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We derive a closed-form expression for the angular momentum polarization (polarization parameters) of the
velocity distribution of the AB(v',J’) product formed by the reaction sequence AX + hv — A + X followed
by A + BC(v,J) — AB(v'J') + C. Although in general (2J° + 1)? parameters are needed to describe the
polarization of an arbitrary ensemble of diatomic molecules in a rotational state J', we show that the polarization
of the velocity distribution of the AB(v",J) product can be completely specified by 5J° dynamically significant
polarization parameters. This reduction in the number of degrees of freedom is achieved by introducing a
frame of reference we call the stationary-target frame. If the correlation between the relative velocities of
the reactants and products and J’ is described with respect to this frame, the polarization-dependent velocity
distribution may be written in terms of the 5J” polarization-dependent state-to-state differential cross sections
dow/dQ, (k even), dow/dQ,, and dow/dQ, for which 0 < k < 2J".

1. Introduction

Crossed molecular beam studies are celebrated!~> for provid-
ing the probability that the elementary scattering process

A+BC—AB+C (D

occurs as a function of the velocities, internal states, and in
some cases polarizations of the reactants and products. The
dependence of reactivity on these parameters is dictated by the
reaction mechanism. For example, a harpoon reaction occurring
at a large impact parameter may lead to a rotationally hot,
forward-scattered AB product, an abstraction mechanism may
lead to a vibrationally hot, back-scattered AB product, and an
insertion mechanism that proceeds through a long-lived complex
may lead to a statistically populated, equally forward—backward-
scattered AB product. Before insight can be gained from a
molecular beam experiment, however, laboratory observations
must be transformed to a probability of reaction as a function
of dynamically significant correlations between the velocity and
polarization vectors of the reactants and products. Over the
last three decades of molecular beam experiments, methodolo-
gies for performing this transformation have become standard.
In this paper we extend these methodologies to the study of
photoinitiated bimolecular reactions so that these studies can
be described using the same language as in crossed-beam
scattering experiments.

The study of photoinitiated bimolecular reactions in a single
beam (or flow) allows researchers to probe state-to-state
differential cross sections and angular momentum polarization
with sensitivity and simplicity far greater than those of crossed
molecular beam studies.*~2! In such a photoinitiated reaction
study, a gas mixture of AX and BC is expanded into a vacuum
chamber. AX is then photodissociated to initiate the reaction
sequence:

AX+hv—A+X 2)
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A+ BC(v,J)— AB(V',J') + C 3)

A special case of the photoinitiated study of a bimolecular
reaction occurs when the BC reagent is in one (or a few) state
and the AB product is detected in a state-specific manner. If
these requirements are met, then both the center-of-mass speed
of the A, BC collision partners and the speed of the AB(v',J")

‘product in the center-of-mass frame are fixed so that a

measurement of the distribution of laboratory frame speeds of
the AB(V',J') product gives the distribution of reactive scattering
angles (i.e., the differential cross section) through application
of the law of cosines. We need a name to refer to the growing
body of work*~*?~2! that exploits this law-of-cosines relation-
ship between product speed and scattering angle. For this
purpose, we call these studies “photoloc” (photo law-of-cosines)
experiments.

Photoloc measurements give much more product density than
do analogous crossed-beam measurements of differential cross
sections. This increase in product density has enabled Hall and
co-workers,*'? Aoiz et al.,!! Brouard et al.,*!%1217 and Simpson
et al.?! to measure the AB(v',J') product polarization?? as a
function of scattering angle. Such measurements not only
determine the probability of reaction as a function of scattering
angle but also place constraints on the spatial geometry of the
collision as well. As such, these measurements provide new
insights into the forces acting between nuclei as reactants are
transformed into products.!?2?

Any realistic photoloc experiment requires careful consider-
ation of the effect of the translational temperature of the (AX,
BC) gas mixture, as well as the sensitivity of the experiment to
the velocity and polarization of the AB(v',J") product. Unfor-
tunately, these considerations often require sophisticated and
experiment-specific analyses that obscure the relationship of the
data to the dynamics of the reaction. In this work, we consider
an idealized photoloc experiment in which the following
conditions are met: (1) the translational temperature of the (AX,
BC) gas mixture is 0 K or, equivalently, the thermal averaging
caused by the motion of AX and BC is insignificant; (2) the
angular momenta of the A and BC(v,J) reactants are completely
unpolarized; (3) the photodissociation of AX is achieved by
monochromatic, linearly polarized light to produce monoener-
getic atoms A with velocities characterized by an anisotropy
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parameter Bphor; and (4) the experiment is capable of measuring
the polarization of the three-dimensional velocity distribution
of the AB(v',J") product. For this idealized photoloc experiment,
we measure the three-vector correlation between the polarization
of the photolysis laser, the laboratory-frame velocity of the AB
product, and the internal angular momentum of the AB product.
In the following sections, we obtain a closed-form expression
that relates this experimentally measured vector correlation to
the dynamically significant three-vector correlation between the
relative velocity of the reactants, the relative velocity of the
products, and the internal angular momentum of the AB(v'.J")
product. Although similar conclusions can be drawn from the
treatments of Hall and co-workers,*'? Brouard et al.,*1%!217 Aoiz
et al.,!! or Orr-Ewing and Zare,'®20 by limiting ourselves to this
idealized experiment, we can make a clear connection to the
dynamics of the reaction. Specifically we show that, although
the polarization of an arbitrary ensemble of diatomic molecules
in a rotational state J' requires (2J° + 1)? parameters for its full
description, the polarization of the AB(v'.J") product of a
photoinitiated experiment depends on at most 5J° dynamically
significant polarization parameters. This reduction greatly
simplifies the reporting and interpretation of experimental data.
In section 2, we present an overview of the relationship
between the differential cross section of a bimolecular reaction
and the velocity distribution of the product of a photoinitiated
bimolecular reaction. Section 3 introduces frames of reference
and notation that allow us to describe the polarization of the
differential cross section. Section 4 presents the relationship
between the polarization of the velocity distribution of the
AB(v',J') product of a photoinitiated reaction and the polarization
of the differential cross section. In section 5, we discuss the
implications of the planar symmetry of the reaction. In section
6, we present simple recipes for obtaining differential cross
sections from quasiclassical trajectory calculations or from
quantum mechanical scattering calculations, and we explain how
these cross sections may be used to predict the result of realistic
photoloc experiments. The appendices contain mathematical
details to support the conclusions presented in the text.

2. Relationship between the State-to-State Differential
Cross Section and the Velocity Distributions of the
AB(v'J') Product

The probability that A and BC(v,J) react to form the products
AB(v'",J) and C as a function of the laboratory-frame velocities
VA, VBC, VAR, and ve can be determined from the state-to-state
differential cross section of this reaction. This cross section is
a function of only the collision energy E., and the scattering
angle 6 between the relative velocities of the reactants and
products. Appendix A reviews the basic kinematics that allow
us to make this reduction in degrees of freedom from the twelve
velocity components of va, Vec, Vap, and vc to the two
parameters E o and 6.

For the idealized photoinitiated reaction described in the
previous section, the collision energy is fixed by conservation
of energy and momentum:

Eigi s 1 4)
col MmAX AX

Here v is the frequency of the photolysis radiation, D:\x is the
dissociation energy of the AX precursor, mx, mgc, and max are
the masses of X, BC, and AX, respectively, and M = ma +
mpc = mag + mc is the total mass of the reactants or products.
Because the collision energy is fixed, the probability of reaction
is a function of the scattering angle alone. We denote this
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probability by the distribution P(cos 6;). Throughout this paper
we use the convention that P(x;.xz,....x,) denotes a probability
distribution in the variables x;, xa, ..., x, normalized so that

S PG ity dy e, =11 (5)

Here, the range of integration encompasses the entire n-
dimensional space. Thus, the normalization of P(cos 6,) is given
by '

[ P(cos 6, d(cos 6)) = 1 (6)

The distribution P(cos 6;) is commonly expressed in terms of
the rotational-vibrational-state-to-rotational-vibrational-state dif-
ferential cross section of the reaction do,y—,r/dQ;. Because
we consider a single rovibrational-state-to-rovibrational-state
reaction, we omit the subscript vJ—v'J’ for ease of notation. In
the sections that follow, we add a subscript kg to indicate the
polarization-dependent cross section, doy,/dQ2,. This subscript
does not refer to the reactant BC but indicates the polarization
of the AB product scattered into the solid angle d<;. The
normalization of the differential cross section is defined so that
the rate of the state-to-state reaction of eq 3 is given by

dnyp 2w p1 do
3 - Maleciy j{; _]ﬁ d(cos 6,) d¢,

= N\Npcl,O (7

Here, na, ngc, and nap are the number densities of A, BC(v,J),
and AB(V',J'), respectively, u; is the relative speed of the
reactants, o is the integral cross section of the state-to-state
reaction, and d€2; = d(cos ;) d¢;. The normalized probability
of reaction is related to the normalized differential cross section
by

i _1fdo
S=P(cos 6) = E( - Qr] @®)

A photoinitiated experiment determines the differential cross
section of a bimolecular reaction because the speed of the center
of mass, u, and the speed of the AB(v",J’) product in the center-
of-mass frame, uagp, are fixed by kinematics. Specifically,

2m my(hv — DV
u:( U "")) ©)
Mm,
and
me2E,,; — AE)\12
um=f(—:u, ) (10)

Here, u’ is the reduced mass of the products, and AE is the
difference between the energy of formation of the products
AB(v,J") and C and the energy of formation of the reactants A
and BC(v,J).

In the idealized photoloc experiment, we assume that AX
and BC have a 0 K translational temperature. This condition
is closely approached by coexpanding AX and BC into a
vacuum so that they travel together with the same beam velocity.
We define the laboratory frame to be moving with this beam
velocity. Consequently, vgc = 0, and the direction of the
velocity of the center of mass, 1, is parallel to the direction of
the relative velocity of the reactants, ;. Additionally, conserva-
tion of momentum requires that the direction of the velocity of
AB in the center-of-mass frame, iag, is parallel to the direction
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of the relative velocity of the products, @,. It follows that

fid,5 = 0,0, = cos 6, (11)

The speed vap of the AB product in the laboratory frame can
be determined from eqs 9-11 and the relationship

Vig=utu,, (12)

By squaring both sides of eq 12, we find

e 2
vAB u “AB

cos 0, = T

(13)

Equation 13 is simply the result of an application of the law of
cosines to a triangle with sides of length vagp, #, and uag. This
relationship allows us to use a measurement of the speed of the
AB product to determine the scattering angle in a photoloc
experiment.

The range of possible product speeds may be determined from
eq 13:

[ — tapl = vag = U+ uyp) (14)

The speed distribution P(vag) of the AB(v',J') product of the

photoinitiated reaction is related to the distribution P(cos 6;)
by

P(v,g)dv,5 = P(cos 6,)d(cos 8,) (15)

With the help of eqs 8 and 13, eq 15 becomes

zmABl do (16)
U,y o\dQ,

In accordance with the convention of eq 3,

P(vag) =

Sy PO dvag = [ PO dvg =1 (17)

In eq 16, the differential cross section is evaluated at the value
of cos 6, determined by eq 13.

Equation 16 is a remarkable result; it shows that the speed
distribution of the AB(V',J) product of the photoinitiated reaction
is directly related to the differential cross section for the state-
to-state reaction. Thus, a measurement of the speed distribution
of the AB(v",J") product determines the normalized differential
cross section of this bimolecular reaction. Note that if the mass
ratios or energetics are unfavorable, the range of possible speeds
of AB(",J') may be too small to be measured in practice.'?

The speed distribution of the AB(v'J') product is rarely
observed directly. Instead, some component or projection of
the three-dimensional velocity distribution f{ivag) is measured.
If the photodissociation occurs in such a way that the velocity
distribution of A is isotropic (Bpho: = 0), then the distribution
of AB(v".J") product velocities is isotropic as well. In this case,
a trivial relationship exists between fivag) and P(vag):

P(vap) =

Bopr = 0)
(18)

For an anisotropic photodissociation of AX (Bpher # 0), it has
been shown!? that

1
ﬁvm):‘lﬁ' 2

VAB

1 1fdo
2un gV, 0\dE2,
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fvapg) = P(vAB,cos 8,
AB
do
2uu Vag Q,
(19)
Here
2
V.u; + 4’ — g
cos 9 =i 9 —Zl{‘,\l;_u— (2‘0)
and
cos 6, = &¥,p (21)

where & gives the direction of the electric vector of the
photolyzing radiation determined by the experimental setup and
6, is equivalent to the variable o of previous papers.'3!4

Comparison of eq 19 to eq 18 shows that the three-
dimensional product velocity distribution in the general case is
related to the three-dimensional velocity distribution for the
isotropic case by a simple factor. Thus, regardless of the value
of the anisotropy parameter Sphor, the three-dimensional velocity
distribution can always be expressed as the product of a simple
term predetermined by kinematics and the dynamically signifi-
cant normalized differential cross section evaluated at a scat-
tering angle determined by the laboratory-frame speed of the
AB(V'J') product. As seen in section 4, a similar separation
occurs between the kinematics and dynamics of the experiment
when the polarization dependence of the differential cross
section is considered. In the discussion that follows, we consider
the polarization of the AB product in a classical manner and
modify our results so as to be consistent with a quantum
mechanical picture of reactive scattering.

3. Scattering, Stationary-Target, and Laboratory Frames
of Reference

To quantify the polarization of a diatomic molecule, the
direction J' of the internal angular momentum of the AB product
must be specified with respect to a frame of reference. Here
we discuss three relevant frames of reference shown in Figure
1: the scattering frame, the stationary-target frame, and the
laboratory frame.

a. Scattering Frame. For unpolarized reactants, the polar-
ization of AB is a result of the direction of the relative velocities
of the reactants and products. For this reason, ¥ should be
specified with respect to a frame that depends only on G, = i
and @, = @ixp. The usual choice of frame of reference is
defined by the x°, y*°, and z*¢ axes shown in Figure 1a. Here,
the z* axis is parallel to @; and the y** axis is perpendicular to
the plane containing @i, and @,. With this choice of coordi-
nates, the J '—u,—u; correlation of the reaction is described by
the distribution function P(cos 6.,cos 6“,:#35). Here, 6% and
¢ are the spherical polar angles of ¥, and P(cos 6,.cos 67,

7) is the probability that the AB(v'.J) product is scattered
into a differential angle d(cos 6;) about cos 8, with J* pointing
into a solid angle dQ5) = d(cos 65) d¢. The distribution is
normalized according to the convention of eq 5.

b. Stationary-Target Frame. The z*¢ axis of the scattering
frame is chosen to be parallel to @;. This choice of coordinate
system is well suited to the description of polarization in a
crossed beam experiment. It is not well suited, however, to
the study of a photoinitiated bimolecular reaction. In a photoloc
experiment, we can uniquely determine the laboratory-frame
velocity vas,!s but we cannot specify 6, = @ = £*. For this
reason, it is advantageous to describe the J '—ur—u; correlation
in a coordinate system in which the z axis is parallel to ¥ap
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(a)

Figure 1. (a) Scattering frame. The z* axis is parallel to the relative
velocities of the reactants u, = u whereas § = u x u/ju x u| is
perpendicular to the scattering plane. (b) Stationary-target frame. The
z axis is pa.ral]el to the velocity of the AB product vag = u + uss =

u, + m.u /M whereas § = § is perpendicular to the scattering plane.
(c) Laboratory frame. The z** axis is parallel to the velocity vag = u
+ usp whereas §° = vap x €/|vas x €| is perpendicular to the plane
containing the electric vector of the photolysis radiation, €, and vag.

rather than to . Such a coordinate system may be created by
rotating the scattering frame through an angle 6, about the y*
axis (Figure 1b). Here, 6, is the function of vag given by eq
20. This transformation angle can also be determined from cos
. and the relation

1+ ycos@.
(1 + 2y cos 6+ yH'?

where y is the parameter defined in a previous work:!"3

cos 0, = (22)

Y =u,glu

MycMe AE\]"*
=|l—]1 —=— 23
[(mABmA)( Ecol)] %2

We call this rotated reference frame the stationary-target frame.
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In this frame, the polarization-dependent probability of reaction
is given by P(cos @.cos Bpr,¢pr), where Oy and ¢y are the
spherical polar angles of the direction J'.

c. Laboratory Frame. In a photoinitiated reaction, we do
not directly measure the J'“ur—u; correlation. Instead, we
measure the correlation of J° with the direction of the laboratory
velocity of the AB(v',J') product and the direction of the electric
vector of the photolysis radiation. To describe this J'—vag—e
correlation, we define the laboratory frame of reference. This
frame is denoted by the axes x'28, y!® and z!* shown in Figure
Ic. The 7% axis is parallel to vap, and the Y axis is
perpendicular to the plane containing € and vag. The J'—vap—¢
correlation is described by the probability distribution P(vag,
cos B,,cos AG!,?",:;:?"). Here, 6';b and q)l,?h are the spherical polar
angles of J’ in the laboratory frame. In section 4, we show
that the observable distribution P(vap,cos Oc,cos 8"}".@5'_,’;"} is
directly related to the dynamically significant distribution P(cos
Or,cos Or,pr).

4. Relationship of the Polarization-Dependent Velocity
Distribution of the AB(v’,J’) Product of a Photoinitiated
Reaction to the Polarization-Dependent Differential Cross
Sectionial Cross Section

The vector correlation P(cos 8;,cos 8,,¢;) is a fundamental
dynamical quantity that may be observed in a photoloc
experiment. Unfortunately, we cannot hope to determine this
distribution completely. In the idealized photoloc experiment,
a measurement of the velocity of the AB(v'.J") product fixes
the scattering angle &, but not the direction normal to the
scattering plane. Instead, the observed polarization of the AB
product is the reactive polarization averaged over the azimuthal
angle about v4p. To visualize the result of this experimental
averaging, we consider the reactive scattering of A and
BC(v,J) to produce AB(v",J') and C at a fixed scattering angle
6;. For the purpose of this illustration we assume that the
AB(v",J") product rotation is strongly aligned with the y axis,
as shown by the contour of P(cos fcos @r,¢y) in Figure 2a.
The consequence of the averaging is shown in Figure 2b.

To show explicitly how P(cos 8;,cos 8r¢r) is related to the
result of a photoinitiated experiment, we expand this function
in terms of spherical harmonics. The coefficients of this
expansion give the polarization parameters of the differential
cross section; 1.e., the monopole is proportional to the differential
cross section and the higher order moments give the dipolar
dependence, quadrupolar dependence, etc. of the differential
cross section. Explicitly,

P(cos 8_cos 0,.¢,) =
1 doy,(cos O)\[2k + 1\ ,
2wmS |- Y (0r.0p) (24)
gq' o dQ, 4 L
where
~k<qg=<k (25)
and

1 dokq(cos 0)

o dQ,
1 4m \1n
ﬂﬁ) [ Y,(6,.8,)P(cos 6,.c0s 6,.¢,) dQ, (26)
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Figure 2. (a) Distribution of ¥ associated with a polarized AB(v'.J")
product scattered into a given angle 6. (b) Effect of azimuthal averaging
about v, on this polarization dependence.

Here, eq 26 is determined by multiplying both sides of eq 24
by Yi,(6r.¢r) and integrating the product over dQp.

Note that the subscript kg indicates that (1/0)(doy,/dS2,) is a
spherical tensor density. To obtain the spherical tensor that
describes the polarization of the subset of product AB(V'.J")
molecules scattered into a given volume about the spherical polar
angles 6, and ¢, we must transform (1/0)(doy,/dQ,) to a frame
of reference independent of 6, and ¢, and then integrate over
the volume of interest. Each k—g element of (1/0)(do,/dS2)
is a polarization-dependent differential cross section. The k =
0, g = 0 polarization-dependent cross section is equivalent to
the differential cross section:

1 do
= EQE = anP(cos 0.cos 0,,¢,) dQ,
= EP{cos 0.)

_1do
odQ,

(27)

From eq 26 and the requirement that P(cos @r,cos 6r¢y) is
real, we see that the polarization-dependent differential cross
sections must have the same symmetry with respect to complex
conjugation as the spherical harmonics. Explicitly,

J. Phys. Chem., Vol. 99, No. 19, 1995 7595

1 do;q(cos 9,)

)ql do,_ Jcos 0)
o dQ

2

: T3 (28)
If we integrate eq 24 over all possible values of cos @;, we
determine the polarization of the AB product for the case that
the orientation of the scattering plane and the direction of vap
= u + uap are fixed but the scattering angle is unknown. The
resulting polarization is described by polarization parameters
(k).

a,:

+1\12

) qu{e.r" “'bf )

2k
P(cos O,.¢y) = Zag"(
kg

= f_],P(COS 6,.cos 0,.¢,) d(cos )

A

1 da’kq(cos a)

d(cos 6)) )x
2k + 1\2 .
(Far) Ya@rr) 29)

and

do, (cos 6.)

0 e L ERNCOY Bl

a 27 f = Q. d(cos 6) (30)

To this point, our discussion has been purely classical.

Consistency with quantum mechanics can be made by restricting
the range of k so that

0<k=2V (31

Hence, for J' = 1 the highest polarization moment possible is
a quadrapolar alignment with k = 2. Equations 25 and 31 imply
that (2" + 1)? polarization parameters are needed to describe
the polarization of a molecule in a state J. A complete
explanation of the polarization parameters and their relationship
to the (2J° + 1)? elements of the density matrix g,y is given in
Appendix B, where we show that

® —
a‘f

Q@JF + 1)

o’ Tk
-1 ”’( -
(27 — WS + k+ 1)) P L

(32)

We note that the alignment parameters aEIH differ from the

usual alignment parameters described by Orr-Ewing and Zare.'8
We have made our choice of alignment parameter so that eq
29 is well defined for all values of J'.

Expanding P(vag,cos 6,,cos 61}b.¢?b) in terms of polariza-
tion parameters is useful as well. We define the polarization-
dependent velocity distribution ﬂ‘:’(vm) so that

P(v yp,cos 0, cos 05" ") =

+ 1y
miBZ (v,u,)( i ) Y (0545 (33)

where

ﬂ‘f{“") (2k+ 1) S 10745 x

P(v,g.c0s 6._.cos 05°,¢5%) dQE" (34)
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By integrating eq 33 over all directions ¥’ and applying eq 19,
we find that the velocity distribution is equivalent to the k = 0,
g = 0 component of the polarization-dependent velocity
distribution:

fvap) = 2:m’msP(w).m,a::m: 8,

) dQf

e?

= for(Vap) (35)

Integration of eq 33 over all values of vap and cos 6, yields the
polarization of the AB(v’,J') product of a photoloc experiment
for which the direction #4p and the orientation of the plane
containing vap and € are fixed but vap and cos 6, are
unconstrained:

2k + 1\12
P(COS ejab ¢Iab za{:) lab( ) Y;q{elab ¢?b)
kg 4

= f _l i _/: P(v,g.cos B, ,cos GJ}b,tp?") dv,g X
d(cos 6,)

= 2(23: f _ll j: vinfl,::{v ap) dv4g d(cos 6,)) x
kg

[Zk‘; l)ialfkq(elab ]nb) (36)

so that

0 = 21 [ [ r0) g dlcos 8) BT

The parameters af;‘} % describe the polarization of the AB(v',J")
product for an unlikely experiment in which $ap is uniquely
specified but the photolysis source is an unpolarized laser beam
propagating in a direction perpendicular to ¥4p. In practice,
the laboratory-frame velocity of the AB product is difficult to
constrain, whereas the radiation of the photolysis laser is easily
polarized. The expected polarization parameters for the more
usual case in which the direction & is fixed but the velocity vap
is only partially constrained are given in section 6.

The polarization-dependent velocity distribution f;;’ (Vvag)
can be determined by convoluting the polarization-dependent
differential cross section over all possible scattering planes. In
Appendix C, we show that

12 (Vag) = (DY (Vap)* (38)

1 doy

(v AB) = Tt s [ + ﬁphsz(cos 6,)P,(cos 65)]( o) )
(39)

frow == Fwana(igg)

38 sin® 0,
ab — phot 2 k2
e tog) =18 but oy 50 1( dg) (41)

and

fidvap) =0  foriq| >2 (42)
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Equations 38—42 are key results; they show the separation
between the kinematics and the dynamics for the polarization-
dependent differrential cross section. We conclude that the
polarization-dependent velocity distribution depends only on the
state-to-state polarization-dependent cross sections doy,/d€2; for
which |g] = 2. The dependence of the anisotropy of the
distribution of vag on the value of g was observed by Orr-Ewing
and Zare.'®20 The anisotropy of vap for ¢ = 0 is described by
the speed-dependent anisotropy parameter JB(vap) =
BpnotPa(cos 8,), whereas, for g = 1 and g = 2, the anisotropy is
independent of product speed. The anisotropy of fi(vag) is of
the form sin(26,), and the anisotropy of fi(Vag) is of the form
sin? 6. This g-dependent anisotropy provides a consistency
check for experiments designed to be sensitive to dou/dQ; or
doy/dS2, and indicates that maximum sensitivity to doy/d€2,
occurs at 8, = /4, whereas maximum sensitivity to do/dS2;
occurs at 8, = 7/2.

Unfortunately, the first term in eq 40 causes jﬁ"(vm} to
vanish when sin? 8, = 2 cos 8, sin 8, = 0, and the first term
in eq 41 causes fg’{vm] to vanish when sin? 8, = 0. These
conditions correspond to a set of scattering angles @, that are
insensitive to doy/d<Q2; and day,/d€2;, respectively. Specifically,
ﬁ“,b(vm) vanishes when

1+ ycos 6,
cos 6, = 7m0 (43)
(1+2ycosf.+y%)

and both £(vap) and £2(vap) vanish when

(1 — cos* 6,)
sin® §, = A -=0 (44)
1+ 2ycosf,+y

For the forward-scattered and backward-scattered reactions, Vas,
u;, and u, are parallel. This relationship implies that the
scattering process has cylindrical symmetry about the vap axis.
Thus, we expect the polarization-dependent differential cross
sections dog,/dS2; to vanish for the case that g # 0 and either
6, =0 or 6; = 7. Thus, the fact that £7’(vag) and 5’ (vas) may
vanish when 6; = 0 or 6; = 7 is unlikely to hide dynamical
information. A more serious problem exists if ¥ > 1. In this
case the experiment is “blind” to doy,/d€2; at the scattering angle
6: = arccos(—1/y). It is common to denote these angles as
magic angles, but for some purposes perhaps a better name is
bewitched.

5. Reflection Symmetry about the Scattering Plane

Although (27" + 1)? polarization parameters are required for
a complete description of the polarization of an arbitrary
ensemble of molecules in a state J, fewer parameters are needed
to describe the polarization of the AB(v',J’) product of the
reactive scattering of an unpolarized atom A and an unpolarized
diatomic molecule BC(v,J). This reduction in degrees of
freedom is a result of the planar symmetry of the scattering
process. Specifically, the probability of finding the nuclear axis
of the AB product directed into a solid angle d(cos 8,/)d¢, must
be symmetric with respect to the scattering plane

P(cos B,,cos 8,.,¢,) = P(cos B,,cos 6,,,—¢,) (45)
This symmetry condition has been shown?* to require that

1 doy(cos 6,)
o dQ

T

is real for k even (46a)
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and

1do(cos6)
T is imaginary for k odd (46b)

r

Equations 46b and 27 require

1 dogg(cos 6,)

= =0 for k odd (47)

T

Conditions 46 and 47 reduce the number of degrees of freedom
necessary to describe the polarization of the AB(v'J") product
from (27 + 1)? to 2J°(J" + 1) if ' is integral and from (2" +
1% to (2F(S + 1) =) if J is half-integral.

The symmetry of eq 45 occurs only if the scattering process
has a plane of symmetry. Although this symmetry always exists
for an atom—diatom reaction, a more general reaction may occur
via a chiral pathway that breaks the symmetry of the scattering
plane. We also note that the planar symmetry of the scattering
process does not imply that the distribution of the angular
momentum J’ is symmetric with respect to the scattering plane.
Classically, this assymmetry is a result of the fact that J’ =r’
x p’ is a vector that distinguishes right from left handedness;
i.e., the case that J' is parallel to u, x u; is physically different
from the case that J' is antiparallel to u, x u..

From eqs 39—41, we see that the complex phase of
,:Ih(v,\g) is identical to that of doy,/dSQ;. Thus, the laboratory-
frame distribution of the nuclear coordinate of the AB(v'.J")
product is symmetric with respect to the plane containing vag
and e if the reaction is symmetric with respect to the scattering
plane. Because this symmetry exists in an atom—diatom
scattering process, the idealized photoloc experiment defined
in the introduction is completely described by the 5J polariza-
tion-dependent state-to-state differential cross sections dow/dQ,
(k even), doy/dQ;, and do/dQ;, for which 0 = k < 27,

6. Comparison of Theory to Experiment

The stationary-target frame cross sections doy,/dS2, provide
a link that allows theorists and photoloc experimentalists to
communicate. In general, only 5 state-to-state polarization-
dependent cross sections are needed to describe completely an
atom—diatom photoloc experiment in which the A and BC-
(v,J) reactants are unpolarized. Furthermore, many photoloc
experiments will be sensitive to only those polarization moments
with k = 0 or k = 2. In such cases, all that is needed to compare
calculations to experiment is a knowledge of the four cross
sections dop/dQ, doyp/dQ, dos/dQ, and do/dQ. Even
ambitious experimentalists are unlikely to resolve the polariza-
tion-dependent cross sections doy,/d€2; for k > 4. For this
reason, most photoloc experiments can be described by a
manageably small number of polarization-dependent differential
cross sections. In this section, we present simple methods for
determining do,/dQQ; from quasiclassical trajectory calculations
and quantum mechanical scattering calculations. We conclude
by explaining how knowledge of these cross sections may be
used to predict the result of typical photoloc experiments.

a. dop/dQ; from Quasiclassical Trajectory Calculations.
Monte Carlo techniques have been used for over 30 years to
determine the differential cross section of chemical reactions.
(See for example the 1962 study by Blais and Bunker of the
reaction of alkali metals with methyl iodide?.) To explain how
doy,/dQ; may be calculated from a quasiclassical calculation,
we first outline a procedure that might be used to calculate the
normalized differential cross section of the A + BC(v,J) — AB-
(vJ) + C scattering process. We then explain how this
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procedure could be modified to determine the normalized
stationary-target polarization-dependent differential cross sec-
tions, do,/dQ2:.

The quasiclassical trajectory calculation of (1/0)do/dQ2 may
proceed as follows: (1) The initial conditions that describe A
and BC(v,J) before the reaction are chosen from distributions
determined by the laws of quantum mechanics. (2) The motion
of the nuclei in the presence of an assumed interaction potential
is determined from classical mechanics. If the initial conditions
do not lead to the formation of products, step 1 is repeated. If
products are formed, the final states v’ and J” and the relative
velocity uT between the AB(v'.J’) and C products are deter-
mined. The values of the initial relative velocity u; and the
final velocity u_ are used to determine the cosine of the
scattering angle, cos 6, = ﬁ,-ﬁr. (3) The element of an array
representing the v—J to v'—J' state-to-state differential cross
section associated with cos & is increased by a factor of 1/2s.
(4) Steps 1—3 are repeated until the differential cross section
converges. (5) The differential cross sections are renormalized
by the factor n/2N, where n is the number of elements in the
array representing the differential cross section and N is the
total number of trajectories that lead to the creation of AB
product in a vibrational state v" and a rotational state J'.

To modify this procedure to determine the normalized
stationary-target polarization-dependent differential cross sec-
tions, (1/0)(dow,/dQQ;), step 2 must be modified so that the
direction J* of the internal angular momentum of the AB(v".J")
product is determined as well. In accordance with eq 26, the
polarization-dependent differential cross sections doy,/d€2; may
be determined by weighting the trajectory by a factor of

1, 47

1/2
Azt 1) 10D sl

instead of a factor of 1/27z. Here, 8 and ¢y are the stationary-
target-frame angles of J’ (see Figure 1). The values of 6, and
¢r may be determined directly from the vectors u,, u;, and J'
and the y parameter of eq 23:

6, = arccos(¥,5 39 (49)

and

[(@,x,)+(J'x¥,55)
\ (ﬁrxﬁr‘)'j’

Here, ¥ap = (@; + y)/(1 + 2y cos 8; + ¥?)'2, and sign(x) =
1 for x = 0 and sign(x) = —1 for x < 0. The symmetry
conditions of eqs 46 and 47 may be used as a test of the
scattering calculation.

b. doy/dS2; from Quantum-Scattering Calculations. We
assume that a quantum-scattering calculation is capable of
determining the (complex) scattering amplitudes ﬁ:}_m{(ﬂr) for
the A + BC(v,J,m;) — AB(V',.J',my) + C reaction. Here my is
the magnetic quantum number of the reactant, my is the
magnetic quantum number of the product, and my, my, and
f,:_,_.,,,r(ﬂr) are defined with respect to the scattering frame. For
ease of notation we drop the J' subscript from the product
magnetic quantum number so that my becomes m. The
scattering amplitude ﬁ;ﬁ,,(e,) is defined so that, at points far
removed from the interaction region, the eigenfunction
W(ra,rg,rc) of the reactive Hamiltonian is given by

¢, = sign((@,x ﬁ,)'j’) arccot (50)
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e ik Ta—
W(r,,rgro) =9, Jm,(rsc}e A-BC 4

)
——e* ey () (51)
m Fap—c

Here W, jm(rec) and Wy y (rag) are the wave functions of the
diatomic reactant and product with respect to the scattering
frame. The wave number k is determined by the relative energy
of the reactants whereas the wave number Kk’ is determined by
the relative energy of the products. The variable ra—gc is the
relative position vector between the center of masses of the
reactants A and BC whereas the variable rag—c is the relative
position vector between the center of masses of the products
AB and C.

If the reactants were to be prepared in a pure quantum state,
the density matrix of the product observed to be scattered into
differential angle dQQ; = d(cos 6;) d¢, = d(cos 6°) d¢* about
6% and ¢* would be given by

-..mm(e)_NfC (O —m(6,) (52)

where N is a normalization constant. For the case that the
reactants are not prepared in a given magnetic sublevel m; but
instead are described by an isotropic distribution of m; states,
the density matrix becomes

OB = (O ) (53)

my

To determine the normalization constant N, we must integrate
Om(Br) over all scattering angles. Great care must be taken
before performing this integration. The density matrix must
be expressed with respect to a quantization axis that is
independent of the variables of integration, i.e., 6; = 6 and
¢*¢. This complication can be avoided if we consider the trace
of the density matrix. The trace of the density matrix is
proportional to the total population of the AB product in a
rotational state J” and is therefore independent of the choice of
quantization axis. We define N so that the trace of the density
matrix becomes equivalent to the normalized differential cross
section:

1 do sc
—Ze (6) (54)

Integrating both sides of eq 54 over dQQ;, we have

L= [ Qom0 42,

- 6,) dQ, 55
z;+1f(,,§:,’”“” —n(6)) (55)
so that
27+1
N= (56)
S 00 (6 dQ,

To find the polarization-dependent cross sections with respect
to the scattering frame, we apply eq B.15:
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1do‘° Q@7 + 1!

X
0dQ,  [r — s +k+ 1)1

Y (L D K Jesatcos 8y 7

—m
Transformation of thls polarization-dependent cross section to
the stationary-target frame determines the desired polarization-
dependent differential cross sections with respect to the station-
ary-target frame:

1 doy, 1 doi,

kq
——=3 D, (¢ =0,6,=6, 0)——— (58)
gdn, = 1ORTIRESeREU e

Here, 6, is determined from eq 22.

¢. Experimental Predictions from a Knowledge of doy,/
dQ,. In section 4 we showed that if we are able to measure
the full three-dimensional velocity distribution of the AB product
of a single photoinitiated state-to-state reaction, we can deter-
mine do,/dS; directly from eqs 39—41, Unfortunately, ex-
perimental considerations often prevent such a direct measure-
ment. In many important studies, only the Doppler profile of
the AB(v',J’) product is measured.*¢~121617.19 Although these
experiments have proved sensitive to the dynamics of bi-
molecular reactions, the observed polarization-dependent Dop-
pler profiles are not directly related to the polarization-dependent
differential cross sections. In this section, we determine an
integral relationship between the two.

To find the polarization-dependent Doppler profile, we must
average the polarization-dependent velocity distribution over all
velocities perpendicular to the direction of the laser propagation.
Great care must be taken when averaging the polarization
described by k‘f:’(vm} over the experimental range of ¥as.
This average cannot be done directly because the frame of
reference that we use to measure the distribution of J’ depends
on Vas. To overcome this problem, we introduce a new frame
of reference defined by the axes x, y%, and z¢. Here, the z¢ axis
is parallel to the electric vector €, whereas the x€ axis is in an
arbitrary, yet fixed, direction. The laboratory-frame polariza-
tion-dependent velocity distribution ,:;’(VAB) may be trans-
formed to the e-frame polarization-dependent velocity distri-
bution f; 4(VaB) by the Wigner rotation matrix D’;,q{@ =0, 6g
= —6%B), 1R = —P4p):

filVap) = DDk (9, =0,6 ~ @)y (Vap)
-

39)

—Oips (R =

Here, 0,5 = 6. and ¢y are the sperical polar angles of ¥4p in
the e-frame. The z'% axis corresponds to the direction Vg,
which is the axis of maximum symmetry in a photoloc
experiment. By choosing the z¢ axis in a direction that does
not correspond to V45, we introduce polarization components
for which |g| > 2. Additionally, we break the one-to-one
correspondence between the dynamically significant polariza-
tion-dependent differential cross sections and the polarization-
dependent velocity distributions. Despite these disadvantages,
the e-frame is independent of the AB product velocity vag. For
this reason, ﬁ,q(vm) can be used to calculate the parameters

m‘ that describe the polarization of those AB(v',J") products
for which Viin < Vap < Vmax

aff" = ﬁm dvag, f _.'::: dvsg, ﬂ: @V ap fio(Yap) (60)

Vrmin x



Product Polarization in Bimolecular Reactions

The variables of integration, vagy, vasy. and vas; may be defined
with respect to any coordinate system that is suitable for the
problem at hand. If we define this coordinate system so that
vas; corresponds to the velocity along the axis of a probe laser
beam, the polarization-dependent Doppler profile, fkq(w), can
be determined:

fkq(w) = Ef—ofj“dvmfj”dvﬁay fkq(VABx’VABy‘vABz) (61)

where

(w — wy)e

VaR, = Py (62)
and wq is the frequency of the resonant transition of the
AB(V',J') product. Although the averaging over vas, and vagy
in eq 61 prevents a one-to-one relationship between the probe
frequency « and the scattering angle 6, sometimes the
polarization-dependent differential cross sections can be recon-
structed from a measurement of polarization-dependent Doppler
profiles ®~1219

7. Summary and Conclusions

An idealized photoloc experiment, AX + hv — A + X
followed by A + BC(v,J) — AB(v",J') + C, is defined by the
following conditions: (1) The reactant A has a single transla-
tional energy determined by the strength of the AX bond and
the frequency of the photolysis radiation; (2) AX and BC travel
together with the same velocity so that the A + BC collision
energy is completely specified; and (3) the internal state of the
BC reactant is known and the internal state of the AB product
is measured. Under such conditions a measurement of the
AB(v'.J") velocity gives the correlation between the reactant and
product velocities, i.e., the differential cross section, and a
measurement of the AB(v'J') polarization gives correlations
between the product angular momentum and velocities of the
reactants and products, i.e., polarization-dependent differential
cross sections. In this paper we present expressions that relate
laboratory observations of the AB product velocity and polariza-
tion to the differential cross section for the A + BC(v,J) —
AB(V',J) + C reactive scattering process. These expressions
have been cast in the same manner as used to describe crossed
molecular beam experiments to allow reactive scattering to be
described with a common language.

The results of this paper show that the kinematical and
dynamical aspects of experimental data obtained from a photoloc
experiment are well separated. Data from experiments that
approach the ideal case can be inverted to obtain the dynamically
significant polarization-dependent cross sections doy,/d<Q2, for
0 = g < 2 and k small (typically less than 3). In section 6, we
provided simple recipes for determining these polarization-
dependent cross sections from scattering calculations and for
using these cross sections to predict the results of realistic
experiments. The formalism we have presented should help
theorists and experimentalists with the interpretation and design
of photoloc experiments so that they reveal interesting dynamical
effects.
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Appendix A. Required Number of Degrees of Freedom
To Specify the Velocity Dependence of a Reactive
Scattering Process

Consider the probability that the state-to-state reaction A +
BC(v,J) — AB(v',J") + C occurs as a function of the collision
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and escape velocities va, Vpc, Vag, and vc. To the uninitiated,
the prospect of a complete study of this asymptotic velocity
dependence would seem daunting. How is this probability
distribution of twelve continuous, independent variables to be
communicated, let alone comprehended? Fortunately, the
problem is not so difficult as it first appears. By taking
advantage of symmetry arguments combined with conservation
laws, we show that if the A and BC(v,J) products have no
internal polarization and no external forces are at play, the entire
velocity dependence of the reaction can be described in terms
of two dynamically significant parameters: the collision energy
and the scattering angle of the reaction.!™ Here, we review
how this reduction in the number of degrees of freedom can be
made.

Arbitrary Velocity Frame. The first reduction in the
number of degrees of freedom can be made by taking advantage
of Galileo’s realization that any physical process must not
depend on the velocity of the observer. For this reason, we
may subtract an arbitrary velocity u from each of the velocities
of the reactants and products without changing the probability
of the reaction. We choose to subtract the velocity of the center
of mass,

_ myVa t mpevge

] (A.1)

and write the velocities of the reactants and products in the
center-of-mass frame as

u,=v,—u (A2)
Uge = Vg — U (A.3)
W =V — 1 (A4)
and
u-=ve—u (A.5)

This choice of velocity frame has been made so that the linear
momentum P of the reactants is zero:

P=myu, + mgug. =0 (A.6)

By taking advantage of eq A.6, we can determine ua and upc
and hence the probability of reaction from the relative velocity
u,. Here

U, = U, —Ugc = V4~ Vpe (A7)
where
u, = % (A.8)
and
—m,
Upe =77 ™ (A.9)

Thus, Galilean symmetry reduces the twelve degrees of freedom
to the nine components of u,, usp, and uc.

Conservation of Momentum. Conservation of momentum
implies that the momentum of the products must be equal to
the momentum of the reactants and hence must be zero in the
center-of-mass frame:

P=mug +mu-=0 (A.10)



7600 J. Phys. Chem., Vol. 99, No. 19, 1995

This relation allows us to de_tennine uap and uc from the relative
velocity of the products, u,. Here

U, =U,p — U=V, — Ve (A.11)
where
Me
My =2 A.12)
and
= _;"Bu; (A.13)

Thus, conservation of momentum allows us to reduce the
number of dynamically significant parameters to the six
components of u, and |1r

Rotational Symmetry. Provided the reactants are unpolar-
ized with respect to an external reference, the orientation of
the frame of reference cannot influence the probability of
reaction. This condition allows us to orient our frame of
reference to coincide with the relative velocity of the reactants.
Thus, only the magnitude and not the direction of the relative
velocity of the reactants must be specified. Hence, rotational
symmetry reduces the dynamically significant parameters to
four: u and the three components of ur

Azimuthal Symmetry. If the reactants are unpolarized, the
azimuthal scattering angle ¢, of the products with respect to
the relative velocity of the reactants cannot influence the
probability of reaction. Thus, the probability of reaction can
be expressed in terms uy, u;, and the cosine of the angle 6;
between u; and uT

cos 0, = 10,4, (A.14)

6, is called the scattering angle.

Conservation of Energy. Conservation of energy of the
reaction may be written

1 1 2 1 2 1 2 :
imszﬁ + SmpcVac T Eie = 5MapVas T 5McVe + Ey

2 2 2
AD, (A.15)

where Ei, and E;m give the internal energies of the reactants
and products with respect to their ground states and ADy gives
the difference in energy between the products and reactants both
in their ground states. Writing the kinetic energies of the
reactants and products in terms of their relative velocities and
linear momenta is straightforward:

1 1 1 P?
EmAvi + EmBCv%C = Eﬂl.lf' + m (Alﬁ)
%mmvfm + %mcv:} = %u’u'f + % (A.17)

Here, = mamgsc/M and u’ = magmc/M are the reduced masses
of the reactants and products. Equations A.16 and A.17 may
be substituted into A.15 to show that

, (,m.f = zAE)m

A.18
i (A.18)

where
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AE=E, + AD, — E, (A.19)
Because we are considering a single state-to-state reaction, AE
is fixed in value. Thus, once we specify the relative speed of
the reactants, u,, we know the relative velocity of the products.
We conclude that the probability of reaction may be specified
in terms of the relative speed of the reactants, u,, and the
scattering angle &; between the reactants and products. Thus,
only two degrees of freedom are required to express the velocity-
dependent probability for a state-to-state reaction.

The two terms on the right-hand side of eq A.16 represent
the energy available for reaction and the energy associated with
the motion of the center of mass. The former is commonly

defined to be the collision energy of reaction:

Eoy =y (A.20)
The probability of a state-to-state reaction is usually stated in
terms of E, and cos 6, rather than u; and 6. Thus, the
probability of reaction as a function of va, Vpc, Vag, and vc can
be predicted by calculating E., and cos 8, from egs A.7, A.11,
A.14, and A.20 and evaluating the probability of reaction,
P(E.cos ;). Note that the velocities va, Vac, Vas, and vc do
not describe the scattering event completely. To completely
describe the trajectories of the reactants and products, the impact
parameters must also be considered. For a discussion, see ref
15.

Appendix B. Description of the Polarization of a
Molecule

In Appendix A, we showed that, if we are interested only in
the velocity dependence of a rovibrational-state to rovibrational-
state reaction, the reaction probability may be described in terms
of the two parameters E.; and 6, In this appendix, we
determine how many additional parameters are needed to
describe the system when we become sensitive to the polariza-
tion of the AB(v’",J") product.

We know from quantum mechanics that we cannot determine
simultaneously the magnitude of the three components of the
angular momentum J* of a system. If we choose a z axis,
however, we can determine the component of angular momen-
tum along this axis, J;. The value of J’; is given by the
quantum number m" where m’ increases in unit steps from —J’
to J'. Let us assume we measure J; in the scattering frame
defined in Figure 1a. In this coordinate system, we may define
an m’-dependent differential cross section for the BC(v,J) —
AB(V',J',m") scattering process:

dav.!—-v’fm‘
dQ

T

(B.1)

Although this cross section could be determined from a
scattering calculation, it is incomplete because it does not tell
us about the projection of J’ in the x—y plane. For the case
that m” = 0, we cannot distinguish the case that J’ lies in the
scattering plane from the case that J* is perpendicular to the
scattering plane.

One possible solution is to specify the m’-dependent cross
section with respect to several different axes. This approach
is, however, a messy solution to the problem. Our choice of
coordinate system should be made for the convenience of the
calculation at hand. No information should be lost or gained
by rotating from one coordinate system to another. The problem
is not in our choice of coordinate system but in the fact that the
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m’ population does not give a complete description of the J’
dependence of the AB(v',J’) product!

To gain a physical picture of what is needed to describe the
polarization of the AB product, we imagine a single scattering
event. This event may be described by a wave function
Wi(xa,Xxp,Xc,r=0) that evolves according to the Schrddinger
equation. In general, this wave function will be parametrized
by many quantities that describe the initial velocities, positions,
and spins of the reactants. As W(xa,Xg,Xc,f) evolves, it distorts
so that the AB(v',J") product is discernible. To keep an intuitive
picture of the motion of the AB product, we assume that the
internal angular momentum is completely described by the
orbital motion of the nuclei of A and B as they travel in a
spherically symmetric potential. At times far removed from
the scattering event, the relative position of the A and B nuclei,
XA — Xp = (ry, 0y ¢y), is then described by a wave function of
the form Wir.)yi6@y.¢n). The angular part of this wave
function, ¥i(0,,¢n), can be expanded in terms of angular
momentum eigenfunctions |J',m’):

e

YOpb) = Y, Cold ) (B.2)

m'==r

If we know the complex coefficients, c;y, we have completely
described the AB-polarization dependence of the scattering event
defined by the initial conditions i. Moreover, if we know both
the real and imaginary parts of the c;, coefficients in one frame,
we can use the Wigner rotation matrix to solve for the
coefficients in any other frame. Thus, the choice of z axis is
arbitrary (as it must be). Because the function (6, ¢n) can
be expanded in terms of a single set of complex coefficients
cin, We consider the wave function to be a pure state.

It would appear that our problem is solved. We ran into
difficulty in our first attempt to describe the J* dependence of
the differential cross section because we failed to consider the
phase of the complex coefficients ¢, (i.e., the coherences
between the m’ states). It would seem that although the 2" +
1 populations do not suffice to describe the J’ states of the
product, the (2J° + 1) x 2 real and imaginary parts of ¢;, give
a complete description of J'. We could imagine defining a
complex cross section of the form given by eq B.1 that would
give us the probability of reaction as a function of both the
phase and magnitude of ¢;,». This approach would make for a
fine description of a single scattering event but unfortunately
is inadequate to describe a realistic experiment.

A complete description of the J* dependence of an ensemble
of diatomic molecules in a state J' can be defined as a
description that allows us to calculate the expectation value of
any physical quantity (i.e., Hermitian operator) A. For a single
scattering event described by a set of quantum numbers i, the
complex coefficients ¢,y would suffice to calculate the expecta-
tion value of A:

Ay = (ylAly)
2, W X T mIALT mXT )

= z c;mAmm‘Cim‘ (B * 3)

m,m’

We must remember, however, that the polarization of the AB-
(v",J') product observed in an experiment corresponds to the
average of many scattering events, each with a different set of
initial conditions, i. Let us assume that each of these events
occurs with a probability |a;|2 where 0 < g < 1. Then the
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expectation value of an operator A from all possible scattering
events that produce AB(v",J") would be given by

(4) = Z |a;|2(z’ LA ) (B.4)

It might appear that the determination of (A) requires a
knowledge of the infinite number of coefficients |a;|? corre-
sponding to each set of initial conditions, i. Fortunately eq B.4
may be rewritten

(A) = 2 (Z Iailzc;mci'm')Am'

= Z‘ Qm'mAmm'
= Tr(pA) (B.5)

where @ is the density matrix defined by
Onim = 210" CinCi (B.6)

We have just shown that the density matrix provides a complete
description of the polarization of an ensemble of diatomic
molecules in a state J'; with knowledge of (27 + 1)? elements
of the density matrix, we can find the expectation value of any
Hermitian operator that depends on J'.24:26

In the absence of an external field that splits the magnetic
sublevels, physical quantities that are related only indirectly to
the density matrix are often of interest. The total population,
for example, is the trace of the density matrix, whereas the dipole
moment of the polarization is a weighted sum of density matrix
elements. It is often desirable to consider a description of
polarization that is more directly related to these and other
fundamental quantities. For this purpose, we introduce the
polarization parameters of a system by determining a distribution
function P(cos 6y ¢r) that corresponds to the classical prob-
ability of finding the vector J’ pointing in the direction described
by the spherical polar angles 6 and ¢,.

The function P(cos 8r,¢r) may appear incompatible with
quantum mechanics because it is a distribution function of two
noncommuting operators. For example, if we choose to
determine P(cos 6r,¢y) by first fixing cos 6y, the value of ¢y
will be completely unconstrained by the uncertainty principle.
If, on the other hand, we constrain cos 8 to a narrow range of
values, the distribution of ¢, may exhibit an anisotropy. In
fact, we can define P(cos @r,¢y) in a manner compatible with
quantum mechanics provided we describe how the measurement
of the distribution is to be made. For this purpose, we assume
that P(cos 8y ¢yr) is the probalgility that AB is in the quantum
state for which the variance of J’ about 6 and ¢ is a minimum,
This probability is proportional to the probability (orr)r that
the molecule is in a quantum state m = J” when the quantization
axis is in a direction given by the spherical polar angles 6 and
@r.

To calculate P(cos 8r¢y), it is useful to express the density
matrix in terms of the moments of the spherical tensor operator
(%) described by Zare? and Orr-Ewing and Zare:!8

Py = tr(os®)
= 2. QunlImlIP\ 'm0

— Pl B -l Tk
="V ””E:f( 1 (m, wm (BT

-m gq
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In the last line of eq B.7, we have employed the Wigner—Eckart
theorem. Here, (J||J%®|[J) is the reduced matrix element and
the term in brackets is the 3 — j symbol. The reduced matrix
element may be evaluated by taking advantage of methods
described in ref 26:

@2y =

Q7 +k+ 1! ]m
k| —————— (B.8)

12%@r - ke

Equation B.8 can be inverted by using the orthogonality
y
properites of the 3 — j symbols!8.26

2k+1 4
iy r——{", "y @9
ke IR £

Om'm =

The probability that a molecule is in magnetic sublevel m = J'
is given by the density matrix element gy :

2k+1 (p y k 5
0 =Z—{, B )(J”) (B.10)
e 0

)

where the 3 — j symbol may be determined from the expression

(J' Ve k)= @)! _

J =1 0] [@ar -+ k+ 1)1

The rotational properties of the moments of the spherical
tensor operator (J( 9y allow for a straightforward evaluation of
them=m'=J component of the density matrix in a coordinate
system in which the quantization axis is in a direction given by
the spherical polar angles 6y and ¢

(@rr)r
2k + 1 (f ¥ i k)D"
- (¢ ¢ 99 =0 >
by T OFEEEEER

XR = 0)(-’;* ’)

il J k)( 47 )m
: ol Y (6,0,
kz‘fﬂl(k)llf)( =7 02k + 1 070 )I")
(B.12)

If we wish to relate (oyr)r to the probability distribution P(cos
6r,¢r), we first must normalize eq B.12. The orthogonality
properties of the spherical harmonic make this integration
straightforward:

4
S @R dQ, =55 (B.13)
so that
P(cos 6,¢;)
2}' 1
Sy (270

{2J’+1)(f f}c) 2k+1

- y—e—— _ <J“">( ) Y (6r.87)

*z«f'{fllﬁ)llf)f 4 A
(B.14)

By comparing eq B.14 to eq 29 and applying eqs B.8 and B.11,
we have
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w_ &+ (f' J k)}(n
= v -7 o)V

Q7+ !

(2 = RIS + k+ 1)]'2 mm

il K
(-1 (m' - q)Qm*m (B.15)

To relate the polarization parameters am to the more usual
polarizationparameters {( ) described by Orr-Ewing and
Zare,'® we write

ck,J)

(k) (
W J(J + 1)~ 2

Equations B.8, B.11, and B.15 can be used to show that

2k — 1)!!)”2 Q@F + DKW + 1)
k! Q@r+1+k)!

The limiting value of ¢(k,J") as J” approaches infinity gives the
alignment parameters .¢,’. In this limit, the term in square
brackets of eq B.20 approaches 1. Thus, the relationship
between the polarization parameters {‘ " and the polarization

parameters a( ) may be determined:

(B.16)

ok J)= ( (B.17)

AP = (6 + D(lim c(k )}——(J“‘))
T+ )2

Qk-DI\2 g
k!

J(k)
J + 1) )

Qr+1+h!
=@, +1 ®
@ )[(ZJ’ 020 a + 02/

The factor of d;; + 1 in eq B.18 is equal to 1 when k = 2 and
2 when k= 2. The confusion this factor causes is an unfortunate
legacy of the history of alignment parameters.

From the form of eq B.15, we see that the polarization
parameters vanish when k > 2J" or |q| > k. Thus, just as there
are (2J° + 1)? elements in the density matrix, there are (27 +
1)? polarization parameters. Actually, either the polarization
parameters or the density matrix may be used to describe the
alignment of an ensemble of molecules in a state J'. In contrast
to the often opaque physical meaning of individual elements of
the density matrix, the polarization parameters of a system are
the coefficients of the probability P(cos 6y ¢r) expanded in
terms of spherical harmonics. Thus, the @) moment is
proportional to the total population and the a}’ moment is
proportional to the dipole moment of an ensemble of molecules
in a state J'.

The polarization of the AB(v'.J) product as a function of
scattering angle may be described by a scattering-angle-
dependent density matrix.?’” The physical and mathematical
properties of the polarization parameters make it advantageous,
however, to describe the vector correlations that occur in a
photoloc experiment by the polarization-dependent differential
cross sections, dog,/d<2;.

= (5,(2 + I)(

(B.18)

Appendix C. Relationship between the
Polarization-Dependent Velocity Distribution j‘“"(vﬂ) and
the Polarization-Dependent Differential Cross Sechon
do,/d2,

To relate the polarization-dependent differential cross section
to the polarization-dependent velocity distribution, we first
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consider only those reactions for which the velocity of the center
of mass is fixed to a single value u’. We then convolute the
resulting  polarization-dependent  velocity  distribution,
hkq(u:m = vap — u’), over all possible values of u’.

The speed dependence of the velocity distribution
hig(u,p) is given by a delta function that fulfills the require-
ment of eq 10. The angular dependence of this distribution is
given by the polarization-dependent differential cross section.
Thus, we have

hi(usp) = T(g dﬂr) (&3

where uagp is the constant given in eq 10. To calculate the
spherical tensor density fi,(vas), we need to find the average
of the polarization described by h,(u,s = Vap — ') when
weighted by the distribution g(u”) of center-of-mass velocities
where

o —
g’) = %(1 + BoporPa(&0) (C2)
U

Here, u is the constant given by eq 9 and Pa(x) = (3x2 — 1)/2
is the second Legendre polynomial. Care must be taken before
convoluting /,(u,p) with the distribution of center-of-mass
velocities. If we wish to calculate the average of several
polarization parameters, we must express each parameter with
respect to the same frame of reference. Similarly, before
convoluting /i,(u,g) with g(u’), we need to rotate hkq(u:w) toa
frame of reference that is independent of the variable of
integration, w’. For this purpose, we rotate the polarization
parameters to the laboratory frame shown in Figure 1c. If the
velocity of the center of mass of a scattering event is given by
the laboratory-frame coordinates u’ = (u',6 ™ ¢’ *®), then the
scattering frame of the reaction is transformed to the laboratory
frame by rotation through the Euler angles 6g = 0, ¢r = 0,
and yp = 7 — ¢»’,}ab (Figure 1c). The polarization-dependent
distribution of vap measured in the laboratory frame, fi,(vag).
is given by the convolution integral

o (Vap) = [du’ g(u)Y Dl (¢ = 0, 6 =0,
T
A =7 = ¢y (V5 — W) (C3)
where Dﬁ.g(ﬁg,qbg,xg) is a Wigner rotation matrix. The integral
of eq C.3 is straightforward when the following substitutions

are made!3

o’ — u) 4 2
gu)=———|1+ %ﬁ Y, Von0.4")Y,,(6,.0)
m==2

(C4)

4y
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and
b (Vo —0) =
2 r2 2
L |1 %% an T tan ) ()
u'v,pi,p\o dQ, 2u'v,p " '

where the cross section is evaluated at the scattering angle given
by eq 13. The solution to the integral of eq C.3 is given by
eqs 37—41.
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