Stanford Workshop on Error Estimation, Uncertainty, and Reliability Aug. 20-22, 2005

A-Posteriori Error Estimation for Godunov Finite Volume Methods

Tim Barth

Exploration Technology Directorate NASA Ames Research Center Moffett Field, California 94035-1000 USA barth@nas.nasa.gov

• Barth and Larson

Coping with Nonlinearity

NAS

Mean-value linearized forms:

es Research Cente

$$B(u,v) = B(R_q^0 u_0, v) + \overline{B}(u - R_q^0 u_0, v) \quad \forall v \in \mathcal{V}^{\mathcal{B}}$$

$$M(u) = M(R_q^0 u_0) + \overline{M}(u - R_q^0 u_0),$$

Coping with Nonlinearity

Mean-value linearized forms:

$$B(u,v) = B(R_q^0 u_0, v) + \overline{B}(u - R_q^0 u_0, v) \quad \forall v \in \mathcal{V}^{\mathcal{B}}$$
$$M(u) = M(R_q^0 u_0) + \overline{M}(u - R_q^0 u_0),$$

Example: B(u, v) = (L(u), v) with L(u) differentiable

$$L(u_B) - L(u_A) = \int_{u_A}^{u_B} dL = \int_{u_A}^{u_B} \frac{dL}{du} du$$
$$= \int_0^1 \frac{dL}{du} (\tilde{u}(\theta)) d\theta \cdot (u_B - u_A) = \overline{L}_{,u} \cdot (u_B - u_A)$$

with $\tilde{u}(\theta) \equiv u_A + (u_B - u_A) \theta$.

$$B(u,v) = B(R_q^0 u_0, v) + (\overline{L}_{,u} \cdot (u - R_p^0 u_0), v)$$

= $B(R_q^0 u_0, v) + \overline{B}(u - R_q^0 u_0, v) \quad \forall v \in \mathcal{V}^{\mathrm{B}}$

Coping with Nonlinearity

Mean-value linearized forms:

$$B(u,v) = B(R_q^0 u_0, v) + \overline{B}(u - R_q^0 u_0, v) \quad \forall v \in \mathcal{V}^{\mathcal{B}}$$
$$M(u) = M(R_q^0 u_0) + \overline{M}(u - R_q^0 u_0),$$

Example: B(u, v) = (L(u), v) with L(u) differentiable

$$L(u_B) - L(u_A) = \int_{u_A}^{u_B} dL = \int_{u_A}^{u_B} \frac{dL}{du} du$$
$$= \int_0^1 \frac{dL}{du} (\tilde{u}(\theta)) d\theta \cdot (u_B - u_A) = \overline{L}_{,u} \cdot (u_B - u_A)$$

with $\tilde{u}(\theta) \equiv u_A + (u_B - u_A) \theta$.

$$B(u,v) = B(R_q^0 u_0, v) + (\overline{L}_{,u} \cdot (u - R_p^0 u_0), v)$$

= $B(R_q^0 u_0, v) + \overline{B}(u - R_q^0 u_0, v) \quad \forall v \in \mathcal{V}^{\mathrm{B}}$

Orthogonality relationship: $\overline{B}(u - R_q^0 u_0, v) = 0 \quad \forall \ v \in \mathcal{V}_0^{\mathrm{B}}$

Primal Godunov FV Problem: Find
$$u_0 \in \mathcal{V}_0^B$$
 such that $B_{DG}(R_q^0u_0, v) = F_{DG}(v) \quad \forall \ v \in \mathcal{V}_0^B$.Linearized dual problem: Find $\Phi \in \mathcal{V}^B$ such that $\overline{B}_{DG}(v, \Phi) = \overline{M}(v) \quad \forall \ v \in \mathcal{V}^B$.Error representation formula: $(B_{DG}(\cdot, \cdot) \text{ and nonlinear } M(\cdot))$ $M(u) - M(R_q^0u_0) = \overline{M}(u - R_q^0u_0, \Phi)$ $(dual \text{ problem})$ $= \overline{B}_{DG}(u - R_q^0u_0, \Phi - \pi_0\Phi)$ $(orthogonality)$ $= B_{DG}(u, \Phi - \pi_0\Phi) - B_{DG}(R_q^0u_0, \Phi - \pi_0\Phi),$ (v) (variational problem) $= F_{DG}(\Phi - \pi_0\Phi) - B_{DG}(R_q^0u_0, \Phi - \pi_0\Phi),$ Final error representation formula

$$M(u) - M(R_q^0 u_0) = F_{\rm DG}(\Phi - \pi_0 \Phi) - B_{\rm DG}(R_q^0 u_0, \Phi - \pi_0 \Phi)$$

Abstract A-Posteriori EstimateWe wish to study the sharpness of the following sequence of direct
estimates
$$|M(u) - M(R_q^0 u_0)| = |B_{DG}(R_q^0 u_0, \Phi - \pi_0 \Phi) - F_{DG}(\Phi - \pi_0 \Phi)|$$
 (basic representation)
 $= |\sum_K (B_K(R_q^0 u_0, \Phi - \pi_0 \Phi) - F_K(\Phi - \pi_0 \Phi))|$ (clement assembly)
 $\leq \sum_K |(B_K(R_q^0 u_0, \Phi - \pi_0 \Phi) - F_K(\Phi - \pi_0 \Phi))|$ (triangle inequality)
 $\leq \sum_K R_K(R_q^0 u_0) \cdot W_K(\Phi - \pi_0 \Phi)$ (Cauchy-Schwarz)

 $B_K(\cdot, \cdot)$ and $F_K(\cdot)$ are restrictions of $B_{DG}(\cdot, \cdot)$ and $F_{DG}(\cdot)$ to the element K

Approximating $\Phi - \pi_0 \Phi$ Some strategies for approximating $\Phi - \pi_0 \Phi$ (1) Inherent two scale approximation: Compute the dual problem: Find $\Phi_0 \in \mathcal{V}_0^{\mathrm{B}}$ such that $B(v_0, R_q^0 \Phi_0) = J(v_0), \quad \forall v_0 \in \mathcal{V}_0^{\mathrm{B}}$ and approximate $\Phi - \pi_0 \Phi \approx R_a^0 \Phi_0 - \Phi_0$ (2) Least-Squares patch recovery post-processing: (Zienkiewicz, Zhu, Aalto, Perala) Compute the dual problem: Find $\Phi_0 \in \mathcal{V}_0^{\mathrm{B}}$ such that $B(v_0, R_q^0 \Phi_0) = J(v_0), \quad \forall v_0 \in \mathcal{V}_0^{\mathrm{B}}$

and approximate using patch recovery technique \overline{R}_{q+r}^q for r > 0

$$\Phi - \pi_0 \Phi \approx \overline{R}_{q+r}^q R_q^0 \Phi_0 - \Phi_0$$

(3) <u>Higher order reconstruction</u>: Compute the dual problem: Find $\Phi_0 \in \mathcal{V}_0^{\mathrm{B}}$ such that

$$B(v_0, R_q^0 \Phi_0) = J(v_0), \quad \forall v_0 \in \mathcal{V}_0^{\mathrm{B}}$$

and approximate using the reconstruction operator for r > 0

$$\Phi - \pi_0 \Phi \approx R_{q+r}^0 \Phi_0 - \Phi_0$$

(4) <u>Global High Order Solves:</u> Solve the dual problem global using a higher order method

(5) <u>Local High Order Solves</u>: Solve the dual problem on local patches using a higher order method

 $(6) \dots ?$

es Research Cente

A Least Squares Reconstruction Operator

In the present calculations, a least square reconstruction operator R_q^0 has been implemented based on the following design principles:

1. Exact Π_0 projection in element K. The $\Pi_{0,K}$ projection of $R^0_{q,\mathcal{N}(K)}u_0$ is exact in element K,

$$\Pi_{0,K} R^0_{q,\mathcal{N}(K)} u_0 = u_{0,K} \quad \text{for each } u_0 \in \mathcal{V}_0^{\mathrm{B}}.$$

2. Constrained least squares fitting on a patch $\mathcal{N}(K)$. The L_2 deviation of the $\Pi_{0,K'}$ projection of $R^0_{q,\mathcal{N}(K)}u_0$ from given cell-averaged data in patch elements $K' \in \mathcal{N}(K)$ is minimized subject to constraints

$$\|u_0 - \Pi_0 R^0_{q,\mathcal{N}(K)} \, u_0\|_{\mathcal{N}(K)} = \min_{w \in \mathcal{Q}_q(\mathcal{N}(K))} \|u_0 - \Pi_0 w\|_{\mathcal{N}(K)},$$

for all $u_0 \in \mathcal{V}_0^{\mathrm{B}}$.

Ames Research Center

Numerical Calculations

Advection Test Problem: $\operatorname{div}(\lambda u) = 0$, $\lambda = (y, -x)$. Mollified Pointwise Value Functional:

Adapt		
Levels	#cells	$ \Delta M $
0	400	1.9E-3
1	602	9.4E-4
2	1232	$1.7\mathrm{E}\text{-}5$
3	3418	5.8E-8

Numerical Calculations: Ringleb Flow

NASA

Force Component Functional in the direction ψ

$$M_{\boldsymbol{\psi}}(u) = \operatorname{Force}_{\boldsymbol{\psi}}(u) = \int_{\Gamma_{wall}} (\mathbf{n} \cdot \boldsymbol{\psi}) \ Pressure(u) \ dx$$

Let ψ be a constant vertically directed vector. Compute the Ringleb flow primal and dual solutions computed using a FV discretization with linear reconstruction

Iso-density contours of the primal solution.

Iso-density contours of the dual solution.

Figure 1: Ringleb channel geometry. Dual energy isocontours solution corresponding to mollified delta functional (left) and final adapted mesh (3 levels) (right).

$$\theta \equiv \frac{error_{\rm est}}{\Delta M}$$

Figure 3: Multiple component airfoil problem. Functional error versus number of triangle elements during intermediate levels of refinement.

