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Accurate identification of prostate cancer in frozen sections at the
time of surgery can be challenging, limiting the surgeon’s ability to
best determine resection margins during prostatectomy. We per-
formed desorption electrospray ionizationmass spectrometry imaging
(DESI-MSI) on 54 banked human cancerous and normal prostate tissue
specimens to investigate the spatial distribution of a wide variety of
small metabolites, carbohydrates, and lipids. In contrast to several
previous studies, our method included Krebs cycle intermediates
(m/z<200), which we found to be highly informative in distinguishing
cancer from benign tissue. Malignant prostate cells showed marked
metabolic derangements compared with their benign counterparts.
Using the “Least absolute shrinkage and selection operator” (Lasso),
we analyzed all metabolites from the DESI-MS data and identified
parsimonious sets of metabolic profiles for distinguishing between
cancer and normal tissue. In an independent set of samples, we could
use these models to classify prostate cancer from benign specimens
with nearly 90% accuracy per patient. Based on previous work in
prostate cancer showing that glucose levels are high while citrate is
low, we found that measurement of the glucose/citrate ion signal
ratio accurately predicted cancer when this ratio exceeds 1.0 and nor-
mal prostate when the ratio is less than 0.5. After brief tissue prepa-
ration, the glucose/citrate ratio can be recorded on a tissue sample in
1min or less, which is in sharp contrast to the 20min or more required
by histopathological examination of frozen tissue specimens.
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Prostate cancer (PCa) is the most commonly diagnosed solid-
organ cancer and the second leading cause of cancer death in

men in the United States (1). Because of prostate-specific antigen
(PSA) screening in the United States, most PCas are discovered when
they are confined to the prostate (2). Many of these localized PCas are
treated by surgical removal of the entire prostate (radical prostatec-
tomy). The presence of cancer cells at the edge of the surgical re-
section, or positive surgical margins, is associated with higher rates of
recurrence and death from PCa (3, 4). Therefore, an important
clinical challenge in PCa management is to devise a rapid and highly
accurate method to detect cancerous cells in real time to allow re-
section of additional periprostatic tissues and reduce cancer recur-
rence after surgery. Over the last decade, several innovative analytical
techniques (5–12) have been developed to distinguish cancer from
benign tissue in various organs. However, none has achieved wide
clinical adoption for various reasons including inconvenience, narrow
information content, unavailability, poor sensitivity, slowness of adop-
tion, and operating room workflow incompatibility. In PCa, intra-
operative frozen sections have been used to attempt to identify PCa at
the margin based on analysis of histology. However, frozen sections
have been shown to have poor sensitivity and specificity for the de-
tection of PCa and currently are not recommended (13, 14).
Recently, a label-free molecular imaging method called desorption

electrospray ionization mass spectrometric imaging (DESI-MSI) has

been developed (15–17). DESI-MSI can rapidly evaluate the tissue
metabolome in situ by simultaneously characterizing hundreds of
lipids and metabolites. In the last 5 y, reports from our group (16–19)
and others (15, 20–22) have demonstrated the usefulness of DESI-
MSI in viewing the metabolite and lipid distribution in tissue samples
from cancers and other diseases. Global changes in metabolism are a
cardinal feature of neoplasia (23, 24), and DESI-MSI can determine
global metabolite levels and their spatial distributions across a tissue
sample on a microscopic slide. DESI-MSI allows tissue analysis with
little sample preparation, and provides quantitative multiplex mo-
lecular information within minutes. In patients undergoing surgery
for gastric cancer, DESI-MSI helped in assessing the surgical margin
status for the presence of cancer (16). This rapid assessment could be
used as a tool to guide surgeons in removing more tissue to achieve
negative margins and improve surgical outcomes (19).
Given the known alterations in metabolic pathways in PCa, we

tested whether DESI-MSI of metabolites and lipids could have
utility in discriminating cancer from normal tissue obtained from
radical prostatectomy. Using tandem and high-resolution mass
spectrometry we have characterized the distinct metabolite and
lipid profiles of normal and malignant prostate. Although many
earlier DESI-MSI studies considered only lipid profiles in
identification of cancer, here we report imaging small metabolite
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benign and malignant prostate tissue. This is important both in
improving the understanding of tissue biology and in achieving
rapid cancer diagnosis. We applied DESI-MSI to record lipid,
carbohydrate, and most importantly, small metabolite images
from 54 normal and malignant prostate tissue specimens.
Several Krebs cycle intermediates were present at different
concentrations in prostate cancer compared with normal tissue.
Statistical calculations identified panels of metabolites that
could readily distinguish prostate cancer from normal tissue
with nearly 90% accuracy in a validation set. The results also
indicated that the ratio of glucose to citrate ion signals could
be used to accurately identify prostate cancer.
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distribution to detect PCa. The biochemical basis of this diagnostic
accuracy lies in apparent differences in the Krebs cycle between
cancerous and benign tissue. Finally, because DESI-MSI provides
information on hundreds of molecules (small metabolites and lip-
ids), we used a statistical method called least absolute shrinkage and
selection operator (Lasso) (25, 26) to build and validate a classifier
that distinguishes normal from malignant prostate tissue.

Results
Metabolite/Lipid Imaging of Prostate Tissue Specimens. To in-
vestigate the lipidomic and metabolic profiles in normal and
malignant prostate tissues, we selected 54 fresh frozen prostate
tissue samples harvested at the time of radical prostatectomy and
performed negative ion mode DESI-MSI. For each case, a 5-μm
frozen section was taken for histopathological evaluation. After
hematoxylin and eosin (H&E) staining, slides were annotated by
a genitourinary pathologist to delineate areas of cancerous and
normal tissue. A 15-μm section taken immediately adjacent to the
H&E section was used for DESI-MSI. The details of DESI-MSI are
given inMaterials and Methods and depicted in SI Appendix, Fig. S1.
Metabolite and lipid ions were detected in the m/z range 50–

1000. Fig. 1A shows a representative negative ion mode DESI mass
spectrum of a typical prostate tissue specimen in the m/z range 50–
200, where most of the small metabolites and glucose were de-
tected. SI Appendix, Fig. S2 shows a representative image in the m/z
range 200–1,000 where most lipids were detected. We identified and

characterized several ion signals from the data (SI Appendix, Table
S1) by using high mass accuracy, isotopic distribution, and tandem
mass spectrometry. Typical molecular characterization data are
presented in SI Appendix, Figs. S3 and S4 A–P. The detected species
(SI Appendix, Table S1) were mostly deprotonated small metabo-
lites related to energy production in the Krebs cycle, and deproto-
nated lipids including free fatty acids (FAs), FA dimers,
phosphatidic acids, and glycerophospholipids. Using pixel-to-pixel
mass spectral data, detailed 2D molecular images of the tissue were
constructed to visualize the spatial distribution of selected individual
metabolites and lipids. The spatial resolution of the image is
∼200 μm, which compares well with the thickness of a surgical knife.
For example, Fig. 1B and SI Appendix, Fig. S2C show ion images of
typical small metabolites and lipids, respectively, some of which
appear to discriminate cancer from normal based on their relative
abundance. The spatial distribution of many additional intense ion
signals (m/z 89.0244, 303.2316, 423.2496, 585.4859, etc.) did not
appear to be useful in differentiating normal from cancerous tissue
(Fig. 1 and SI Appendix, Fig. S2).

Selection of Lipids for PCa Diagnosis. Previous DESI-MSI studies
have identified lipidomic profiles that distinguish normal from
malignant tissues (16, 20, 21). We also attempted to distinguish
cancerous from normal prostate tissues based on the abundance of
specific lipid species. Given the large number of lipid ions (m/z 200–
1,000) interrogated, we first tried an unbiased statistical approach,

Fig. 1. (A) Negative ion mode DESI mass spectrum in them/z range 50–200 from a typical prostate tissue specimen showing ion signals of various small metabolites.
(B) Spatial distribution of 14 different small metabolites in a prostate tissue specimen (Upper Left, the corresponding H&E staining of the tissue sample) that contains
both normal (black outline) and cancer (red outline). In B some individual small metabolite distributions are mapped throughout the tissue, whereas in A the
abundance of all small metabolites is displayed by averaging all pixels over a typical line scan. See SI Appendix, Tables S1 and S2 for identification of species with
different m/z values. The abundance of the given ion in the corresponding ion image is normalized to 100%.
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Lasso (26), to select a parsimonious set of lipids that could classify
normal from cancerous tissues (SI Appendix, Fig. S5) (27). Using a
training set of 45 specimens (17 normal and 28 cancerous), the
Lasso considered m/z values that best characterized the two classes
(cancer vs. normal) and yielded a cross-validation error of nearly
29% on pixel-based predictions (SI Appendix, Fig. S5C) and 27% on
patient-based predictions. The lipid-based Lasso model did not
work well when applied to the validation set, possibly because of the
large heterogeneity in lipidomic profiles of PCa patients. Consistent
with this finding, we were unable to validate previous work (28)
identifying cholesterol sulfate as a candidate lipid biomarker for
PCa (SI Appendix, Fig. S6).

Selection of Small Metabolites with Diagnostic Features. We un-
ambiguously identified and characterized a large number of small
metabolites in them/z window 50–200 that were differentially present
in cancerous vs. normal tissue (Fig. 1A and SI Appendix, Table S1).
For example, Fig. 1B shows higher abundance of erythrose

(m/z 119.0348), glutamate (m/z 146.0464), glucose (m/z 179.0561),
and sorbitol (m/z 181.0712), and lower abundance of succinate
(m/z 117.0196), malate (m/z 133.0144), salicylate (m/z 137.0240),
aconitate (m/z 173.0092), and citrate (m/z 191.0196) in cancerous
tissues compared with normal. Most of these metabolites are im-
portant components of the Krebs cycle (Fig. 2). It should be noted
that we could not construct DESI images of ionic species with very
low abundances, even though they are important metabolites of the
Krebs cycle and other metabolic pathways (see SI Appendix, Fig. S7
as typical example). Although imaging the spatial distribution and
characterization of individual ions (metabolites) is not necessary for
tissue diagnosis by DESI-MSI/Lasso, doing so can pinpoint impor-
tant metabolites and their relation to PCa biochemistry (vide infra).

Lasso Analysis for the Training and Validation Sets. We used Lasso
to develop a classifier that estimates the probability that a pixel
in each DESI-MS image is either cancer or normal. DESI-MS was
performed on a training set of 36 tissue samples with histologically
demarcated areas of normal and malignant tissue (18 pure normal
and 18 pure cancer tissues from 36 patients). We selected the top
54 peaks of metabolites, which had been mostly characterized (SI
Appendix, Tables S1 and S2), to perform the Lasso analysis. Two
independent Lasso classifiers were built, one based on individual
ion signals, and another based on ratios of different ion signals.
The first classifier performed poorly in the validation set, perhaps
caused by normalization issues. However, the second approach
showed promising results in classification as detailed next. We
divided the data in two m/z sets for Lasso: one with m/z range 50–
1,000, which considers all detected metabolites and lipids, and the
other with the m/z range 50–200, which considers only the small
metabolites (SI Appendix, Table S3). Table 1 shows the patient-
based prediction results from these calculations (see Statistical
Analysis inMaterials and Methods for details). The cross-validation
analysis of all samples from the training set achieved nearly 92%
overall agreement in the m/z range 50–1,000, and nearly 89%
overall agreement in the m/z range 50–200, compared with stan-
dard histopathologic evaluation (H&E).
We also analyzed 18 independent validation specimens (10 nor-

mal and 8 cancer tissues) to test the performance of our Lasso
classifier. Table 1 also shows the Lasso prediction obtained from the
validation set in both m/z domains, per patients. Compared with
histopathology (H&E), nearly 89% and 94% overall agreements
were achieved in the m/z ranges 50–1,000 and 50–200, respectively.
All these data collectively suggest that analysis of small metabolites
can exhibit high accuracy in cancer diagnosis by DESI-MSI.

Glucose/Citrate Ratio as a Biomarker.We also investigated whether
we could preserve the good accuracy of the above analysis using
fewer metabolites to make the testing more rapid. As discussed
above, DESI-MSI reveals in situ metabolic flux by detecting the
relative abundance of numerous metabolites. For example, Fig. 1B

Fig. 2. Schematic overview of the metabolic flux in the Krebs cycle. DESI-MSI
study (e.g., Fig. 1B) shows that the abundances of metabolites labeled in red
are up-regulated and blue are down-regulated in cancer compared with
normal tissue.

Table 1. Lasso prediction results for 36 prostate tissue specimens in the training set and 18 specimens in the
validation set, in comparison with histopathological analyses

Set

Small metabolites and lipids-based
prediction (m/z 50–1,000)

Small metabolites-based prediction
(m/z 50–200)

Pathology* Normal Cancer % Agreement Pathology* Normal Cancer % Agreement

Training set Normal 17 1 94.4 Normal 16 2 88.9
Cancer 2 16 88.9 Cancer 2 16 88.9

Overall agreement: 91.7% Overall agreement: 88.9%
Validation set Normal 8 2 80 Normal 9 1 90

Cancer 0 8 100 Cancer 0 8 100
Overall agreement: 88.9% Overall agreement: 94.4%

*Pathologic evaluation was performed by two pathologists on the same frozen tissue section used for DESI-MSI study. The tissues
were H&E-stained after recording DESI-MSI.
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shows high levels of glucose (m/z 179.0561; see SI Appendix, Fig. S4I
for identification) and low levels of citrate (m/z 191.0196; see SI
Appendix, Fig. S4J for identification) in cancer (29). Decreased levels
of citrate in PCa are well described and can also be detected using
magnetic resonance (MR) spectroscopic imaging (30). Based on
these findings, we attempted to use imaging of glucose and citrate
(Fig. 1B) to characterize whether a prostate tissue specimen was
cancerous or normal. Interestingly, when we calculated the ratio of
these two ion signals (glucose/citrate) from the tissue specimen, and
constructed the image of that ratio, we accurately differentiated PCa
from benign prostate tissue as shown in Fig. 3. Furthermore, this
specific ratio can also be chosen from the Lasso model (SI Appendix,
Table S3), which is a linear function of log ratios and there are dif-
ferent but nearly equivalent ways of expressing the same fitted model.
In several malignancies including PCa, molecular changes have

been reported in the normal tissues immediately adjacent to the
cancer (field defects) and this could adversely impact detection of
cancer by blurring the border between malignant and normal tissues
(31). To determine whether there was a distinct border of the rel-
ative quantities of glucose and citrate between normal and malig-
nant prostate tissues, we set our DESI probe to scan along a single
line (32) over a prostate tissue specimen (Fig. 4). Among hundreds
of ions recorded on the line scan, we extracted the signal intensities
of glucose and citrate to plot them over the scan time (tissue length).
Fig. 4 shows that there is a distinct cutoff at the border between
normal and malignant prostate tissues as determined by the glucose/
citrate ratio. This difference appears to be determined largely by
citrate levels as its signal intensity drastically decreases in cancer,
whereas the increase of glucose signal intensity was less marked. This
difference could be caused by the fact that it is more difficult to ionize
glucose than citrate in the gas phase by electrospray (SI Appendix, Fig.
S8). Ion images of glucose or citrate alone did not work so well as the
ratio between the two metabolites (Fig. 3) in identifying PCa. It
should be noted that inflammation is often observed in a PCa
specimen (Fig. 3B) and this glucose/citrate ratio fails to distinguish it.
A follow-up study is required in the future for finding biomarkers
that can distinguish inflammation from malignant or normal tissue.
To test the ability of the glucose/citrate ratio to diagnose PCa, we

used the same training set that was used above for the Lasso,

comprising 36 specimens. We evaluated the average glucose/citrate
signal ratio from each individual specimen for the cancerous and
normal areas based on histology on the adjacent H&E slide. There
was a significant difference in the distribution of the glucose/citrate
ratios between PCa and normal tissues, and specimens could be
accurately classified as cancer if the glucose/citrate signal ratio
was >1 and normal if the ratio was <0.5 (Fig. 5A). In an inde-
pendent set of 18 specimens (8 cancer and 10 normal tissues) we
were able to validate that all specimens with glucose/citrate signal
ratio >1 were malignant and all with ratios <0.5 were normal (Fig.
5B). There were nine specimens in the training set (Fig. 5A), and
two specimens in the validation set (Fig. 5B) with a ratio between
0.5 and 1; the significance of this ratio is unknown, although some of
those were classified as normal and some as cancer by H&E.

Discussion
DESI-MSI is a novel method that enables rapid multiplex
mapping of metabolites and lipids in fresh tissue specimens.
Using DESI-MSI, we identified key differences in the distribu-
tion of various metabolites and lipids between cancerous and
normal prostate tissue. Prior studies of DESI-MSI for cancer
diagnosis focused primarily on lipids as biomarkers. We began by
evaluating lipids as well but the Lasso model relying on lipids
only performed poorly in differentiating normal prostate from
cancer. Incorporation of small metabolites into the Lasso model
improved the accuracy of PCa identification (Table 1). Our
findings add to the understanding of the metabolism of PCa and
may have applications in the clinical care of men with PCa.
The metabolic profile of cancer cells is strikingly different

from normal cells. Metabolism in the prostate gland shows dis-
tinctly different kinetics (metabolic flux) of the Krebs cycle
compared with other organs (Fig. 2) (29). DESI-MSI is an ideal
method to exploit these differences in cancer biochemistry in
vivo because it is tissue based, does not require tissue fixation,
and provides reasonably good spatial resolution (∼200 μm).
In the cancerous specimens evaluated using DESI-MSI (Fig. 1B)

we detected significantly lower levels of several Krebs cycle inter-
mediates (m/z <200) including citrate/isocitrate, aconitate, succinate,
and malate. Very likely, these decreased levels are the product of
faster transformation of intermediates. Indeed, previous work has

Fig. 3. Distribution of glucose/citrate ratio of some representative prostate
tissue specimens showing significant elevation of the glucose/citrate ratio in
cancer. The Top of each panel (A–O) shows the histopathological evaluation (H&E)
of the corresponding tissue, where cancer areas have been demarcated by red,
benign areas by black, stroma areas by green, and inflammation areas by blue.

Fig. 4. Extracted ion chronogram of glucose and citrate over a line scan of a
typical prostate tissue specimen that contains both benign (black outline)
and cancer (red outline) areas. (Inset) H&E staining of the tissue and the
position of the line scan (blue).
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suggested that the Krebs cycle in malignant prostate is bioenergetically
more efficient (gaining more ATP per glucose metabolized) com-
pared with normal prostate (29). Further, a number of anaplerotic and
cataplerotic reactions, involved in biosynthetic pathways, likely con-
tribute to the reduced levels of the Krebs cycle intermediates in PCa.
One noteworthy example is the higher levels of glutamate we detected
in PCa (Fig. 1B), which are known to be formed from α-ketoglutarate
(Fig. 2). Glutamate has been implicated as a biomarker of PCa ag-
gressiveness, suggesting that modulation of the pathways and the
metabolome could modulate tumor behavior (33, 34).
A second interesting cataplerotic reaction in the Krebs cycle

involves shunting citrate into lipogenesis in PCa, presumably to
construct cell membranes for proliferating cancer cells (Fig. 2)
(35). Indeed, we detected higher levels of lipids (m/z 200–1,000)
in PCa compared with normal prostate tissues (SI Appendix, Fig.
S5B), a finding consistent with metabolic reprogramming in PCa
associated with increased expression and activity of several lipogenic
enzymes including FA synthase (FASN) (35). Furthermore, unlike
many other cancers, FA oxidation is the main source of energy
required for cellular proliferation and progression of PCa (35).
Development of PCa is associated with the metabolic switch from

a high level of citrate secretion to citrate oxidation (29). Costello
and Franklin (36–38) and Costello et al. (39) proposed that high
uptake of zinc by normal prostate mitochondria inhibits the activity
of m-aconitase, thereby slowing the citrate oxidation in the Krebs
cycle (Fig. 2) that results in a high level of citrate in normal prostate
tissue (Figs. 1 and 4) (39). The gene encoding the zinc uptake
transporters (ZIP1) is down-regulated in PCa, leading to a faster
oxidation of citrate driven by low level of zinc (38). In this study, we
were able to image the known changes in citrate levels in PCa and
normal tissues (Fig. 4) using DESI-MSI to distinguish normal from
malignant tissues with high accuracy and excellent spatial resolution.
MR spectroscopy imaging (MRSI) uses the choline/citrate ratio

to diagnose and prognosticate PCa (30). However, we could not use
this ratio because in a DESI-MSI run (which has much higher
spatial resolution than MRSI) all species need to have the same
charge to be detected together. Choline appears protonated and has
a positive charge, whereas citrate is deprotonated and has a nega-
tive charge. We found glucose to be a reliable partner with citrate in
the negative ion mode DESI-MSI and we have used that ratio to
distinguish PCa from normal in a single scan.
With further development, DESI-MSI/Lasso could find several

potential clinical applications in managing PCa. Two important
strengths of DESI-MSI—its speed and the need for little sample
preparation—make it particularly promising as a rapid, point-of-

care clinical test. DESI-MSI could be used to complement frozen-
section analysis by histopathology, particularly when the H&E-based
frozen-section analysis is challenging because of morphological
mimics, artifacts, and heterogeneity. The method described in this
study could be adapted to rapidly detect cancer cells at the margin of
resection during prostatectomy––effectively providing a real-time
evaluation of surgical margins to guide the surgeons on the extent
of their resection. We are keen to work further in this aspect.
Positive surgical margins are a common problem, occurring in 11–
48% of cases (40, 41). Avoiding positive surgical margins would
reduce the incidence of cancer recurrence and need for secondary
treatments. Indeed, we have shown before that DESI-MSI can have
similar application in gastric and pancreatic cancer margin analyses
(16, 19). In addition, our method could be used on fresh prostate
biopsy tissues to provide real-time diagnosis for men undergoing
prostate biopsy. It should be noted, however, that this preliminary
study is based on a limited number of samples. Therefore,
future study will include a larger number of samples to further
validate the current results and construct a more powerful Lasso
classifier that could improve the overall accuracy.

Materials and Methods
Preparation of Prostate Tissue Specimens. Following Institutional Review
Board approval, we accessed fresh-frozen prostate tissue obtained from
prostatectomy specimens and stored in the Stanford University Department
of Urology tissue bank. The samples included 64 prostate tissue specimens
(28 benign only, 36 cancer only, and 10 cancer mixed with benign tissue) that
had been obtained from different patients and stored at −80 °C until sec-
tioning. A 5-μm section of each tissue sample was mounted on a glass slide
and stained with H&E. A genitourinary pathologist (C.A.K.) reviewed and
annotated normal and cancerous areas on the H&E-stained 5-μm adjacent
tissue sections. Benign tissue included areas of normal prostate and areas of
inflammation. 15-μm-thick adjacent sections were obtained using a Leica
CM1950 cryostat (Leica Biosystems). These tissue sections were mounted on
glass microscope slides and stored at −80 °C before DESI-MS analysis. The
54 specimens were used to construct a training set (n = 36) composed of
18 normal and 18 cancer (Gleason pattern 3 and/or Gleason pattern 4)
specimens, and a validation set (n = 18) composed of 10 normal and 8 can-
cerous specimens for DESI-MS evaluation. The remaining 10 specimens of
mixed grade were evaluated by the distribution of the glucose/citrate ion
signal ratio to determine cancer margins.

DESI-MSI Study. The detailed method of tissue imaging by DESI has been
described elsewhere (21, 42). Briefly, a laboratory-built DESI source coupled
to an LTQ-Orbitrap XL mass spectrometer (Thermo Scientific) was used for tissue
imaging. DESI-MSI was performed in the negative ion mode (−5 kV) from
m/z 50–1,000 with a spatial resolution of 200 μm (spray spot diameter) using a
histologically compatible solvent system 1:1 (vol/vol) dimethylformamide/aceto-
nitrile (DMF/ACN) (43) at a flow rate of 0.7 μL/min. The HPLC-grade solvents
(DMF, ACN, etc.) were purchased from Sigma-Aldrich. Nitrogen, at a pressure of
170 psi, was used as the sheath gas for electrospray nebulization. The prostatic
tissues were scanned under impinging charged droplets using a 2Dmoving stage
in horizontal rows separated by a 200-μm (spatial resolution) vertical step. All
imaging experiments were carried out under identical experimental conditions
including geometrical parameters, e.g., spray tip-to-surface distance ∼2 mm,
spray incident angle of 55°, and spray-to-inlet distance ∼5 mm. Data acquisition
was performed using XCalibur 2.2 software (Thermo Fisher Scientific Inc.). An in-
house program allowed the conversion of the XCalibur 2.2 mass spectral files
(.raw) into the image file, which could be read by a biomedical image
analysis software called Biomap (freeware, https://ms-imaging.org/wp/. The
distributions of different metabolites, lipids, and the glucose/citrate ratio
were plotted (Figs. 1B and 3, and SI Appendix, Fig. S2C) using the Biomap
software. In ion images, we have used rainbow color order to represent the
highest concentration by red and the lowest concentration by violet.

Metabolite/Lipid Identification. The ions observed in the DESI-MS study were
identified by searching the MassBank (www.massbank.jp) and the LIPID Me-
tabolites and Pathways Strategy (www.lipidmaps.org/) databases based on high
mass accuracy and isotopic distribution. When the database listed multiple iso-
baric/isomeric metabolites or lipids, we performed collision-induced dissociation
(CID) and compared the corresponding fragmentation profile with that of the
standard from the above database to characterize the species (44) wherever

Fig. 5. Negative ion mode DESI-MS ion signal intensity ratios for glucose/citrate
are plotted for (A) the training set (18 benign and 18 cancer specimens), and
(B) the validation set (10 benign and 8 cancer specimens) by averaging the ion
signals of glucose and citrate from all pixels acquired from the individual tissue
sample. From these plots, a tissue can be classified as cancer when glucose/citrate
signal ratio is >1, and benign when the ratio is <0.5.
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applicable (see SI Appendix, Fig. S6 A–P as typical examples). The CID spectra of
the mass selected ions from the PCa tissue specimen are sometimes complex,
although the majority of fragment ions matches with that of standards. This
complexity can be interpreted by the interference of isomeric/isobaric ions de-
rived from the biological matrix (tissue). As the position and stereochemistry of
the double bond in an FA complicates the structural elucidation, they are often
tentatively assigned in FAs and glycerophospholipids. However, some common
and well-known metabolites and lipids that are commercially available were
identified from the tissue by comparing their MS/MS data with standards.

Post-DESI-MSI Histopathological Reevaluation. As the DESI solvent DMF/ACN
(1:1; vol/vol) is histologically compatible (43), the same tissue samples, after an-
alyzing in DESI-MS, were subjected to H&E staining followed by histopathological
reevaluation. The dyes and solvents used in H&E staining were purchased from
Fisher Scientific. High-resolution (0.43-μm) optical images of H&E-stained tissues
were recorded using a Hamamatsu NanoZoomer 2.0-RS slide scanner. The pa-
thology examination was made without the knowledge of DESI-MS evaluation.

Statistical Analysis. XCalibur raw data files were converted to .txt files for
statistical analysis. The raw data in .txt file format were imported to the R
language for statistical analysis. Although hundreds of metabolites and lipids
were detected by DESI-MS, we selected the top 54 peaks (SI Appendix, Tables
S1 and S2), whose abundances were significant, and most of them (SI Ap-
pendix, Table S1) were characterized by tandem mass spectrometry. We
performed statistical analysis both by using the individual peaks and by
using all possible ratios of two peaks in this list (SI Appendix, Tables S1 and
S2). Within the training set (18 benign, and 18 cancer), we applied the Lasso
method (multiclass-logistic regression with L1 penalty) using the glmnet
package in the CRAN R language library (45).

The Lasso yields sparse models, that is, models that involve only a subset of
the variables/predictors (27). Therefore, models generated using the Lasso
are simpler and easier to interpret than those from other linear regression
methods. In our application, the Lasso method yields a model with parsi-
monious sets of features for discriminating cancer and normal prostate tis-
sue. A mathematical weight for each statistically informative feature is
calculated by the Lasso depending on the importance that the mass-spectral
feature has in characterizing a certain class. Because the features selected by
the Lasso can occur at a valley or a shoulder of an actual mass-spectra peak,
identification of the selected features was performed by characterizing the
nearest mass-spectra peak to the statistically selected feature. Classification
was done on a pixel-by-pixel basis into one of two classes: cancer or normal,
and then results were converted to patientwise predictions using a majority
rule: if the majority of a tissue (patient) pixels are predicted to be cancer, the
tissue is predicted as cancerous. We used cross-validation, leaving out one
patient at a time, to select the Lasso tuning parameter and to assess the
predictive accuracy within the training set. Then, the chosen model was
applied to the test set of 18 patients.

Additional Information. Supporting information accompanies this paper in the
SI Appendix.
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