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A simple geometric model is presented to account for A-doublet propensities in bimolecular reactions A+ BGABSC. It 
applies to reactions in which AB is formed in a 11 state, and in which the unpaired molecular orbital responsible for ddoubling 
arises from breaking the B-C bond. The A-doublet population ratio II (A’ ) : fI(A” ) is predicted to be 2 : 1 provided that: ( I ) the 
motion of A in the transition state [ABC] determines the plane of rotation of AB; (2) the unpaired L orbital lying initially along 
the BC bond may be resolved into a projection onto the AB plane of rotation, which correlates with II( and a projection 
perpendicular to this plane, correlating with II( (3) there is no preferred geometry for dissociation of [ABC]. The 2: 1 A- 
doublet ratio is the “unconstrained dynamics prior" A-doublet distribution for such reactions. 

I. Introduction 

The electron configuration of a linear molecule in 
a ll state must be of the form K or n3; in either case, 

there is an unpaired K orbital lying perpendicular to 
the internuclear axis. In the nonrotating linear mol- 
ecule, the electronic angular momentum makes a 
projection on the internuclear axis of A = 1, and the 

II state is doubly degenerate due to the two possible 
directions of this projection [ 1,2]. If the molecule 
also rotates, interaction of the molecular rotational 
angular momentum with the electronic angular mo- 

mentum splits this degeneracy, giving rise to two dif- 
ferent energy levels, the n-doublet levels. In the limit 
of large molecular rotation, the unpaired x orbital 
acquires an additional symmetry with respect to re- 

flection in the plane of rotation (see fig. 1). If this 
orbital is unchanged by reflection in the plane of ro- 
tation, the II state /i-doublet level is designated [ 31 
as II(A’ ); if it changes sign, it is called II( 

The lI( A’ ) :II( A” ) population ratio has a statis- 
tical prior of 1: 1, based on the small size of the A- 
doublet splitting (typically less than 1 cm-‘) com- 
pared to thermal energies. However, numerous pho- 
todissociation and reactive scattering studies show 
that the n-doublet population ratio may deviate sub- 

stantially from unity [ 3,4]. This is usually inter- 
preted as resulting from some dynamical preference 
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Fig. 1. The d-doublet components of a II molecule in the high I 
limit. 

for planar versus nonplanar breakup of the complex 
in photodissociation or reactive scattering. If a bond 
breaks to form an unpaired orbital on one of the re- 
sulting fragments, the lobes of this orbital are ex- 
pected to point initially along the line of the broken 
bond. On the other hand, angular motion of the frag- 
ment in the complex during the bond breaking would 
lead to rotation of the fragment after the dissociation 
is completed. Thus, the orientation of the plane of 
rotation relative to the unpaired x orbital of the frag- 
ment gives information about the motion of A rel- 
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ative to the breaking bond during the dissociation. 
Recently, several attempts have been made to de- 

scribe theoretically the preference for population of 
different n-doublet levels (the A-doublet propen- 

sity) in specific systems. The methods used include 

both quasiclassical trajectory calculations [ 51 and 
quantum scattering calculations [ 61 on ab initio sur- 
faces. In this Letter we present a simple geometrical 
model to describe the formation of the two A-dou- 

blet levels in the limit of large product rotation (high 
J limit) in a bimolecular reaction. We show that un- 
der a set of not too restrictive conditions the high J 
I7 (A’ ) : ll( A” ) population ratio is 2 : 1. This result 
can be used as a “reference state” which we call the 

“unconstrained dynamics prior”. Deviations from 
the predicted ratio imply dynamical preferences in 
the reaction, e.g., restricted motion in the breakup of 

the collision complex. We compare the predictions 
of this model to the results of several experimental 
studies involving H-atom reactions. 

2. Theory 

Consider a bimolecular reaction that leads to the 
breakup of a triatomic [ABC] transition state to form 

products AB and C such that the diatomic product 
AB is formed in a l7 state with the unpaired x orbital 

on AB arising from the breaking of the BC bond 
(later this triatomic case will be generalized). We 
describe the geometry of [ABC] as shown in fig. 2. 
The A atom is bonded to B at a distance r, and moves 
within the complex with instantaneous velocity vec- 
tor v, (which has components v,, and Us, parallel and 
perpendicular to the AB bond axis). The AB bond 
and the velocity vector v, determine the xy plane of 
the molecular coordinate system. The position of C 
is described by the angles 8 and $ as shown. 

The model we describe applies to any reaction that 

proceeds through such a transition state provided that 
the following three conditions are met: 

( 1) the plane of rotation of the AB product is de- 
termined by the motion (instantaneous velocity) of 
the A atom within the [ABC] transition state; 

(2) the unpaired I[: orbital lying initially along the 
BC bond may be resolved into a projection onto the 
AB plane of rotation, which correlates with II(A’ ), 
and a projection perpendicular to this plane, which 
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Fig. 2. The geometry of the [ABC] transition state. The instan- 
taneous velocity vector of the A atom (uA) and its components 
parallel and perpendicular to the AB bond axis (v, and vI ) are 
shown. Atoms A and B are separated by distance r, and the plane 
of motion of A about B is indicated. The AB bond axis and v, 
define. the xy plane of the molecular coordinate system. C is ori- 
ented at angles Band 4. 

correlates with I7 (A” ), as C separates from AB; 
(3 ) there is no “preferred” orientation of C rel- 

ative to AB for breakup of the transition state to oc- 
cur, i.e. all angles 13 and @are equally likely in [ABC] _ 

Condition ( 1) is important for our model, and can 
be brought about in a number of ways. For example, 
if the atom A is much lighter than the atom B 
(m,/m,< 1 ), then the force exerted on AB by the 
breaking BC bond is nearly on the center of mass of 
AB, and the resulting torque will be small. Thus the 
AB angular momentum will be determined primarily 
by the motion of A within the complex (specifically, 

by the component Pi of v+,),), and condition ( 1) will 
hold. Alternatively, if the A atom moves very rapidly 
within the complex (which is also facilitated if 
mA << mB), or if the forces exerted during the dis- 
sociation are weak, then the rotation of AB will also 
arise primarily from the motion of A. Because we are 
interested in the high J limit, we exclude the cases of 
small or zero ul, as this would not lead to formation 
of AB with high J. 

The breaking of the BC‘bond is taken to be as in- 
dicated in fig. 3. We describe in the following way 
the formation of the n-doublet levels in the high J 
limit. The unpaired x orbital on the AB molecule is 
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Fig. 3. Breakup of the [ABC] transition state. The axis of the 
broken BC bond (which is the axis of the unpaired II orbital on 
B) makes an angle 0 with the AB fragment’s nuclear rotational 
angular momentum vector, where 0 is the angle of orientation of 
C with respect to the AB axis upon dissociation. 

localized on the B atom and correlates asymptoti- 
cally with the broken BC bond, making an angle 8 
with the AB rotational angular momentum vector RAB 
as shown. This orbital orientation can be described 

as a linear combination of the limiting cases of the 
orbital oriented parallel or perpendicular to the plane 
or rotation of AB, i.e. of the two Adoublet levels. 
Thus, the wavefunction of the final state of the AB 

molecule will be a linear combination of the two /1- 
doublet wavefunctions, as shown in fig. 4: 

V tinal =a’ V(A’ ) I +a” V-M” 1 I , (1) 

where the coefficients a’ and a” are the contribu- 

tions from each A-doublet level to the final state. The 

contribution from the A’ n-doublet level (X orbital 
parallel to the AB plane of rotation) will be just the 
projection of the axis of the x orbital onto the plane 
of rotation, i.e. a’ =sin 8, whereas the contribution 

from the A” A-doublet level (x orbital perpendicular 
to the AB plane of rotation) will be the projection of 
the x orbital onto an axis perpendicular to this plane 

(i.e. the axis of rotation), a” =cos 19. Condition (2) 
implies that the projections a’ and a” remain un- 

changed throughout the dissociation. 
In this discussion we have assumed that any pro- 

jection of the forming unpaired 7c orbital (the break- 
ing BC bond) onto the AB plane of rotation corre- 
sponds to a contribution from the A’ n-doublet level. 

Initially, this projection may not be perpendicular to 
the AB axis. However, since the unpaired II orbital 

and the AB bond axis must be perpendicular in the 
final state of AB, we assume that the 7c orbital and 

the AB bond can reorient during the dissociation by 
the processes of rearrangement of the 7c orbital elec- 
tron cloud and rotation of A about B (the latter fa- 
cilitated by the rapid motion of A with respect to B 

and C). Any such reorientation would not affect the 
values of a’ and a” : rotation of A about B does not 
change the position of the BC bond axis relative to 
the plane of rotation of AB, while condition (2) im- 

plies that rearrangement of the electron cloud would 
not mix A’ and A” states. 

However, for some A+ BC systems, such reorien- 
tation may not be possible for all [ABC] dissocia- 

tion configurations. If reorientation is difficult or 
impossible for a given configuration, this can indi- 
cate that dissociation from that configuration is re- 
stricted or unallowed (in contradiction to condition 

(3)). Indeed, restriction of dissociation from cer- 

Fig. 4. Decomposition of the unpaired n orbital on AB into a linear combination of the wavefunctions of the two n-doublet levels. 
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tain transition state geometries leads to a predictably 

different result for the &doublet ratio (see discus- 
sion in section 3). 

Condition (3) dictates that there is no correlation 
between the position of C (or, equivalently, the mo- 

tion of A) and the probability of dissociation. This 
case can be regarded as the “unbiased” case for 
breakup of the [ABC] transition state in the sense 

that the distribution of dissociation orientations will 
be random and unconstrained. Under these condi- 
tions, a simple heuristic argument correctly predicts 
the resulting n-doublet population ratio. Referring 

to fig. 2, we let the AB bond axis and the A atom ve- 
locity vector define the xy plane of the molecular co- 
ordinate system. As B and C separate, the unpaired 
rt orbital on AB points along the BC axis (see fig. 3). 
The position of this orbital can be described as a lin- 
car combination of projections of its position vector 
on three mutually perpendicular axes in this system, 
two of which (x and JJ) lie in the plane of motion of 

A about B (which eventually becomes the plane of 
rotation of the AB fragment), and one of which (z) 
is perpendicular to this plane. Two of these three 
projections have the K orbital in the plane of rotation 

of AB, corresponding to the A’ d-doublet level, while 
one projection has the orbital perpendicular to the 
AB plane of rotation, corresponding to the A” A- 
doublet level. Since the orientation of [ABC] upon 

dissociation is random (no preferred orientation), 

we would expect equal contributions from each of 
the three possible mutually perpendicular configu- 
rations when averaged over all possible [ABC] ge- 
ometries. These considerations lead us to anticipate 
a /l-doublet population ratio in the high J limit of 

fI(A’):H(A”)=2:1. (2) 

The process of /i-doublet formation is thus equiv- 
alent to randomly selecting in 3-D space a vector (the 
direction of the unpaired x orbital) and measuring 
its projection on a given plane (the AB plane of ro- 
tation). Because in 3-D there exist two degrees of 
freedom within a plane and one degree of freedom 
perpendicular to that piane, a randomly selected vec- 
tor should, on average, have its projection in the 
plane and its projection perpendicular to the plane 
in the ratio 2 : 1. This result can also be obtained rig- 
orously, as shown in the Appendix. 

Our model thus predicts a n-doublet population 
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ratio of 2: 1 in the high J limit for any reaction that 

satisfies the three conditions listed above. Note that 
this preference for the A’ n-doublet level arises purely 
from geometrical considerations assuming a simple 
unconstrained model for the dynamics: no orienta- 

tion preference in the breakup of [ABC]. In this 

model, the A’ level is preferentially populated sim- 
ply because, geometrically, more [ABC] dissocia- 

tion trajectories have in-plane character than out-of- 
plane character (no1 because trajectories with in- 
plane character are preferred). Thus, the 2: 1 /i-dou- 
blet population ratio may be regarded as the prior A- 
doublet distribution for this type of bimolecular re- 

action. We call this n-doublet population propensity 
the unconstrained dynamics prior. 

The key feature in this model is how the [ABC] 

transition state decomposes, not how it was formed. 
Thus, this model can be applied to either of the bi- 
molecular reactions, A+ BC and B +AC, and it is 
valid both for direct reactions and for reactions that 

proceed via a long-lived complex. It can also de- 
scribe unimolecular decompositions (e.g. photodis- 
sociation of the molecule ABC), provided that con- 
ditions (l)-(3) hold for the excited molecule. 
Further consideration shows that this model can be 

generalized to include cases where A and/or C con- 
sist of more than one atom provided that the three 
conditions listed above are satisfied. 

3. Comparison to experiment 

To test our model, we have collected in table 1 the 
observed OH (OD) ,4-doublet population ratios in 
the high J limit for reactions of the type H(D) 
+ OQ-tOH (OD) + Q. We chose this class of reac- 
tions because the OH (OD) product is often formed 

with high rotational angular momentum, making 
classification into H (A’ ) and H(A” ) most mean- 
ingful [ 31. Moreover, the lightness of the H (D) 
atom relative to the 0 atom, combined with its high 
velocity (especially for hot H or D atoms), lead us 
to expect that the motion of H (D) determines the 
plane of rotation of the OH (OD) product, as our 
model requires. 

Table 1 shows that for many reactions, the ob- 
served Il(A’) :H(A”) ratio is near or equal (within 
experimental error) to our predicted ratio of 2: 1. Our 
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Table 1 
Experimentally observed A-doublet population ratios in the high J limit for H-atom reactions 

Reaction 

H+O1+O+OH, 
E(H)=1.6eV 

H+02_tO+OH, 
E(H)= 1.0, 1.9, 
2.1,2.3,2.5 eV 

Product probed 

OH(*IIr,2, v=O) 
OH(*t-I 312. v= 1) 
OH(%,,,, ~0) 
0H(211,i~, U= 11 

OH(‘H>,z, v=O) 

Il(A’)/H(A”) Ref. 

2.06kO.11 [71 
1.93LO.09 171 
1.72TO.15 171 
1.84+0.16 171 

2-3 I51 

H+N20+N2+0H OH(ZH,,wz> u=(J) I.8 kO.4 181 
E(H)= 1.9 eV 

D+OC%OD+CS, 
E(D) ~2.5 eV 

H+COZ~OH+CO, 
E(H)=2.5eV 
E(H) = 1.86 ev 

H + NO,-OH + NO, 
E(H) =thermal 

OD(?I,,,, u=O) 
OD(‘I-I,,2, u=O) 

0H(2Hr,~.,,~, u=O, 1) 
OH (%,z, I/Z, U= 0) 

OH(‘t-J 3,*.1,*, u=o, 1) 

2.17 + 0.22 a) 
l.98+0.19a’ 

1.06-tO.21 a) 
0.98+0.17 

1.5 zLo.2 

I91 
191 

II01 
IllI 

[I21 

H+CIO,-OH+CIO, 
E( H ) = thermal 

OH(*Il 3,2.1..71 a=& I ) 1.3 kO.3 [I21 

‘) Computed from the data given. 

model offers a rationalization for these observations, 
including the results of our recent study [7] of the 

reaction H+O*+OHi-0. Indeed, this model cor- 
rectly predicts the observed n-doublet propensity for 
all the hot H-atom reactions except one. 

Deviations from our unconstrained dynamics prior 
do occur. For example, H + C02-+OH + CO has a A- 
doublet population ratio of about 1: 1. One possible 
interpretation of this result is as follows. If [ABC] 
dissociates from a linear geometry, we expect the A’ 
n-doublet to be formed exclusively, since in this case 

the BC bond lies in the plane of rotation of Al3 (see 
figs. 2 and 3). On the other hand, for dissociation 
from highly bent geometries where the ABC bond 
angle is nearly 90” and the motion of A is uncon- 
strained, we expect equal contributions from A’ and 
A”. Thus, the observed n-doublet population ratio 
for H+C02 may indicate a preference for decom- 
position of the [ HOC0 1 transition state from a bent 
geometry that falls apart equally well for any motion 
of H. 

In conclusion, we have developed a simple geo- 
metric model to predict n-doublet population ratios 
in bimolecular reactions forming products in II elec- 

tronic states. The model gives the ratio of 2: 1 as the 
prior distribution for the IT (A’ ) : II(A” ) ratio in the 
high J limit, based on the fact that, in a random dis- 

tribution of dissociation geometries, more conligu- 
rations will lead to the A’ /l-doublet level than the 
A” n-doublet level. Our model correctly predicts the 
experimental n-doublet distribution for a number of 
H-atom reactions. We can also interpret n-doublet 
distributions that differ from the unconstrained dy- 
namics prior in terms of preferred or restricted dis- 
sociation geometries, so that, using this model, we 

can gain new insight into the dynamics of reactions 
of this type. 
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Appendix. Calculation of the II(A’)/II(A”) 
population ratio for unconstrained dynamics 

Our model describes the probability to form either 
/i-doublet level for a given [ABC] dissociation ge- 

ometry. From eq. ( 1 ), this probability (denoted P 
or P”, for the A’ or A” /l-doublet level) is given by 

P’=(~‘)~=sin~fY, P”=(a”)2=cos28. (3) 

To predict an experimental A-doublet distribution 
we must average this probability over all possible ge- 
ometries (i.e. all r, 8 and $J). This averaged proba- 

bility, which we denote PT, is given by 

(4) 

where J(r, 8, @) is the Jacobian for this coordinate 

system (i.e. the “density” of geometries at a given r, 
8, and 9); S(r, 8, 4) is the probability for breakup 
of [ABC] at this r, 0, and $; P(r, 0, q5) is the prob- 
ability to form the AB product in the given A-dou- 

blet level (P’ or P”, as defined above); and the in- 
tegral in the denominator is the normalizing constant. 

For integration over 8 and I$ the Jacobian .I is the 
familiar sin 19 weighting for integration over the sur- 
face of a sphere. We denote by j( r) the r dependence 

of the Jacobian. The exact form j(r) will be unim- 
portant in our model, so we need not specify this 
function. Hence 

J(r, 0, @) drded+j(r) sinodrdBd@. (5) 

The function S(r, 8, @) represents the relative 

probability that [ABC] will dissociate with the ge- 
ometry given by r, 8, and @. Condition (3) states that 
S does not depend on 8 or @ 

S(r, 6, @)=p(r). (6) 
Combining eqs. (3)-(6) to determine the prob- 

ability to form AB in the A” /i-doublet level (Pi), 
we find that 

pq = S,Sd,j(r> sin edrdQd@p(r) cos2e 
S,l,dd(r) sinedrdBd@p(r) 

= I‘& sin ec02ede 1 

ILosinOdO =?’ 

This implies that 

P;=l-P;=$ 

and it follows that 

n(A’)/n(A”)=P;/P;=2. 

(7) 

(8) 

(9) 
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