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idea of spatial filtering. By Brown’s admission, her
treatment does not consider the phase factor at the
focal plane, but the observation plane is correctly
placed at the geometrical image and reference is made
to an article which includes the phase factor Neither
Klein’s text nor Brown’s article has an extensive dis-
cussion of the result in the general case where the ob-
servation plane is not at the geometrical image.

In the future we plan to introduce the experiment on
spatial filtering as before by having the students read
Phillip’s article. We plan this in part because the
article excites interest. We also hope it will raise ques-
tions. In some cases this may require prodding, by in-
sisting that the students understand observations made
at positions other than that of the geometrical image.
When questions are raised, we will refer students to
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Klein’s text, Brown’s article and to our notes. These
will lead to other references, if needed.

1 Richard A. Phillips, Amer. J. Phys. 37, 546 (1969).

2 Equations (1) and (2) are Egs. (6) and (7) in Ref. 1,
with a typographieal error in Eq. (7) corrected.

3 See any good opties text, e.g., John Strong, Concepts
of Classical Optics (Freeman, San Francisco, 1958).

4+ This point of view provides another way of developing
Eqgs. (7) and (10). For a discussion of Fresnel diffraction
when lenses are present, see Charles F. Meyer, The Diffrac-
tion of Light, z-rays and Material Particles (Univ. of
Chieago Press, Chicago, 1934), pp. 101-106.

& Miles V. Klein, Optics (Wiley, New York, 1970).

8 Judith C. Brown, Amer. J. Phys. 39, 797 (1971).

7J. Rhodes, Amer. J. Phys. 21, 337 (1953).
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Forty-five years ago Wigner and Witmer,! using group
theory, found the number of electronic terms of each
symmetry of a diatomic molecule formed by bringing
together specified terms of its separated atoms. The
deepest part of their analysis concerned the assignment
of g, # symmetry labels to the diatomic terms arising
from like atoms in the same term. We have been unable
to find an elementary (i.e., inelegant and non-group-
theoretical) derivation of these rules; even Landau and
Lifshitz® are content to quote the results. This note
provides such a derivation.

We label the atomic centers a and d. On each is an
n-electron atom in a state of a term with quantum
numbers (I, s}. We form the (21+41)2(2s-+1)2 properly
antisymmetrized functions

[mumg; mi'm,’ J=A(mmy; 1< n)q

X (mims;n+1---2n), (1)

where (mgms; 1---n), is an atomic function, of the
space-spin coordinates of electrons 1 through n, cen-
tered on a. We specify that each atomic function cen-
tered on b may be obtained from the corresponding
atomic funetion on @ by translating it from a to b. The
quantization axis is chosen along ab.

Inversion of the electronic wavefunction in the mid-
point of ab (denoted by 1) is equivalent to inversion in
one atomic center, followed by translation through an
internuclear distance toward the other. Since each
atomic state has the same parity under inversion
through its own center, we find that

Ilmpn,; mims 1= Al(mmmg; 1+++n),
X (mim,;n+1-+2n),
=A(m/m/; nt+1-++2n),
X (mymg; 1+ <n)y
=(—=1DrA(mims; 1 +n),
X (myms; nt1+++2n)
= (—1)%[m/m,"; mym,]. (2)

The last equality follows because s is integral when n is
even, half-integral when n is odd.

If mis%m;, we can form two independent combina-
tions [mums; mim,’ J==[mi/ms’; mm,]; Eq. (2) implies
that one is g, one is u. The subspace spanned by the
(2s41)% g-functions with given m; m; is invariant
under total spin S, as is that spanned by the (2s41)?
u-functions. Diagonalizing S?, we find one g state and
one u state with each set of spin quantum numbers
(8, Mg), 8=0,1, -+, 25, Mg=—28, -+, +8. We do
this for all sets m;==m;" with fixed | m;+m/ |=A. We
observe that if A is odd, this exhausts all states with
that A. Therefore if A is odd, the number of (A, 8),
terms is equal to the number of (A, S), terms.

If A is even, the number of (A, §), terms is one
greater or one less than the number of (A, S8), terms
depending on the symmetry under inversion of the
(8, Mg) states formed from the (2s-+1)2 atomic fune-
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tions with m;=m;=A/2, denoted by [ms; m.’]. We
show that

1(8, Ms) = (—1)5(8, Ms), (8)
which means that when A is even the “extra” (A, S)
term is g or % as S is even or odd.

Equation (3) may be proved by induction: It is true
for 8=2s, because (S=2s, Mg=2s)=[m,=s; m,’ =s],
and I[s; s]=(—1)2[s; s] [Eq. (2)]. There are two
states with Mg=2s—1; one of the combinations
[s; s~1]4[s—1; s] is even under I, the other is odd.
Since 1 commutes with S, one is the (2s, 2s—1) state,
with parity (—1)2¢ under I; the other must be the
(2s—1,2s— 1) state which therefore has parity (—1)2+—1
under I. There are three states with Mg=2s—2:
[s; s—234[s—2; s], and [s—1; s—17. The first two
have opposite parity; the third has parity (—1)%,
The three states (2s, 2s—2), (2s—1, 2s—2), and
(2s—2, 2s—2) are formed by linear combination. As
we have seen above, the first two have opposite parity;
therefore (2s—2, 2s—2) has parity (—1)%s=(~1)22,
and so on.

Consider finally the 2 terms (A=0). We must find
the behavior under reflection in a plane containing the

internuclear axis (denoted by R). Z states are formed
from the states (1) with m;'=—m;. Now

R[mms; —mgmy = [—myms; mpms' ],
0

RI[mgms; —mums J= (—1)2[mms’ ; —mmm;].

That is, for fixed m; the (2s-}-1)2 states [mm,; —mm,’]
behave under RI as the (2s+1)? states [mm,; mmm,’]
behave under I. Therefore RI acting on a state of a 2
term multiplies it by (—1)5. If S is even, all =+ terms
are g and all Z~ terms are u; if S is odd, all Z* terms are
u and all Z— terms are ¢.

This completes the derivation of the Wigner—
Witmer correlation rules.

* Support from the National Science Foundation is
gratefully acknowledged.
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LE. Wigper and E. E. Witmer, Zeits. f. Physik 51, 859
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21L. D. Landau and E. M. Lifshitz, Quantum Mechanics
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The Blackwood ballistic pendulum apparatus is
readily available at most schools. An effective method of
modifying® the experiment that accompanies this piece
of equipment is to remove the pendulum and use the
spring gun portion in the following manner:

The ball is fired vertically. The zenith of the flight is
estimated to the nearest centimeter. After approxi-
mately fifteen trials a mean height (k) and an estimate?
of the standard deviation are computed. The students
are asked to get the gun at approximately 45° and
predict the point of impact. A ditto sheet is marked
with concentric squares representing one, two, and
three standard deviations in the value of the range. It is
placed at the same evaluation as the ball to be launched
with the center of the squares at the predicted range
(R). The students are then challenged to place the
ball on target within three trials.

Since the nominal predicted range value is 4004
cm, the students are apprehensive of their chances of
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success. They are genuinely surprised (relieved?) and
pleased, however, at the effectiveness of their predic-
tion. The pooled experimental standard deviation for a
laboratory section of 12 to 16 students generally is 209,
larger than the predicted value.

Of course such splendid results are deceptive and
rest in part on the original experimental design. The
range is given by the expression B=2h sin(20) where 8
is the angle of elevation of the launcher from the hori-
zontal. The aggressive student should be encouraged
to derive this formula. The other students should be
shown the proof and be expected to sketch R as a
function of §. At #=45° the range is not only a maxi-
mum, but the variation of range with angle is a mini-
mum. The value of sin(26) changes less than =39
for an angular difference of 2°. No protractor is
necessary since a right triangle may be set up with
meter sticks and the launcher accurately aligned within
a fraction of a degree. The standard deviation in R,
therefore, simplifies to twice the deviation in A. In
practice the lateral alignment of the spring gun gives
rise to a smaller scatter than the spread in the range
values although a slight adjustment after the first shot
is often necessary. It is important to clamp the spring
Jauncher rigidly in position as even squeezing off a shot
disturbes the alignment.

This exercise has been found effective for several
reasons:



