engineering. Trends Biotechnol. 17, 53–60
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i Wiechert, W. and de Graaf, A.A. (1996) In vivo stationary flux

analysis by 13C labeling experiments. Adv. Biochem. Eng.

Biotechnol. 54, 109–154

j Christensen, B. and Nielsen, J. (2000) Metabolic network

analysis. A powerful tool in metabolic engineering. Adv.

Biochem. Eng. Biotechnol. 66, 209–231
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literature, and second, not all of the metabolic genes

present in the genotype are accounted for – or even

noted – in the model, because their functions are as

yet undiscovered (Fig. 3b).

However, a ‘real metabolic network’exists for the

example given in Fig. 3a, that is the actual set of all

the relevant reactions that occur in H. pylori strain

26695 are included in the model. This network,

surrounded by a dashed line, is superimposed on the

network defined by our model. The light-blue area is

the set of all reactions that are found both in strain

26695 and in our model, the ‘true’ reactions. The

purple area represents ‘false’ reactions that were

included in the model but do not actually occur in

H. pylori strain 26695. These reactions represent

mistaken assumptions used in creating the model.

The secondary issue is the inverse problem of the

above: many of the proteins synthesized by the

organism are not accounted for in the metabolic

reconstruction. These ‘missing’ reactions are shown

by the dark-blue area in Fig. 3b. It is likely that some

of the metabolic reactions that are catalyzed by the

organism are as yet undiscovered. This implies that

functionalities open to the organism are neglected by

the model.

These metabolic network reconstruction issues can

be resolved in part as the model is applied to various

analyses. For example, the metabolic H. pylori model

was used to re-examine the annotation of the

metabolic network. All of the genes that were

included in the reconstruction of H. pylori metabolism

without direct genomic or biochemical evidence can

be thought of as hypothetical. The presence of these

hypothetical genes can be determined by collecting

the sequences of other organisms’ copies of the

hypothetical genes and using BLAST to compare

them with the H. pylori genome sequence. The genes

that are found to be significantly homologous to loci in

the H. pylori genome sequence can then be studied

experimentally to verify their proposed function on

the basis of the reconstruction and BLAST analysis.

One such gene product included in the H. pylori

model without genomic or biochemical evidence was

malate dehydrogenase. A subsequent study indicated

that on locus HP0086 of the H. pylori genome, an ORF

was located that showed significant similarity (36.81%)

and identity (25.93%) with a malate:quinone

oxidoreductase in glutamic acid bacterium

C. glutamicum34. Thus, the analysis of microbial

metabolic models can also have bioinformatic

applications, such as functional assignment of ORFs, in

addition to the more obvious experimental applications.

There are also significant issues pertaining to the

analysis of microbial metabolic models. It has been

noted above that flux models can successfully predict

the effects of gene knockouts and the metabolic

behavior of an organism quantitatively. The specific

advantage of the flux-based analyses is that such

models do not require experimental information 

such as enzyme kinetics, regulatory mechanisms,

intracellular concentrations or enzyme activity

profiles.

However, the attractive simplicity of the models also

sets some inevitable limits for their predictions.

Simulations of microbial behavior reflect only the

topology of reconstructed systems (as contained in the

reconstructed network) and the boundary conditions of

the system (such as extracellular substrate

concentrations). Flux-based models currently

incorporate no control mechanisms of any kind,

predicting a theoretical metabolic potential that

assumes the constitutive expression of all genes in the

metabolic reaction network. This assumption could

lead to false predictions. Additionally, the flux models
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32.3%

Inferred
14.4%

(a)

(b)

Fig. 3. Venn diagram of reactions in the Helicobacter pylori (H. pylori) in
silico metabolic model. (a) Reactions are categorized by the type of
evidence used to justify their inclusion in the reconstructed network.
The number of reactions, by category, is given in the table (inset) and as
a percentage of the total reactions (shown in each colored area). Many
of the reactions have been included by evidence from multiple sources,
as shown by overlapping circles. (b) This diagram depicts the real
metabolic reaction network, illustrating the two major issues
associated with metabolic reconstruction. If the actual complete
metabolic network is the area enclosed by a dashed line, the
reconstructed model probably consists of true reactions (light blue
area) and some reactions that are not actually occurring in the cell (i.e.
false reactions; purple), and is probably missing some crucial reactions
(dark blue area).
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describe a stable stationary state of metabolism. Any

projections based on their analysis toward intracellular

metabolic dynamics associated with the cell cycle or cell

differentiation must be made very cautiously. It is

expected that these issues will be resolved as analysis

methods are improved and developed to incorporate

additional experimental information as listed above,

resulting in models that are more complicated but

perhaps more accurate in predicting the dynamic

behavior of microbial organisms.

Future challenges

In silico models of metabolic networks will be subjected

to an ongoing iterative model-building process just as

complex systems in other branches of science and

engineering have in the past. This process is illustrated

in Fig. 4. Here, the traditional scientific method is

depicted in the context of biology in the post-genomic

era. Hypotheses based on the metabolic analysis of

microbial strains are examined both in terms of an

experimental study and using bioinformatics

techniques. Experimentalists and bioinformaticists

must work cooperatively to provide information to

analysts, from which in silico representations of

microbial metabolism can be created. The analysis of

these models will lead to suggestions for bioinformatic

and experimental studies which, in turn, will

contribute to a more robust characterization of the

metabolism of an organism. Once refined in this

manner, the metabolic model can be used to generate a

new set of hypotheses in a subsequent iteration.

Another important challenge in the improvement of

microbial metabolic modeling is the expansion of

integrated development environment (IDE) software35,

which combines all of the available tools and methods

for model creation, analysis and development, with

convenient access to the metabolic and enzymology

databases and a user-friendly interface that can be

understood by scientists with diverse backgrounds and

training. The development of such IDE software will

make the in silico modeling of microbial metabolism

more widespread and facilitate the introduction of

quantitative analysis to microbiologists, leading to the

generation of new and important experimental

hypotheses and industrial developments.

Concurrently, these models need to be expanded to

incorporate features of the genome other than simply

metabolism. This broadening in scope will occur as a

direct result of more-advanced analysis methods. The

further development of in silico microbial models that

quantitatively simulate complexities such as signal

transduction, control mechanisms and the dynamic

behavior of microorganisms, will be vitally important

in the field of metabolic engineering as well as in the

effort to model eukaryotic organisms. In the latter,

the genome is larger and therefore the percentage of

known metabolic genes in the genome is generally far

smaller. As the efficacy of analysis increases, the new

in silico microbial models will add various functions

until finally the construction of a whole-cell model has

been completed, an accomplishment that would

greatly contribute to our understanding of the

essential nature of the cell.

Review

Fig. 4. Applying the ‘traditional scientific method’ of iterative hypothesis development in the 
post-genomic era. Once the in silico microbial metabolic model has been constructed, it can be used to
generate testable hypotheses. These hypotheses are examined, both in traditional experimental studies
(right-hand side) and using new bioinformatics or genome sequencing techniques (left-hand side), to
discover new attributes of the metabolic network. After these discoveries have been incorporated into
the in silico metabolic model, it can be used to generate new hypotheses in a subsequent iteration.
Adapted, with permission, from Ref. 36.
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For more than a decade now, the transcription factor

nuclear factor κB (NF-κB) has attracted attention

because of both its unique activation pathways and its

physiological importance as a key regulatory

molecule in the immune response, cell proliferation

and apoptosis1. The DNA-binding form of NF-κB is

dimeric. These dimers can be composed of various

combinations of the five different DNA-binding

subunits – NF-κB1 (p50 and its precursor p105),

NF-κB2 (p52 and its precursor p100), c-Rel, RelB and

p65 (RelA) – although the most frequently observed

form of NF-κB is a p50–p65 heterodimer. All NF-κB

family members have a conserved N-terminal

Rel-homology domain (RHD), which is responsible 

for dimerization, DNA binding and interaction with

IκBs (inhibitors of NF-κB)1–4. The precursor proteins

p105 and p100 can be processed by the proteasome to

generate p50 and p52, respectively. In addition, p50

can be produced by an alternative pathway, which

involves the cotranslational dimerization of the RHD

of p50 with p105 (Ref. 5).

In most cell types, NF-κB is maintained in an

inactive form in the cytoplasm by association with

IκBs. Physical and chemical stresses, viruses, bacteria

and pro-inflammatory cytokines [e.g. interleukin (IL)-1

and tumour necrosis factor (TNF)] activate NF-κB by

inducing the rapid phosphorylation of IκB and its

subsequent ubiquitination and proteolytic

degradation. Released NF-κB then translocates to the

nucleus, binds to its cognate DNA element and

activates transcription of numerous target genes2. The

inducible phosphorylation of IκB is mediated by

recently identified IκB kinases (IKKα, β and ε). The

catalytic subunits, IKKα and IKKβ, and the

regulatory IKKγ/NEMO (NF-κB essential modulator)

subunit, form the prototypic core IκB kinase complex

(IKC)3. Importantly, this complex serves as an

intracellular point of convergence for distinct signals

that ultimately activate NF-κB (Refs 1–4). 

Activation of the transcription factor nuclear factor κκB (NF-κκB) requires its release

from inhibitor of NF-κκB (IκκB) proteins in the cytoplasm. Much work has focussed

on the identification of pathways regulating this cytosolic rate-limiting step of

NF-κκB activation. However, there is increasing evidence for another complex level

of NF-κκB activation, which involves modulatory phosphorylations of the DNA-

binding subunits. These phosphorylations can control several functions of

NF-κκB, including DNA binding and transactivation properties, as well as

interactions between the transcription factor and regulatory proteins. Although

their overall impact on NF-κκB function has yet to be determined, modifications of

this factor will very probably provide a mechanism to fine tune NF-κκB function.
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