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 Motivation

 Mathematical structure for validation and verification

 Packaging of information using this structure

 Construction of approximation spaces on these structures

 Examples

 Technical challenges and conclusions



A simpleA simple  preludeprelude

• Quantity of interest:  decision with upper bound on risk
–   Flip coin 100 times                               calibrated decision tool            50-50
–         observe initial configuration           calibrated decision tool            70-30
–         observe surface tension                 calibrated decision tool            80-20

 --- --- ---

–         observe quantum states                 calibrated decision tool             99-1

• Use Model-Based Predictions in lieu of physical experiments

Ingredients:  

 calibrate a stochastic plant

 evaluate limit on predictability of plant

 refine plant if target confidence not achievable



Interaction of model and dataInteraction of model and data
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Error budgetError budget



WeWe  use probabilistic models for uncertaintyuse probabilistic models for uncertainty

A random variable      is a measurable mapping on a probability space                  to

The probability distribution      of       is the image of       under      ,
defining the probability triple

Set of elementary events

Sigma algebra of all events that make sense

Measure on all elements of

An experiment is defined by a probability triple, (a measurable space)

The probabilistic framework provides a packaging of information that is amenable to a level
of rigor in analysis that permits the “quantification” of uncertainty.

Although:

“… unacquainted with problems where wrong results could be attributed to failure to use
measure theory….”  (E.T. Jaynes, published 2003)



What do we mean by things being close ?What do we mean by things being close ?

Modes of Convergence: Let      be a sequence of r.v. defined on                     and let
be another rv on same probability space:

Almost sure Convergence:

Convergence in mean square:

Convergence in distribution:        Let                             and

               then     converges in distribution to      if       converges to

Convergence in probability:

Convergence in mean:

Convergence in mean-square permits an      analysis of random variables.

First step in a unified perspective in verification and validation.



Characterize Y, given characterization of

Each  Zj    is a vector-valued random variable:

Orthogonalizing the random variables:

Then:

Functional representationsFunctional representations



Assumptions:

 Second-order random variables:

 Basic random vectors are independent:

 Vector       does not necessarily involve independent random  variables:

Functional representationsFunctional representations



Given bases of Hj,k other bases can be constructed.

Functional representationsFunctional representations



Functional representationsFunctional representations



Some common basesSome common bases

Infinite-dimensional case:
This is an exercise in stochastic analysis:
• Hermite polynomials: Gaussian measure  (Wiener: Homogeneous Chaos)

• Charlier polynomials:  Poisson measure   (Wiener: Discrete Chaos)

• Very few extensions possible: Friedrichs and Shapiro (Integration of functionals) provide
characterization of compatible measures.  Segall and Kailath provide an extension to martingales.

Finite-dimensional case: independent variables:
This is an exercise in one-dimensional approximation:
• Askey polynomials:measures from Askey chart  (Karniadakis and co-workers)

• Legendre polynomials:  uniform measure (theoretical results by Babuska and co-workers)

• Wavelets: Le-Maitre and co-workers

• Arbitrary measures with bounded support: C. Schwab

Finite-dimensional case: dependent variables:
This is an exercise in multi-dimensional approximation:
• Arbitrary measures: Soize and Ghanem.



Another special basis: Another special basis: Karhunen-Loeve Karhunen-Loeve expansionexpansion

Reference: J.B. Read (1983)



Management of uncertaintyManagement of uncertainty



Management of uncertaintyManagement of uncertainty

COORDINATES IN THIS SPACE REPRESENT PROBABILISTIC CONTENT.

SENSITIVITY OF PROBABILISTIC STATEMENTS OF BEHAVIOR ON DATA.



The random quantities are resolved as

These could be, for example:

• Parameters in a PDE

• Boundaries in a PDE (e.g. Geometry)

• Field Variable in a PDE

Multidimensional Orthogonal
Polynomials in independent
random variables

Representing uncertaintyRepresenting uncertainty

Arbitrary measures:

Karniadakis

Babuska

LeMaitre/Ghanem

Soize/Ghanem



The random quantities are resolved as

These could be, for example:

• Parameters in a PDE

• Boundaries in a PDE (e.g. Geometry)

• Field Variable in a PDE

These decompositions provide a resolution (or parameterization) of
the uncertainty on spatial or temporal scales

Representation of uncertainty: Representation of uncertainty: Galerkin Galerkin projectionprojection



Representation of uncertainty: Maximum likelihoodRepresentation of uncertainty: Maximum likelihood



““essentialessential”” dimensionality of a process dimensionality of a process

Physical object:
Linear Elasticity

Stochastic parameters

Convergence as function of
“dimensionality”

Convergence of PDF

Convergence of PDF



Representation of uncertainty: Bayesian inferenceRepresentation of uncertainty: Bayesian inference

Starting with observations of process
over a limited subset of indexing set:

Covariance matrix of observations

Reduced order representation:   KL:

Where:



Representation of uncertainty: Bayesian inferenceRepresentation of uncertainty: Bayesian inference

Polynomial Chaos representation of reduced variables:

Constraint on chaos coefficients:

Estimation of stochastic process using estimate of reduced variables:

Objective is to estimate



Representation of uncertainty: Bayesian inferenceRepresentation of uncertainty: Bayesian inference

Define Cost Function  (hats denote estimators):

Then Bayes estimate is:

Bayes rule:

•  Use kernel density estimation to represent the Likelihood function

•  Use Markov Chain Monte Carlo to sample from the posterior
(metropolis Hastings algorithm) -->BIMH



Representation of uncertainty: Bayesian inferenceRepresentation of uncertainty: Bayesian inference
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Representation of uncertainty: Bayesian inferenceRepresentation of uncertainty: Bayesian inference



Representation of uncertainty: Representation of uncertainty: MaxEnt MaxEnt and Fisher informationand Fisher information

Moments of observations as constraints:

Maximum Entropy Density Estimation (MEDE) results in joint measure of KL variables:

Fisher Information Matrix:

Then asymptotically  (h denotes coefficients in polynomial chaos description of observations):

Observe  at N locations and n  sets of observations.

Reduce dimensionality using KL.



Stochastic FEMStochastic FEM



Variational Formulation:

    Find               s.t.:

Where:

should be coercive and continuous

Notice:

Stochastic FEMStochastic FEM



  Approximation Formulation:

 Find                          s.t.:

 Where:

 Write:
ith Homogeneous Chaos in

Basis in X Basis in Y

*

Stochastic FEMStochastic FEM



Typical System Matrix: 1st OrderTypical System Matrix: 1st Order



Typical System Matrix:Typical System Matrix:  2nd Order2nd Order



Typical System Matrix: 3rd OrderTypical System Matrix: 3rd Order



Efficient pre-conditionersEfficient pre-conditioners



  Sources of Error:
• Spatial Discretization Error:

• Random Dimension Discretization Error:

Stochastic FEMStochastic FEM

 Joint error estimation is possible, for general measures, using nested approximating
spaces (e.g. hierarchical FEM)  (Doostan and Ghanem, 2004, 2005)

 Joint error estimation is possible, for special cases:

 infinite-dimesional gaussian measure:  Benth et.al, 1998

 tensorized uniform measure:  Babuska et.al, 2004



Only one deterministic solve required.   Minimal change to existing codes.

Need iterative solutions with multiple right hand sides.

Integrated into ABAQUS (not commercially).

Using Components of Existing Analysis SoftwareUsing Components of Existing Analysis Software



Non-intrusive implementationNon-intrusive implementation



Example: Protein LabelingExample: Protein Labeling

Continuity and
momentum
equations:

Wall electrostatic forces
(Helmholtz-Smoluchowski
relationship):

Species
concentrations:

Electromigration velocity:

Diffusivity:

Electrostatic
Field Strength:



Protein Labeling: Stochastic RepresentationsProtein Labeling: Stochastic Representations

Chaos
representations of
various stochastic
parameters and
solutions:

Equations governing
evolution of Chaos
coordinates:

Implementation
issues:

Stochastic toolkit (working on version 2)

Adapted t ime integration

Adapted spatial discretization



Protein Labeling:Protein Labeling:  some resultssome results

L2 norm of the difference between solutions on successive grids as
a function of the fine grid spacing dxf . The slope of the lines shows a
second-order spatial convergence rate for various species concentrations as
well as the streamwise velocity.

L2 norm of the difference between solutions at successive time steps
as a function of the shorter time step dt. The slope of the lines shows a
fourth-order temporal convergence rate for various species concentrations as
well as the streamwise velocity.



Time evolution of U and L concentrations in a homogeneous protein
labeling reaction. The uncertainty in these concentrations, due to a 1% uncertainty
in the labeling reaction rate parameters, is indicated by 63s ‘‘error
bars.’’

PDF of the unlabeled protein concentration at different mean values.
As the unlabeled protein reacts away, its PDF becomes narrower and more
skewed.

Major contributions of individual input parameters to the
overall standard deviation in [L] in the area around the
reaction zone at t=0.12 s, y=0.5 mm. The uncertainty in the
applied voltage potential ‘‘DV’’ has the most dominant
contribution to the overall standard deviation in [L].

Protein Labeling:Protein Labeling:  some resultssome results



Mean concentrations of proteins U, L, and dye D at
t=0.12 s. U and D just met and L is produced at their
interface. The values of the contour levels go linearly from
0 (blue) to 1.3e-4 (red) mol/l

Standard deviation of the protein and dye concentrations at
t=0.12 s. The values of the contour levels go linearly from
0 (blue) to 1.1e-5 mol/l (red). The largest uncertainties are
found in the reaction zone.

Mean (top) and standard deviation (bottom) of the labeled
protein concentration L at t=0.50 s. The initially flat profiles
are now severely distorted. The values of the contour levels
go linearly from 0 (blue) to 3.2e-4 mol/l (red) in the top plot
and from 0 (blue) to 1e-4 mol/l (red) in the bottom plot.

Mean (top) and standard deviation (bottom) of the electrical
conductivity of the electrolyte solution at t=0.50 s. Annihilation of
ions in the labeling reaction results in a significantly lower mean
electrical conductivity near the L plug. The values of the contour
levels go linearly from 7.1e-3 S/m(blue) to 1.3e-2 S/m(red) in the
top plot and from 0 (blue) to 1.5e-3 S/m (red) in the bottom plot.

Protein Labeling: some resultsProtein Labeling: some results



Mean (top) and standard deviation (bottom) of the electrical field strength in
the x direction at t=0.50 s. Near the L plug, the mean streamwise electrical
field strength is about 40% higher than in the undisturbed flow. The values
of the contour levels go linearly from 91.4 kV/m (blue) to 146 kV/m (red)
in the top plot and from 0.20 kV/m (blue) to 13 kV/m (red)in the bottom
plot.

Mean (top) and standard deviation (bottom) of the electrical field strength in
the y direction at t=0.50 s. The magnitude of the mean of this field strength
is up to 15% of the initial field strength in the x direction. The values of the
contour levels go linearly from 216.3 kV/m (blue) to 16.3 kV/m (red) in the
top plot and from 0 (blue) to 5.8 kV/m (red) in the bottom plot.

Mean (top) and standard deviation (bottom) of the streamwise
velocity at t=0.50 s. The local increase in the electroosmotic wall
velocity leads to recirculation zones near the L plug. The largest
uncertainties are found near the wall. The values of the contour
levels go linearly from 6.8 mm/s (blue) to 9.1 mm/s (red) in the
top plot and from 5.6e-3 mm/s (blue) to 0.59 mm/s (red) in the
bottom plot.

Mean (top) and standard deviation (bottom) of the wallnormal velocity at
t=0.50 s. The mean of this velocity has a magnitude of up to 6 % of the
initial streamwise velocity. The values of the contour levels go linearly
from 20.56 mm/s (blue) to 0.56 mm/s (red) in the top plot and from 0
(blue) to 0.26 mm/s (red) in the bottom plot.

Protein Labeling:Protein Labeling:  some resultssome results



Connection to Connection to multiscale multiscale analysisanalysis

Need innovative uni-scale models that know what to do with other-
scale information:  (eg. stochastic homogenization; stochastic
equation-free; multiscale mechanics)
(reference: Jardak, M. and Ghanem, R. in CMAME)

New stochastic models for processes exhibiting variation over a few
scales. Where spectral analysis, correlation analysis does not apply
(reference: Jianxu S., PhD thesis at Hopkins)

Multiscale data assimilation: transform coarse scale measurements
into fine scale parameters (both deterministic and stochastic)
(reference:  Zou, Y. and Ghanem, R. in SIAM MMS)

Need logic for targeted scale adaptation: signatures of various
subscales in stochastic representation at coarse scale.



 CCritical examination of probabilistic modelsmodels of data:
 Physical and mathematical implications of these models.
 Connection to multi-scale properties of materials and systems.
 Adapted bases for enhanced convergence.

 EEfficient numericalnumerical solvers:
 Using existing codes.
 Very high-dimensional quadrature.
 Intrusive algorithms.

 VisualizationVisualization of probabilistic information as decision aids.

 Model reductionsModel reductions that maximize information content.

 OptimizationOptimization under uncertainty: uncertainty in objective function, decision variables, and constraints.

 ValidationValidation of complex interacting systems.

 Error estimationError estimation and refinement: allocation of resources to physical and numerical experiments.

 FusionFusion of experiments and model-based predictions.

On the horizonOn the horizon



Selected referencesSelected references
Ghanem, R. and Doostan, A., `̀On the Construction and Analysis of Stochastic Predictive Models: Characterization and Propagation of the Errors
Associated with Limited Data,'' submitted to Journal of  Computational Physics, 2005.

Descelliers, C., Ghanem, R. and Soize, C. `̀Maximum likelihood estimation of stochastic chaos representation from experimental data,'' to appear in
International Journal for Numerical Methods in Engineering.

Reagan MT, Najm HN, Pebay PP, Knio, O. and Ghanem, R., `̀Quantifying uncertainty in chemical systems modeling,'' International Journal of
Chemical Kinetics, Vol. 37, No. 6, pp. 368-382, 2005.

Le Maitre,O., Reagan, M.T., Debusschere, B., Najm, H.N., Ghanem, H.N. and Knio, O., `̀Natural convection in a closed cavity under stochastic, non-
Boussinesq conditions,''  SIAM Journal of Scientific Computing, Vol. 26, No. 2, pp. 375-394, 2004.

Soize, C., and Ghanem, R. `̀Physical Systems with Random Uncertainties:  Chaos representations with arbitrary probability measure,'' SIAM Journal
of Scientific Computing, Vol. 26, No. 2, pp. 395-410, 2004.

Debusschere, B., and Najm, H.N., Matta, A., Knio, O., Ghanem, R., and LeMaitre, O., “ P rotein labeling reactions in electrochemical microchanel flow:
Numerical simulation and uncertainty propagation,'’Physics of  Fluids, Vol. 15, No. 8, pp. 2238-3350,2003.

Pellissetti, M. and Ghanem, R., `̀A method for the validation of predictive computations using a stochastic approach,'' ASME Journal of Offshore
Mechanics and Arctic Engineering, Vol.126, No. 3, pp. 227-234, 2004.

Le Maitre, O.P., Najm, H., Ghanem, R. and Knio, O., `̀Multi-resolution analysis of Wiener-type uncertainty propagation schemes,'' Journal of
Computational Physics, Vol 197, No. 2, pp 502-531, 2004.

Le Maitre, O., Reagan, M., Najm, H., Ghanem, R., and Knio, O., `̀A stochastic projection method for fluid flow. II: Random Process,'’  Journal of
Computational Physics, Vol. 181, pp. 9-44, 2002.

Sarkar, A. and Ghanem, R., `̀A substructure approach for the mid-frequency vibration of stochastic systems,'' JASA, Vol. 113, No. 4, pp. 1922-1934,
2003.

Ghanem, R., and Red-Horse, J., `̀Propagation of uncertainty in complex physical systems using a stochastic finite element approach,'' Physica D, Vol.
133, No. 1-4, pp. 137-144, 1999.

Ghanem, R., and Dham, S., `̀Stochastic finite element analysis for multiphase flow in heterogeneous porous media,''  Transport in Porous Media,  Vol.
32, pp. 239-262, 1998.

Ghanem, R., `̀Scales of fluctuation and the propagation of uncertainty in random porous media,'' Water Resources Research, Vol. 34, No. 9, pp. 2123-
2136, September 1998.

Ghanem, R., and Spanos, P ., Stochastic Finite Elements: A Spectral Approach, Springer Verlag, 1991. (reissued by Dover Publications, 2003.)


