Rotational line strengths for the photoionization of diatomic molecules
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We derive an expression for the probability that a diatomic molecule 4B(n,0,N) in the
electronic state n, vibrational state v, and rotational level &V yields upon photoionization
AB*(n*p* ,NT), where we assume Hund’s case (b) coupling. Our result is formally equiva-
lent to the previous work of Buckingham, Orr, and Sichel [Phil. Trans. Roy. Soc. London,
Ser. A 268, 147 (1970)] but differs substantially in that we use spherical tensor methods,
which provide insight into the photoionization dynamics in terms of the contribution of dif-
ferent multipole moments. The total interaction term is given by the tensor product of the
electric dipole moment operator T'(1,uy) and the multipole moment tensor T'(/,m) describing
the photoelectron in the /th partial wave. The interaction term is further simplified into a
sum of reduced multipole moments T'(k,p), where k=/%1 and p=p,+m. For an ISOtl'Oplc
dlSlI‘lbllthI‘l of initial states, the transition probabﬂlty is given by P(N,N*)

Ek SYNNT) |z (k,q) [2 where the factor of § arises from the use of a beam of polarized

light,

SY(N,Nt)isa generalized rotational line strength factor, and |u(k,q) |7'

= |ttimks 1(5,9) |2+ | pi=k—1 (k,q) |* is the sum of the squares of reduced multipole moment
matrix elements. The summation over k is restricted to even values for a (=& )«( %) transi-
tion and to odd values for a (= )<«»>(F) transition. Thus, for an unpolarized molecular sam-
ple, the integrated photoelectron intensity associated with an N— N transition is the inco-
herent sum of the multipole moments that contribute to this transition, and each such
contribution is an incoherent sum over /=k+-1 and /=k—1. If the molecular sample is po-
larized (aligned and/or oriented), then the expression for the N N7 integrated photoelec-
tron intensity becomes a coherent sum over different k values with the same / value. More-
over, if the photoelectron distribution is angle resolved, then the expression for the NN
transition probability is a coherent sum over / values with the same k value when the molec-
ular sample is unpolarized and cannot be separated into incoherent parts when the molecular
sample is polarized. The expression for P(N,N*) has been used to fit the results of the
photoionization of H, and NO. In both cases, the fit obtained, which required only one or
two adjustable parameters, respectively, agrees well with the experimental data. This treat-
ment may be readily extended to photoionization of polyatomic molecules and to molecules
that follow different angular momentum coupling cases.

I. INTRODUCTION

Most photoionization studies of diatomic molecules
lack rotational specificity because the neutral 4B molecule
is thermally populated and the ionic AB* product or its
companion e~ photoelectron is not detected with sufficient
energy resolution to establish the final rotational level of
AB*.! Recent experimental advances now allow the study
of the photoionization process

AB(u,N)+hv—-AB* (v ,N*)+e~ (1)

with rotational resolution in which the rovibronic level of
the AB neutral is described by the quantum numbers (v,N)
and that of the ion by ( v*,N*t). In these experiments more
than one photon is absorbed to cause ionization. For ex-
ample, a one-photon bound-bound transition selects a par-
ticular rovibronic level of the AB molecule, and a second
photon causes a bound—free transition to ionize the mole-
cule in the selected level. The rotational level of the result-
ing AB" ion is then determined by energy analysis of the
low-energy photoelectron (LEKE spectroscopy),”™ by de-
tection of the zero kinetic energy photoelectron (ZEKE
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spectroscopy),”” or by laser-induced fluorescence
(REMPI-LIF Specl:roscopy).3"3 In this paper we derive ex-
pressions for the probability of the transition N—-N* for a
photoionization process.

Expressions for rotational line strengths for one-
photon bound-bound transitions in diatomic molecules are
readily found in the literature.'®'? The theory of rotational
line strengths for two-photon transitions was first devel-
oped for Raman scattering by Placzek and Teller.'® Later,
when two-photon absorption spectroscopy became more
common through the development of high-power pulsed
laser sources, Bray and Hochstrasser'* derived a general
form for the two-photon rotational line strength factor.
Polarization effects in two-photon spectroscopy have also
been derived by McClain and Harris,'* Chen and Yeung,'®
Metz et al,"”” and Kummel et al'® Three-photon line
strengths have been worked out by Halpern ez al' for
diatomic molecules and by Nieman®® and Dixon et al.?! for
polyatomic molecules. More recently, Mainos*? considered
n-photon transitions for diatomic molecules, and Chiu?®
considered four-photon transitions for polyatomic mole-

fixed v—v*
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TABLE 1. Quantum number nomenclature.

J. Xie and R. N. Zare: Photoionization rotational line strengths

Angular Mol. frame Lab. frame
momentum projection projection Description

N A My Total angular momentum excluding
electron spin of the neutral molecule

N* At My Total angular momentum excluding
electron spin of the ionic molecule

1 A m Orbital angular momentum of the
photoelectron

1 " Ho Angular momentum of the “dipole” photon

k q P Angular momentum of the reduced

multipole moment

cules. The treatment presented in this paper follows closely
in spirit that of Dixon et al.?!

The theory of molecular photoionization has drawn
extensively from that for atomic photoionization. The pho-
toelectron angular distribution is well described,?*?® and
the spin polarization of the photoelectrons has been con-
sidered.? In addition, Miiller-Dethlefs®® has presented ro-
tational line strengths for ZEKE spectroscopy, and Gilbert
and Child®! have presented a quantum defect calculation
showing the importance of / mixing by the ionizing field. In
these treatments, photoionization probabilities are ob-
tained by taking the square modulus of the transition ma-
trix element, a procedure that often yields complex expres-
sions involving sums of products of electric dipole moment
matrix elements and 3-j symbols.

In this paper we present expressions for the rotational
line strengths for photoionization of diatomic molecules in
which we disentangle the angular part from other terms.
We assume that the interaction of the molecule with the
ionizing photon is represented by the electric dipole oper-
ator and that the photoelectron is described by a partial
wave |/m) that has an angular momentum / making a
projection m on the quantization axis and A on the inter-
nuclear axis. Thus, we ignore higher-order interactions,
such as quadrupole transitions and transitions caused by
the electric field of the laser beams. We formulate the in-
teraction using irreducible spherical tensor operators. This
treatment is a continuation of our study involving rota-
tional selection rules for the photoionization of diatomic
molecules.’?> The primary focus of the present work is in
deriving an expression for the integrated cross section for
photoionization, but the results are easily extended to in-
clude photoelectron angular distributions.

Il. INTENSITY DISTRIBUTION IN A ROTATIONALLY
RESOLVED PHOTOELECTRON SPECTRUM

Consider the photoionization process
AB(n,o,N,AMy) +hv—ABt (n* vt Nt AT M})

+e~ (IAm), (2)

where the AB molecule in the vibrational level v of the
electronic state n (not necessarily the ground state) makes
an electric-dipole-allowed transition to the ionization con-
tinuum that yields the AB* molecular ion in the vibra-

tional level v* of the electronic state nt (usually the
ground state). We suppose that the electronic states » and
n™* both follow Hund’s case (b) coupling so that N and
Nt denote the rotational quantum numbers of AB and
AB™, respectively. The projection of the rotational angular
momentum N on the space-fixed Z axis is denoted by My
and on the molecule-fixed z axis (the internuclear axis) by
A, with the corresponding quantities for N* denoted by
M3 and A, With this choice of coupling scheme, the spin
of the electron is not acted upon by the electric-dipole-
allowed transition. We further assume that the spin-
rotation splitting is so small that individual fine-structure
levels associated with J=N+8 (and J*=N*4S*) are
not resolved. Table I summarizes all the quantum numbers
that appear in this treatment.

A. Angle-integrated intensity for an isotropic
molecular sample

The probability for the photoionization process de-
scribed by Eq. (2) for a beam of polarized radiation is
proportional to the square of the electric dipole moment
matrix element summed over all initial and final magnetic
sublevels (assuming that the initial state can be described
as unoriented and unaligned). Ignoring proportionality
constants, we write

P=2. X

m MM ;

[{ntvtNYATMy |

X (IAm|p|no,NAM y) |2 (3)

The electric dipole operator p transforms under rotation as
a spherical harmonic Y, i.e., as a spherical tensor of rank
one and projection pg, where g, is determined by the po-
larization of the electric vector associated with the ionizing
radiation. Hence we replace p by T'(1,u0). The photoelec-
tron eigenstate (/Am| transforms under rotation as a
spherical harmonic Y%, and we replace it by the spherical
tensor T(/,—m). We then use the result for the multipli-
cation (contraction) of the product of two spherical ten-
sors to write!”
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I+1
T(,—m)e T(lLug)= 2 (—1)"1*P(2k41)172
k

=[-1

( £ 1% )T(k )
>< ) s
—m Uy —p 7

(4)

where the term containing six arguments in parentheses is
a standard 3-j symbol, the sum over k extends from /—1 to
I+1 in unit steps, and p=—m+p,. The states of a di-
atomic molecule have well-defined parity. In particular, the
parity for a spherical tensor of rank & is (—1)*. Thus, for
the electric dipole moment matrix element to have even
parity, only terms with k=/—1 and /41 are allowed, i.e.,
we can omit the term with A=/ in the sum shown in Eq.
(4).

We transform the spherical tensor operator T'(k,p)
from the laboratory to the molecular frame:'?

T(kp)= 3. Dy (R)T(kg), (5)
q

where D:; (R) is a Wigner rotation matrix element with
Euler angles represented by R. By substituting Eqs. (4)
and (5) into (3) and assuming the Born—-Oppenheimer
separation of electronic and nuclear motions, we obtain

> (=1-i+e

k=lt1
1 k )
Ho —P

X 3 (N*A*MF| DY (R) INAMy)
q

P(NNt)=2 X

m MN,M;

l
x(2k+1)m(
—m

2

X (n ot A+ | T(k,q) |moA) | . (6)

In the summation over g, the first matrix element repre-

*
sents ng(R) evaluated between two symmetric-top wave
functions,

2N 4172
| NAM ) = —8;—] DY A(R) (7a)
and
2NFEN M2
(N*A* My | =|—5=— Dﬁ;M(R). (7b)

Hence, this term becomes proportional to the integral over
the triple product of Wigner rotation matrices with the
same arguments, and we find that

(N*+A* M| DE (R) | NAMy)

N—E—
My p *Mﬁ)

N k Nt
x(A i _A+), (8)

N
=[(2N+1>(w++1>]‘”(
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i.e., this term becomes proportional to a product of two 3-/
symbols.

On the other hand, the second term appearing in the
summation over g in Eq. (6) cannot be evaluated without
knowledge of the electronic structure of the molecule and
the molecular ion; hence, we treat this term as a parameter
whose value can either be calculated from first principles or
must be determined from experiment. Relating this second
term to other, more familiar notations is useful:

(nTot AT | T(k,q) |nvA)

e z (_1)1—1_+Q(2k+1)1f2
A
I 1
X
(“i [

rpexp(ing) = (n+A+u+1 (M

k
_q)-"u. exp(inp), 9)

where

nlv)
(10)

E ?’,Yﬂ(?,)

is the radial dipole moment matrix element. In Eq. (9) the
dipole photon makes a projection u=A- ¢ on the internu-
clear axis and 7, represents the phase shift of the outgoing
IA wave. In Eq. (10) s is an index that labels an electron
whose distance from the origin is r..

Upon substituting these results into Eq. (6), we obtain

> SKNN') | plkg)|?

1
PJ(N,N+)=§ e
=ik

(11)

where the factor } arises from the use of a polarized beam
that causes photoionization (for natural excitation'? this
factor would be unity),

SKN,Nt)=Q2N+1)(2N* +1)
N k N+ \2
( ‘)

A AT—A —A (12)

is a generalized rotational line strength factor, and

|pilkg) |2= | (ntvr At | T(kgq) |noA) |?

E (_l)f—l+q(2k+1)lﬂ
A

1

x ( —4 p
is the square of the reduced multipole moment matrix el-
ement. Because of the orthogonality of the 3-j symbols [see
Eq. (2.32) of Ref. 12], the cross terms in Eq. (6) vanish,
causing Eq. (11) to have a simple form.

Equation (11) completely disentangles the (calcul-
able) line strength factors from the reduced multipole mo-
ment terms; it represents a major result of this paper. So
far, we have obtained the photoionization probability for
the /A partial wave. The total photoionization probability
requires a sum over all possible partial waves:

2

(13)

k -
—q) 71 exp (i)
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P(N,N*)= Zf P(N,N*). (14)
Actually the summation in Eq. (14) is more restricted
than it might seem at first because of the parity selection
rule, namely, that only a (& )<>(F) transition is allowed
for even [ values and a (= )<«s(=) transition for odd /
values. Thus, in Eq. (14) only the /41 and /—1 terms
contribute for each [ wave and / is only even or odd:

1
P(NN*)=3 @ [S"UNN*) [pi(I—1,9) |?

+SHTHNN) |1+ 1,9) |21, (15)

where g=A1T —A.

In Eq. (15), the generalized rotational line strength
factor may be brought outside the quantity in square
brackets by grouping terms with the same k values:

1 -
P(NN*)=3 %S*(N,N“‘) |z (k,g) |2, (16)
where
|2 (k) | 2= | trs1(Kg) |2+ | a1 (ki) | (17)

Here the sum over kK is 0, 2, 4,... for a (£ )«+( =) transi-
tion and 1, 3, 5,... for a ( & )«>(F) transition. When k=0,
the last term in Eq. (17) does not exist.

Equation (16) expresses the angle-integrated photo-
ionization probability for a N— N7 transition in terms of
only two factors, the generalized rotational line strength S*
[see Eq. (12)] and the reduced multipole moment matrix
element ],\'I(k,g,v)]2 [see Egs. (13) and (17)]. The S* fac-
tors are readily evaluated by standard means'? so no ex-
plicit algebraic expressions are given for them. The
| Z(k,q) |? factors are to be determined by ab initio calcu-
lations or by fitting experimental data using Eq. (16).
Hence, Eq. (16) is the central result of this treatment, and
it is expected to be valid provided that the Born-
Oppenheimer separation is a good approximation. Equa-
tion (16) is formally equivalent®® to Eq. (20) of Bucking-
ham, Orr, and Sichel.”® Some advantages of the present
derivation are that it separates the different multipole mo-
ment contributions to the transition probability P(N,N 1)
and indicates what terms vanish because of parity selection
rules.

Equation (16) offers another advantage. It permits us
to determine the minimum number of independent param-
eters necessary to express the different AN=N* —N tran-
sition probabilities for a given AA=A" — A photoioniza-
tion process. For the photoionization from a single
rotational level, the obvious appearance of the maximum
value of AN in the spectrum directly indicates the highest
value of k, i.e., the highest rank of spherical tensor moment
contributing to the transition by the relation AN< =k,
For such a transition, we need only (k,,— 1—¢g) number
of independent parameters | ﬁ(k,q)]i for determining or
fitting the relative rotational intensities of the spectrum.
This number is less than k,,,, because of k>g(=A*—A),
and the |z(k,q) | parameters need be known only up to a

J. Xie and R. N. Zare: Photoionization rotational line strengths

normalization constant. The parity selection rule for di-
atomic molecules divides the |iz(k,q)|> parameters into
two groups, those with even k for AN=even and those
with off k for AN =odd. The angular momentum selection
rule AN=0,=1,...,=k limits the |z (k,q) |1 parameters to
contribute only to AN =k transitions. This situation is
similar to the case of a two-photon transition in which only
two dipole moment factors u% and uj contribute to the
relative intensities.®

This treatment relates the angular momentum selec-
tion rule, AN=0,%1,...,%+k, to different photoelectron
partial waves /. We consider as an example where the s and
d partial waves are predominantly produced from the
photoionization of a diatomic molecule in a p Rydberg
state. Traditionally, we will find the selection rule AN=0,
+1 for an s wave and AN=0,%1,%+2,=%3 for a d wave.
Suppose that the AN=0 and =1 transitions are much
more intense than the others. Understanding the role of the
d wave is difficult in this transition, but from the point of
view of our treatment, the AN=0,=1 propensity indicates
the major contribution is k=1 so that pu;_,(1,4)5<0
whereas p;_,(3,g)=0. Therefore the propensity very
clearly shows how the d waves are involved in the transi-
tion. In other words, the appearance of AN=0 and *1
does not imply that the d wave makes no contribution to
the photoionization dynamics.

Equation (16) is also applicable to n-photon nonreso-
nant ionization. In a similar manner to the one-photon
process, we can replace the dipole moment operator ! of
the jth photon by a tensor T'( l,,u{,) and replace the photo-
electron wave function by a tensor T'(/,—m). Therefore,
we have a product of » first-rank spherical tensors with a
spherical tensor of rank /. In a way similar to Eq. (4), we
rewrite the product of these tensors into a sum of irreduc-
ible spherical tensors T'(k,q), where k=n, n=1,..,n%l
Taking the two-photon nonresonant ionization as an ex-
ample, we replace Eq. (17) with

|Z(kg) |*= | a2 (k@) |2+ | r(Kig) |2

+ |2 (kg) |2 (18)

where

wilkg)= 2 }:2 2 (=D A(2k+1) (2i+1) 12

A plp? it

( 1 1 i ) ( Il i k )
X » :
T T AT A T
X?a‘ulgi exp(i‘rmglgz). (19)
In Eq. (19), ,ul, ,uz, and ,ui denote the internuclear axis
projections for the first photon, the second photon, and the
total angular momentum i of the two photons. In Eq. (18),
only three terms with /=Fk, k=2 appear because the parity
selection rule has removed the terms with /=k=1. For an
n-photon process, similar results can be derived to those in
Eqgs. (18) and (19).
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B. Other cases

The present treatment has greatly simplified the ex-
pression for the photoionization process by minimizing the
numbers of independent parameters. For photoionization
from an isotropic initial state, the angle-integrated inten-
sity for an N—N" transition is simply represented by an
incoherent sum over the multipole moments, as shown in
Eq. (16). For other cases, however, cross terms between
different reduced multipole moments appear and compli-
cate the resulting expression for P(N,N*). We consider
three cases, the rotationally resolved angle-integrated pho-
toelectron intensity distribution from an anisotropic initial
state, the angle-resolved photoelectron intensity distribu-
tion from an isotropic initial state, and the angle-resolved
photoelectron intensity distribution from an anisotropic
initial state.

Consider first the rotationally resolved angle-
integrated photoelectron intensity from an anisotropic ini-
tial state. Strictly speaking, we should use a density matrix
formulation so that we can express not only the population
of the different (/N,My) sublevels of the initial state (the

2885

diagonal elements of the "p, wy, density matrix) but also

the different phase relations between these levels (the off-
diagonal elements of the NPMM M, density matrix).*© For

simplicity, however, we limit ourselves here to situations
having cylindrical symmetry, i.e., all photons are in the
same pure polarization state. Then we need consider only
the different populations n(N,Mpy) of the sublevels
(N rM N )

An example of this situation is (n+1) REMPI, where
n photons bring the molecule from the ground state to an
intermediate state and another photon of the same color
and (pure) polarization ionizes the intermediate state. Ex-
perimentally, the relative intensity for an N—+N" transi-
tion is obtained either by probing the internal state distri-
bution of the resulting molecular ion using LIF or by
measuring the photoelectron kinetic energy distribution
with sufficient resolution that individual N - N rotational
transitions are resolved. Theoretically, the angle-integrated
photoelectron intensity for an N—N7 transition is given
by

/ 1 k / 1 &
P(NNN*)=QN+DQN*+1) X X 2n(N,MN)[(2k+1)(2kf+1)]1/2( )( )

Lm MN.M; k.k’

N k N+\/N k N+
X(MN P —ME)(MN P ~ME)(

Here cross terms appear between the reduced multipole
moments with different ranks k& and &’ but with the same
partial wave /. The incoherent contribution from the par-
tial waves is a consequence of the angular integration. If
the photoionization process starts from an isotropic state,
ie., n(N,My)=1, then Eq. (20) reduces to Eq. (16). For
(n+1) REMPI, each n(N,M,) population factor is pro-
portional to the n-photon M y-dependent transition proba-
bility and can be varied by choosing different transition
branches or polarizations of the light source.

Next, consider the situation in which the photoelectron
angular distribution is observed. The starting point is the
matrix element for the ionization step

I 1 k
jy = —1)=1+2(2k4-1)172

X (N*A* M3 | Dy | NAM) (%) ¥im(Bioi)
(21)

where 6, and ¢; are the spherical polar angles of the
ejected photoelectron, and the Y, (0,¢,) are spherical
harmonics. The angle-resolved intensity distribution for an
N N7 rotational transition from an isotropic initial state
may be written as

N k Nt N k Nt
£ g )( )#f(k',q}*#:(k,q)—

—m ly —Pj\—m Mo =P

(20)

—AT)J\A ¢ —At

TABLE II. The relations between the reduced multipole moments
u;(k,q) and the dipole moments r;; for a AA=0 transition.

Photoelectron

partial wave Relation®
s wave (I=0) 1o(1,0)=rgq
p wave (I=1) #(0,0)=— %rm-{-Z %’1.1
P1(2»0)=\E"1,a+ 371
d wave (I=2) 1(1,0)=— %rm-{— %r;_;
3 1
#2(3,0)= \[;"1,0+2 5721
f wave (I=3) 13(2,0)=— %rm-f-?. %—"3.1
4 6
p3(4,0)= \f;f's,u*l" 731
g wave (/=4)

4 [
130 == ot B,

14(5,0)= \/;”‘4.04‘ ‘FO".!

“It may be proved that r;_;=r;, from p;_.(k,0) =0.
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! 1 k
Iy y+(Opdi) = ZSk(N Nt Y XY ( )

pm L \—M Hg —p

( ’ K {k ) H (J’C )
X (8 ]
—m P‘O —P) I q ! q

Y}, (616) Yim(Oéi) (22)

where k is even and [,/” are odd for the (=% )<«>(=) tran-
sition, and k is odd and [/’ are even for the (=)« (F)
transition. In E(;l (22), the generalized rotational line
strength factor S“(NV,N ™) has been disentangled from the
multipole moments and from the angular part by applying

I
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the orthogonality relation of Eq. (2.32) of Ref. 12. Conse-
quently, an incoherent sum of k values results. In Eq. (22),
there is interference only between the reduced multipole
moment terms with different values of / and !’ for the same
k value.

For angle-resolved photoionization from an aniso-
tropic initial state, we do not have the orthogonality rela-
tion to eliminate cross terms between the reduced multi-
pole moments with different ranks k and k'. Consequently,
the angle-resolved photoelectron intensity distribution for
an N— N transition has a complex form

Iy n+(Bpdi) =(2N+1) (2N* +1) ): >3 3 aNMp)(—=1)""[(2k+1)(2K +1)]2

k' Lm I'm' MNMN
/ 1k r
X fi
(—m Mo —p)\—m' pg

N K
Xli o

Here we have coherent contributions from the reduced
multipole moments with all possible / and k quantum num-
bers. In Egs. (22) and (23), the angular part Y¥,,,(6,,¢:)

TABLE IIl. The relations between the reduced multipole moments
1i(k,q) and the dipole moments ry, for AA==1 transitions.

Photoelectron
partial wave Relation
s wave ([=0) po(l,=1)=rp
p wave (I=1) O=ry«1+np
w(2,+1)= &h 1+ 1’10
. 3
e 1D anm B T e
7 1 3
0= Jd?'z.tri‘ J%’!.ﬂ— J:sfz.c
Ha(3,=1)= (’Lﬂ*‘ 572,21+ "2.0
f wave (I=3) ps(2,%£1)= Jg&.u— \lgfs.tri- isi'fa‘o
5 1 3
0= J'l_"ifa,*z+ J%rj,tl = J;_;?'a,o
(4, il)—\r’s srk 271+ ’30
g wave (I=4)

[3 B 2
pa(3, 1) = [T3rs 22— [Tara, =1+ T30
9 1 10
0= J%rdl.u"' J;"Lii“ \/;’a,o

8
(5, :El)—J_&*rF 1574, 1+ s"4,0

P’(

Nt
)#."(k @) *ukg) YS

N k Nt N Kk N* N k N*
My p —M$)(MN P —Mﬁ)(A q —A*')

/(Bioti) Yim(Oitbi)-

(23)

Y;’m’
Brm Y 1m(Bpdy) terms using the spherical harmonic addi-
tion theorem. The [B;;, parameters obtained from analyz-
ing photoelectron angular distributions can be related to
reduced multipole moment elements and corresponding
coefficients in a similar way as that described in Ref. 4(c).

(6,¢y) can be further simplified into a sum of

TABLE IV. The relations between the reduced multipole moments
w,(k,g) and the dipole moments ry;; for AA= =2 transitions.

Photoelectron

partial wave Relation

5 wave (/=0)

p wave (I=1) w(2,E1)=r 4
d wave ([=2) 0= ﬁ’zti_\gﬁ,*l
mG ==t o
f wave (I=3) p3(2,:i:2}=\/;:5|r3_12— \jl_?zrl*l+ 1[1?'3,0
0= J%-":,:rl— J%fs,tz— \{T?zf‘s,n
(422 = s st st fir
g wave (/=4)

F4(3,:|=2)=J%’4,13—‘/%’4,*2+ %’4.1|
7 4 9
= ﬁ-";,.*rl‘J;G"t.ﬂ— J%ﬁ,ﬂ

7
14(5, *2)—‘]_’4:14‘ 1574, 22+ [T574,+1
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Examination of Egs. (16), (20), (22), and (23) shows
the following. When the initial state is anisotropic, coher-
ent contributions occur from different ranks k of reduced
multipole moments. For the angle-resolved photoelectron
intensity, the coherent contribution also occurs from dif-
ferent partial waves /. In previous treatments, the coherent
terms between the dipole moments r;; with different A val-
ues, called A interferences, do not appear in the above
equations because they are absorbed into the u;(k,g) in the
relations shown in Tables II, III, and IV.

I1l. APPLICATIONS

The angle-integrated photoionization probability for
an N— N transition from an isotropic initial state appears
simply to be an incoherent sum of the squares of multipole
moment matrix elements multiplied by their corresponding
generalized rotational line strength factors, as shown in Eq.
(16). These multipole moment matrix elements are the
only adjustable parameters necessary for fitting the rota-
tional intensity distribution. In the following two exam-
ples, we demonstrate the use of Eq. (16). The first example
is the rotationally resolved photoelectron spectra from the
one-photon ionization of H,.****¢(®) The second example
is the rotationally resolved photoelectron spectra from the
(1+1’) REMPI of NO.*®

Rotationally resolved photoelectron spectra of H, were
initially recorded by Asbrink®* using a Ne I light source
and subsequently measured a decade later by Morioka
et al®® with a He I light source. Recently, Merkt and
Softley®® have obtained the high-resolution ZEKE pho-
toelectron spectrum of H, using a coherent XUV source.
Itikawa®*®® has carried out ab initio calculations on the
photoionization of H, with attention to how the vibrational
motion influences the spectrum. In his work, the dipole
moment matrix elements for each partial wave are com-
puted and then substituted into the traditional formula to
obtain rotational line strengths. Merkt and Softley have
compared these data with their own measurements for
deduced rotational intensities of the transition
H, X '3} v=0-Hj X232} v*=2 and the results are
listed in Table V.

As shown in Table V, only AN=0,=2 transitions are
observed. Therefore, we need to consider the reduced mul-
tipole moments with k<2. In addition, the k=even selec-
tion rule for a g<»g transition further restricts & to have the
two values O and 2. The H, sample is isotropic and is
described by a Boltzmann distribution at 300 K. Therefore,
the angle-integrated photoionization intensity for an
NN transition is given by

B, N+1
P(N,N+) =(2—{—1>”)exp(-ﬂ—+—})

kT

SNN—i-
2N+1

N 2 N*t\? _ 5
+(0 0 0 ) [1(2,0) ] ] (24)

1
><(2N+l)(2N++1)§{ |£(0,0) |2
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where the first factor (2— (—1)%) takes into account the
3:1 nuclear spin degeneracy corresponding to the odd level
vs the even level, the second factor is the Boltzmann term,
and the remaining factors come from Eq. (16). Although
the two factors |E(2,0)|? and |z(0,0)]? appear in Eq.
(24), only one is independent in fitting the relative inten-
sity distribution. Following the convention in Table V, we
choose the most intense line as a constant, i.e.,, P(1,1)
=100. Then a fit is made to Eq. (24).

We first fit the ab initio rotational intensity distribution
and find that |2(2,0) |2/|ﬁ(0,0) |2=0.152. Our calculated
line intensities from the ratio of these two parameters agree
with the results of Itikawa within the first three digits; see
Table V. This agreement is not surprising because our sim-
plified expression for the relative line intensities differs only
formally from Itikawa’s result. The ab initio calculation
provides numerical values for several diode moments, but
only one consolidated number is independent and decisive
in determining the relative rotational intensity distribution.
We also fit the ZEKE rotational intensity distribution to
Eq. (24) excluding the (0-0), (2-0), and (0-2) transi-
tions because these transitions have been reported by
Merkt and Softley®®™ to be perturbed. From this fit we find
|(2,0) |%/|E(0,0) |>=0.173. Our best fit to the ZEKE
rotational intensity distribution agrees well with experi-
ment, as shown in Fig. 1, when the perturbed lines are
excluded.

For (n+1) REMPI, the intermediate state is usually
populated anisotropically. In the experiment of the (1
+1’) REMPI of NO, Leahy, Reid, and Zare*® have cho-
sen the first laser beam polarized relative to the second
laser by an angle of 54.7°. As a result of the choice of this
“magic angle,” the N=22 level of NO 4 =% y=1 is pre-
pared with a constant equal population of its sublevels via
the P+ @,(22.5) transition. A relative phase is also in-
troduced among the sublevels, which causes the angular
distribution of photoelectrons to be skewed. However,
these interference effects vanish in the angle-integrated rel-
ative intensities for the N+ N transitions which are ap-
proximately proportional to the By, in the angular distri-
bution. Consequently, we may treat the N=22 level as
isotropic, and apply Eq. (16) to express the transition
probabilities.

The AN=0,21,%+2 transitions observed experimen-
tally suggest that the reduced multipole moments with k
=0, 1, and 2 should be considered. Parity selection rules
further constrain the contributions from the multipole mo-
ments so that |Z(2,0) |? contributes to the AN = =2 tran-
sitions, |fi(1,0)]? to the AN==1 transition, and both
|(0,0) [* and |f(2,0)|? to the AN =0 transition. Specif-
ically, we have

N(N+1)

PN =368 —D

12(2,0) |2, (25a)

N _
P(N.N—1)==|i(1,0)|?, (25b)
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TABLE V. Rotational line intensities from the one-photon ionization of H, at 300 K. Experimental results are from ZEKE, Ne I, and He I photoelectron
spectra, and theoretical results are from ab initio calculations and from our best fit of the ZEKE and ab initio data to Eq. (24).

Merkt and Softley Asbrink Morioka et al. Itikawa Our fit
Transitions [Ref. 6(b)] (Ref. 33) (Ref. 34) [Ref. 26(b)]

N*-N ZEKE Ne I He I ab initio ZEKE ab initio
0-0 15 4 27 18.5 18 18.5
2-0 510 6.2 10.5 2.81 3.2 2.81
1-1 100 100 100 100 100 100
3-1 9.5 4.5 8.59 9.7 8.59
0-2 8.3* 2.2 e 0.51 0.6 0.51
2-2 20 31 21 17.5 18 17.5
1-3 0.50 0.6 0.50
3-3 16 15 14 13.3 14 13.3
5-3 L1 e e 0.93 1.1 0.93

*The 0-0, 2-0, and 0-2 transitions have been reported by Merkt and Softley [Ref. 6(b)] to be perturbed.

2N+1 _
P(N,N)=—5—|@(0,0)|?
N(N+1)(2N+1)  _ )
HeNTneN—n PR (25%)
N+1
P(N,N+1) =-3l| (1,003, (25d)
and
N+1)(N+2) _
P(N,N+2)=(2—(2;f(-_1—_%)|p(2,0) I% (25e)

In Eq. (25), there are two independent parameters among
the three reduced multipole moments. Using the previous
convention that P(22,22)=100, we find that |(1,0)|%/
|Z(0,0)|2=0.103 and |f(2,0)|%/|E(0,0)|*=0.340. Fig-
ure 2 compares the experimental relative distribution of the

angle-integrated photoelectron intensities with that ob-
tained from this fit. Once again the close agreement is quite
pleasing.

IV. CONCLUDING REMARKS

We have derived in this paper simple expressions for
the rotationally resolved photoelectron intensity distribu-
tion when a sample of isotropic diatomic molecules is pho-
toionized by a beam of pure polarized light. This treatment
relies on regrouping the interaction of the dipole photon
and the ejected electron so that the probability of an
NN transition becomes proportional to the sum of the
product of a generalized rotational line strength factor
times the reduced multipole moment. The generalized ro-
tational line strength are readily computed, whereas values
of the independent reduced multipole moments can be de-

100

80

60 -

Relative ZEKE Intensi

2-0 11

3-1

= Experimental
m Our Fit

0-2 22 1-3

Rotational Transition (N"— N")

FIG. 1. Relative line intensities of the one-photon H, X '2; v"=0, N"=H;y X2} v*=2, N* ZEKE spectrum. The experimental data are taken from
the work of Merkt and Softley [Ref. 6(b)]. They are fit to Eq. (24) for a sample temperature of 300 K excluding perturbed lines marked by asterisks

in the figure.
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100 ~

= Experimental
m Our Fit

(=] o]
5 3 8
1 1 1

Relative Intensity
S
1

o
1

20-22 21-22 22-22 2322 2422
% aye +
Rotational Transition (N'—N')

FIG. 2. Relative intensities of the photoelectron spectrum for the process
NO A%+ »'=1, N'=22-NO* X 'E* p*=1, N*. The ions are pro-
duced by (1+1') REMPI via the P+ Q,(22.5) transition for an angle
of 54.7° between the polarization vectors of the two laser beams. The
experimental data are taken from Leahy et al. [Ref. 4(b)] by integrating
the reported angular distributions. They are fit to Eq. (25).

duced from a best least square fit to the experimentally
determined photoelectron intensity distribution.

This treatment is applicable to many other transition
processes provided that the Born—Oppenheimer separation
of nuclear rotational motion from other motions is valid.
For example, the procedure can also be applied to describe
electron impact ionization and the same generalized rota-
tional line strength factors result. Many other generaliza-
tions are also possible, such as the inclusion of different
angular momentum coupling cases and the extension to
polyatomic systems.
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