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A. FITTING EQUATIONS TO DATA

1. Purposes

Fitting equations to data is a household task in molecular

spectroscopy and its purposes are usually twofold:

(a) Curve fitting. From a practical standpoint, it is

simply convenient to summarize adequately a large set of spectro-
scopic data by some simple analytical function that has only a
few adjustable parameters. An equation is a compact and easily
remembered substitute for the data. This is data reduction. in
the pragmatic sense of "to diminish in number." Furthermore, the
representation of the numerical data set by an appropriate equation
is one useful aid to interpolation, differentiation, integration,
or calibration. A familiar example is the fitting of a low-order
polynomial to the standard lines on a photographic plate for the
purpose of interpolating the wavelengths of the spectrum of
interest. Since the somewhat arbitrarily chosen function used

in curve fitting is generally not derived from "laws of nature,"
no physical significance is usually attributed to the values
obtained for the adjustable parameters and the uncertainty of
these values is seldom of interest.

(b) Model fitting. However, the fitting of equations to




spectroscopic data is usually approached from a more fundamental
standpoint. Namely, the adjustable parameters represent molecular
"constants” and the equations are algebraic representations of a
physical model involving these constants as adjustable parameters.
In fitting these particular equations to spectroscopic data, (i)
the values obtained for the parameters are considered as estimates
of the forever-unknown "true" values (if such can be said to exist!)
of the molecular constants and (ii) the estimated uncertainties

of these values are taken as measures of how well the estimated
values could be expected to represent the "true" values. Thus,
while the mathematical mechanics of model fitting do not differ
too much from those of curve fitting, the functional form is now

no longer arbitrary and the quality of parameter estimation emerges

as a consideration.

Parameter estimation is clearly a more sophisticated and
difficult task than simply curve fitting, but it is of considerably
more applied and theoretical utility. Precise values of the
parameters in an appropriate molecular model can perform a variety
of tasks. For example, they can be used very successfully as
predictors to enlarge a set of spectroscopic data by an incremental
iterative technique of (i) fitting and (ii) interpolation to missing
internal members of the set and, with care, extrapolation to new

external members. The estimated uncertainties of the values of



the molecular parameters can be used to place limits within which
it is realistic to search for the missing or new members. Further-
more, a molecular parameter estimated from one model can be used

in another model that contains this parameter. For example, GV
and B,, values estimated by fitting a molecular Hamiltonian to
observed line positions can be used to compute potential curves
and hence to predict line intensities. Finally, an estimated
"experimental" molecular parameter obtained from fitting a model
to data can be compared to an ab initio value and the est;mated

uncertainty of the "experimental" value used as a measure of the

agreement.

Spectroscopy is a mature scientific discipline in which the
main structure of the models’that are fitted to the data have a
very sound theoretical basis., Furthermore, the number of measured
line positions usually far exceeds the number of molecular param-
eters to be estimated. Consequently, these attributes are
conducive to the meaningful fitting of equations to spectroscopic

data.



2. Methods

There are, of course, a wide variety of techniques available
for fitting equations to data. These range from straightforward
graphical methods that use straight edges and french curves to
sophisticated statistical methods that require digital computers.
In spectroscopy, prior to the widespread availability of electronic
computers, equations were fit to data by graphical methods (Herzberg,
1950, pp. 168-193). This method is inherently subjective, which
on the one hand, can be an advantage since it can employ a spec-
troscopist's sound intuition and intimate familiarity with the
data at each step of the analysis but which, on the other hand,
can be a disadvantage since it can sometimes lead to unduly opti-
mistic estimates of the precision of the resulting molecular con-
stants (an example is given by Albritton, Harrop, Schmeltekopf,
and Zare, 1973b). Furthermore, the graphical method is concep-
tually simple and visually advantageous, but it is difficult and
tedious to apply to large quantities of spectral data to be fitted by
complex (e.g., nonlinear) models. Thus, while graphical methods
are indispensible in the early and intermediate stages of spectro-
scopic data reduction, increasingly, spectroscopists are using
statistical methods to obtain their reported values of molecular

constants.



There are many different statistical methods for fitting equa-
tions to data for the purpose of parameter estimation — least
absolute deviation, least squared deviation, maximum likelihood,
minimum chi-squared, — each method having a different "goodness of
fit" criterion and all of the methods varying in sophistication and
popularity. The oldest and by far the most widely used statistical
estimation procedure is the method of least—squéred deviation, or

"least squares.” In this method, the values that minimize the sum

of the squared deviations of the calculated and observed quantities
are taken as the estimates of the molecular constants of the model.
When applied with an electronic computer, the method of least
squares has the conside;able advantage of being able, for a large
amount of data and’for complicated models, to provide quickly esti-
mates of the molecular constants and their associated uncertainties,
both with many well-defined apd desirable attributes. However, the
least-squares method (like all statistical methods) also has the
distinct disadvantage of being able, even for those situations where

the method is in varying degrees inapplicable, to nevertheless fur-

nish numbers that superficially appear correct. This disadvantage is
compounded when it is associated with the aura of infallibility often
falsely attributed to numbers generated by an electronic computer.

In spite of this disadvantage, however, the method of least

squares has played, and will continue to play, a valuable role in



the analysis of spectroscopic data. No doubt, other methods will
see increasing application, but, as Tukey (1974, p. 5) points
out, little information is in the hands of the physical scientist
on general replacements for least squares. This dearth is in
contrast to the wealth of statistical research papers, mathematical
treatises, generél textbooks, and "how-to-do-it" handbooks that
are currently available on the method of least squares. Further-
more, many least-squares computer programs have been written for
general use and are thus available for those who hate computers
but want to use them. (In statistical texts, a least-squares fit
is referred to frequently as a "regression," a term actually
having a wider definition and curious historical origins, see
Bennett and Franklin, 1954, p. 37.)

The goal of this Chapter is to provide an introduction to
the least-squares method as it relates to common spectroscopic
problems. The presentation here will be long on spectroscopic
applications and short on statistical proofs, which are placed
in the Appendix. The reasons for these choices are twofold.
First, there are a number of excellent texts that consider the
application of the method of least squares to broad scientific
disciplines like physics or chemistry, but there appears to be
no such text solely devoted to the introductory application of

the least-squares method to molecular spectroscopy. Secondly,



too much rigor frequently leads to rigor mortis.

Unfortunately, space, time, and energy do not permit inclu-
sion here of the interesting topic of the relative merits of the
various types of least-squares fits used in spectroscopic data
reduction: (1) one-state fits; i.e., the molecular constants of
each state being determined separately from least-square fits
to, e.g., combination differences or term values of that
state; and (ii) two-state fits; i.e., the molecular constants
of upper and lower states, or molecular constants of one state
and term values of the other, being determined simultaneously
from a direct fit to the measured line positions. This subject
has received a lot of attention recently (Albritton, Harrop,
Schmeltekopf, Zare, and Crow, 1973; %slund, 1974; Pliva and
Telfair, 1974; and Albritton, Schmeltekopf, Tellinghuisen, and
Zzare, 1974) and it may even be premature to review it here,
However, the equally interesting and current topic of the relative
merits of separate band-by-band and simultaneous multi-band
fitting (Zare, Schmeltekopf, Harrop, and Albritton, 1973; Coxon,
1974; Pliva and Telfair, 1974; Albritton, Schemeltekopf, Zare,
and Czarny, 1975; and Saenger, Zare, and Mathews, 1975) is
considered in Sec. F, where it is shown that one often can
achieve the advantages of both.

After a brief outline of the notation that will be used,



the format of this Chapter will be as follows. First, there is
a general overview of the least-squares method, attempting to
answer two necessary introductory questions, "What is so good
about least squares?" and "When can least squares be applied?"
Secondly, the following Sections will then concentrate on the
application of the mathematical machinery of the least-squares
method, beginning with the simple, most-restricted, and most-
frequently applied least-squares formulation and ending with
the general, least-restrictive, and least-frequently applied
formulation. Lastly, the Chapter will conclude with comments

on reporting least-squares results without loss of information.



B. NOTATION

The least-squares method is formulated here in vector and
matrix notation, which has many advantages over the older alge-
braic notation involving explicit subscripts and summations.

The equations are compact and easily manipulated. Furthermore,
they apply to any least-squares fit, regardles§‘of the number of
measurements or parameters to be estimated. Finally, matrix
manipulation is a natural form for computer programming, since
many of the matrix operations, e.g., inversion, are generally
available in standard subroutines at most computer centers.
Lastly, almost all of the modern texts on the theory and practice
of parameter estimation use matrix notation.

Throughout this Chapter, the matrix definitions and opera-
tions will be the standard ones; hence, only the symbols are
defined here. A speaking acquaintance with matrix algebra is
assumed herein. However, useful aids to dispelling possible rust
on this subject/are the sections on matrix algebra as it pertains
to the method of least squares in Draper and Smith (1966, Chap. 2),
Scheffé (1959, Apps. I and II), and Bard (1974, App. A), the

latter two being more comprehensive but less elementary. The

matrix notation of this Chapter will be:
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(i) Boldface lower case letters, both Roman and Greek,

will denote column vectors, e.g., Y, B-

(ii) Boldface upper case letters, both Roman and Greek,
will denote matrices, e.g., X, ©.
(iii) Roman letters denote matrices and vectors of
known quantities, e.g., measurements, independent variables.
(iv) Greek letters denote matrices and vectors of
unknown quantities to be estimated, e.g., molecular constants,

measurement errors.

(v) The superscript T will denote the transpose
. T T

of a vector or matrix, e.g., Y » X'

(vi) The superscript -1 will denote the inverse of a

L L =
(square) matrix, e.g., (X X)™1.
The statistical notation of this Chapter will be mercifully
simple:

(i) The circumflex ~ is the standard statistical
notation for the estimated value of a parameter, e.g., 8
is the column vector of numbers that are the estimates for
the column vector of parameters B. Here we reserve the
circumflex to denote specifically the minimum-variance linear
unbiased (MVLU) estimates defined in Sec. C-1.

(ii) The function E( ) denotes the expectation value

of the quantity in parentheses, i.e., the average value that



would be obtained by infinitely many repetitive samples, all

made identically except for random measurement error.

11
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C. ATTRIBUTES OF THE- LEAST-SQUARES METHOD

1. Properties of Least-Squares Estimates

The popularity of the method of least squares is based on
the desirable properties of the estimates that it furnishes.

In the simplest format, if a set of n measurements

r= |- (C-1)

are to be fitted to an appropriate model that is linear in the

m unknown parameters (m <n)

B=|. (c-2)
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~

to determine estimates g of the unknown "true" values of g, then

the method of least squares offers values that are the most precise

(i.e., minimum-variance) unbiased estimates that are linear func-

tions of the measurements. These properties are a consequence of

the celebrated Gauss-Markov theorem, which is proved in the
Appendix. It is easier to recognize that the adjectives "minimum-

variance linear unbiased (MVLU)"rare indeed desirable properties

of estimates after some elaboration of each one. The following
comments are adapted from those of Daniel and Wood (1971, p. 7).,
except where noted.

(a) Unbiased. The "unbiased" property indicates that if
the same appropriate equations could be fitted with the least-
squares method to successive sets of data, each set taken under
identical experimental circumstances and subject only to random
measurement errors, then these varying sets of estimates will
average out in the long run to the "true" values; i.e., in statis-
tical notation, the expectation E(é)==§: Thus, the linear least-
squares estimation procedure itself does not introduce any bias,
i.e., systematic error, into the estimates. This often-unfamiliar
property of least-squares estimates is not a trivial one. There
are other estimation procedures that do in fact introduce bias
even for a perfect model. For example, the method of maximum

likelihood does not necessarily give unbiased estimates for small
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data sets (Bard, 1974, p. 6l1).

(b) Linear. The "linear" property indicates that the esti-
mates é.furnished by the least-squares method will be computed
from expressions that are linear functions of the data. Naturally,
this property is related to the fact that the model that was
fitted to the data was linear, as discussed in Sec. 2-b.

(c¢) Minimum-variance. The "minimum-variance" property

indicates that, again, if the same appropriate equations could

be fitted with the least-squares method to successive sets of
data, each set taken under identical experimental circumstances
and subject only to random measurement errors, then these varying
sets of estimates will "scatter" about the "true" values with the

smallest possible variance, i.e. mean-squared deviations. The

importance of this MV property is that the variance, or its
square root ~ the standard deviation, is the almost universally
accepted indicator of the degree of scatter of a set of values.
The scatter in successive sets of estimates for the same param-
eter may appear slightly hypothetical, since it could be

observed only if the measurement process were repeated many times
under the same circumstances and each set of data fitted with

the same equations. Therefore, the alternative and equivalent

interpretation of minimum variance in terms of probability may

be more appealing. Namely, the user of the least-squares method



15

can be assured that the one set of MVLU estimates é obtained from

-

a fit to the one set of data y at hand has the "best chance”
of being nearest the unknown "true" values; i.e., there is no
estimation procedure that will give any other linear unbiased
estimates with smaller variances.

Furthermore, in addition to estimated wvalues é'of the model
parameters with the above MVLU estimates, the least-squares method

~

can provide estimates of how far these B estimates may be expected
to deviate from the unknown "true" values. Stated alternatively
and equivalently, the estimates é_and their standard errors can

be used to construct, for each parameter, an interval (i.e., a
confidence limit) within which it can be said that the unknown

"true" value is likely to be found.

Examples of these properties will be given in Secs. D, E, and F.
2. Assumptions of the Least-Squares Method

The realization of the useful properties of least-squares
estimates described above depends on how closely the given theo-
retical and experimental situation conforms to the assumptions of
the least-squares method, which were only stated implicitly above.
In this Section, the key, non-trivial assumptions of the least-

squares method are examined in detail.
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The first set of related assumptions pertain to the form
of the equations, i.e., the model, used in the fit.

(a) Perfect model. It is assumed that the model perfectly

describes the physical situation. As theorists know, a perfect
model is a will-o'-the-wisp. When a model is incorrect, some of
the least-squares estimates will naturally be biased; that is,
regardless of the precision and extent of hypothetical successive
measurements, the least-squares estimates will not average to the
"true" values in the long run. Since this assumption of a perfect
model is generally unattainable in practice, it is replaced by

the more realistic assumption that the model is "adequate" for the
case at hand. Because of this concession to reality, it is
important to test critically the adequacy of the model during the
data reduction. Thus model testing, which is discussed at an intro-
ductory level in Sec. D-3-b, is an important part of the application
of the least-squares method, indicating that data analysis should
be considered a continuation of the experiment.

(b) Linear model. The model must be linear in the parameters

to be estimated. There are, however, many situations in spectros-
copy where the model is nonlinear. Nonlinear least-squares fitting
is now well-documented in several texts (Bard, 1974, and Daniel

and Wood, 1971), but the details are beyond the scope of this

introduction. It suffices here to say that most of the properties
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of least-squares estimates discussed in this Chapter apply well
to nonlinear least squares, since most spectroscopic models are
approximately linear in a reasonable region about the estimated
values of the parameters.

The second set of related assumptions pertain to the measurement
errors., In particular, the unknown error €5 in each measurement
y; 1s considered to be one member of an imagined population of
errors whose frequency of occurrence would be described by mi(ei)
if this measurement could be repeated identically many times.
First, the only properties of each individual ®; that need be
specified are that each ¢, has a mean of zero and a finite vari-
ance, denoted by of . Secondly, the interrelations among the
group of 0y v i=1,2,...n, must be specified; i.e., if the vari-
ances cf and o; are unequal for all i#j, then their ratios must
be known, and if there is a nonzero interrelation between the
; and b for all i#j, then the ratio of the "covariances"
(defined below) must be known. These assumptions regarding the
measurement errors are given here in a rather condensed form and
merit elaboration.

(c) Zero-mean errors. The specification of zero mean for

each ®; - i.e. E(ei)==0, assumes that the systematic component
of the error in each measurement is zero, a situation that, as

experimentalists know, can only be approximated in varying degrees.
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If they are not zero (or cannot be accounted for), then they
can introduce bias into the least-squares estimates just as can
be done by the model deficiencies described above. Again this
idealized situation of no systematic errors is unattainable in
practice. It ié more realistically assumed that the systematic
errors are much smaller than the variances of the o (i.e., the
"random errors"). Because of this concession to reality, it is
important to test for the ratio of random to systematic errors.
Ramsay (1974) has given numerous examples of how wavelength-
dependent systematic errors (i.e., the nonzero means of the of}
vary with wavelength) can creep into line position measurements
and also points out that such systematic errors often exceed the

average magnitude of the random errors. It is of crucial impor-

tance to realize that when this is indeed the case, any statistical

meaning of the estimates and- their uncertainties obtained by the

usual application of the least-squares method (e.g., that are

described in this Chapter) is virtually nonexistent! Fortunately,

there are ways of testing for some types of systematic error, as
will be noted in Sec. F-1.

(d) Finite error variances. The fact that the only stipu-

lation that is required about the form of each ®; is that it

— ; - 2 2
possess a finite variance, i.e. E(e:]._)==o.l . seems too weak and



19

incomplete. Nevertheless, it is a remarkable feature of

the method of least-squares that the only property that must be
specified about the zero-mean error distributions ¢; is that
they each possess a finite second moment (cf); other than this,
®; can have any form! For example, contrary to what is often
thought, the applicability of the method of least squares does
not depend on the assumption that o is a normal distribution,
i.e. the familiar "bell-shaped" Gaussian curve. However, if the

distribution is indeed normal, as it often nearly is, additional

special advantages accrue to the least-squares method, as will
be discussed in Sec. D-3-hb.

(e) Known relative error variances. The specification that

the variances must be known within a common factor permits the
treatment of measurements of unequal precision by the more
general "weighted" least-squares method (Sec. E). The common
special case is, of course, equally precise measurements, i.e.
of/o; =1 for all i and j (Sec. D).

(f) Known relative error covariances. Finally, the speci-

fication that the covariances E(eiej) (i#j) be known within the

same common factor in (e) permits the treatment of measurements with

"correlated" errors by the more general correlated least-squares
formulation (Sec. F). The common special case is, of course, zero
correlation, E(eiej)=()(i¢j),that is, the magnitude and sign of ¢j

do not depend on the magnitude and sign of g The correlations

j.
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of spectroscopic measurements themselves (e.g., "raw" line positions)

apparently have always been implicitly assumed to be zero and indeed
it would appear to be difficult to do otherwise (but, admittedly,
this particular area is unexplored). On the other hand, the corre-
lations of "calculated data" (e'g"AGv+%=Gv+l—Gv or term values)
can be computed straightforwardly and are generally nonzero.

We shall see in Sec. E-1 that (d), (e), and (f) are actually
just different parts of one requirement, i.e., the elements of the
variance~-covariance matrix of the measurement errors [gjij==E(eiej),
must be finite and be known within a common factor. Furthermore,
we shall see that this matrix must be considered as input, along
with the measurements, in the most general form of the least-
squares formulation.

(g) Independent variable without error. Although the above

assumptions — the first group about the model and the second group
about the errors of the data — are the only necessary assumptions
of the least-squares method, there is an additional assumption

that is made so frequently (often implicitly) that it should be

stated here. Namely it is assumed that the independent variable

is known without error; i.e., only the dependent variable has
measurement error. Stated alternatively, the parameters to be
estimated are assumed to be the only unknowns in the model; all

numerical factors are known without error. A spectroscopic
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example is the familiar assumption that the’ rotational quantum
numbers J are known in the fitting of the molecular constants

vo+ B', D', B", and D" to a set of measured line positions
vi(Jf,Jiﬁ, i=1,2, ..., n. Least-squares fits to data with errors
in both the independent and dependent variables are rare and they
are seldom examined in introductory texts. The application of

the least-squares method when there are errors in both variables
was first considered by Deming (1943, Chap. 4) and he gave an
approximate method for computing the estimates. Powell and
MacDonald (1972) and Britt and Luecke (1973) have recently developed
techniques for computing the exact least-squares estimates and
Tryon (1975) discusses the application of these methods to a
spectroscopic problem. If gross errors exist in the independent
variable (e.g., misassignments of the rotational quantum number Ji)
and were ignored, then they could introduce bias in the least-
squares estimates in much the same way as model deficiencies or

systematic measurement errors.



22

D. UNWEIGHTED LEAST-SQUARES FORMULATION

In this section, the mechanics of applying the simplest
least-squares formulation are examined in detail, and, rather
than manipulate abstract quantities, a commonly occurring spec-

troscopic example is used.

1. Statement of the Problem

A set of measured line positions (i.e., wavenumbers) Yo
i=1,2,...,n, where n>>5, for a 'L -1T band are to be used to
obtain least-squares estimates of the band origin Ve and the
rotational constants B', D', B", and D". The familiar model is

expressed here as n equations:

yi:=vo+B'Jf(J£+l)—D'[Jf(J£+ln9—B"Jf(Jf+l)+D"[Jf(Jf+lﬂ3+ei
i=1,2,...,n . (D-1)

In accordance with assumption (a) of Sec. B-2 this model is taken
to be completely adequate. Furthermore, it is clear from Eq. (D-1)
that the model is linear in the unknown molecular constants,
thereby satisfying assumption (b). The €; appearing in Eqg. (D-1)

are the unknown measurement errors associated with the 1line
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positions y;. They are assumed to be described by distribution
functions of zero mean (assumption c¢) and common unknown variance

0.2

(assumptions d and e). 1In addition, the errors e; are assumed
to be uncorrelated (assumption £). Lastly, the independent vari-
ables in Eqg. (D-1) —1 (for the coefficient of vg), J{ , and J{'——
are assumed to be numerically known without error (assumption g).
That all of the measurement errors are described by one
variance implies that the measurements are equally precise, 1i.e.

weights of unity. This assumption and that of zero correlation

between the errors are what make this example the special case

of unweighted least-squares, which is more properly called
unity-weighted, uncorrelated least—squares;

Tn matrix notation, Eq. (D-1) can be written quite succinctly
as the vector equation

y = XB+e . (D-2)

~

where y, Q, and € are the column vectors
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Ya Vo €,
Ya B' €a
Y‘_‘ = - v Q‘ = DI ’ E_ = - ’ (D_3)
. Bll .
yn Dll en

the first of which is known. The known nx5 "coefficient" matrix

X has elements given by 1, JfLJ£+1),—LJ{(J{+1ﬂ? - J;"(@"+1) ., and
[J{'G1f+l)]2. For a band with 50 R-lines and 50 P-lines, the
i=1, 2,50, 51, 52, and 100 rows of the coefficient matrix X [which

correspond to the R(J"=0), R(1l), R(49), P(l), P(2), and P(50)] are

1 2 -4 0 0
1 6 -36 -2 4
X = 1 2550 -6502500 -2450 6002500 . (D-4)
1 0 0 -2 4
1 2 -4 -6 36
1 2450 -6002500 -2550 6502500
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2. Least-Squares Estimates

The least-squares method cannot, of course, provide the
"true" values of the molecular constants. However, it can provide
prescriptions of how to calculate, from the measured line positions,
values that are to‘be taken as estimates of the three key sets of
unknowns : (a) the molecular constants, (b) the standard devia-
tion of the measurement errors, and (c) the standard errors of
the estimated molecular constants. In this Section, the prescrip-
tions for obtaining these three sets of estimates are given and
the properties of these estimates are examined.

(a) Estimates of the parameters. The values B that mini-

mize the sum of the squared deviations between the measured line
positions y and the calculated line positions vy, which are given
by

~

= }E@__ ’ (D_S)

o

are to be taken as the MVLU estimates of the unknown molecular
constants 8. The prescription for calculating these B values
from the known coefficient matrix §‘and the known measured line

positions y is the following expression
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the derivation of whi¢h is given in the Appendix.

It is worthwhile to reemphasize the MVLU properties of the
estimates é_by considering one of the five components of é,
namely és, the estimate of the lower-state centrifugal distortion
constant D". First, since the model is assumed correct, és==5"
is an unbiased estimate. Secondly, it is clear from Eg. (D-6)
that 5" is a linear function of the measured line positions,
teews D= LD X 1o,y + [ER X gy, + e+ [0 X g pyn -
Thus, D" is a linear estimate. Lastl?, if the measurements could
be repeated many times in an identical fashion, except for random
measurement error, and each set of measurements fitted to yield

» then the hypothetical group of estimates D" (of which we

™ >

happen to possess only one member) would scatter about the unknown
"true" value of D" with the smallest possible variance. Hence,

D" is the minimum-variance estimate.

This last property merits some elaboration. It is, of course,
impractical to make a large number of repeated measurements of
the same set of lines under nearly identical experimental condi-
tions to examine the minimum-variance scatter of the resulting
set of D" values. However, such scatter can be simulated very

realistically in the following example. From a given set of
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"true" values v, =50 000, B' =1.5, D'=4.0x10"8%, B"=2.,0, and

D" =6.0x10"® cm™!, a set of n=100 "true" line positions, 50
R-lines [R(J"=0), R(1l), ..., R(49)] and 50 P-lines, [P(J"=1), P(2),
..., P(50)], were calculated. A thousand randomly different sets
of random errors, 100 in each set, were created from a normal
distribution (see Sec. D-3-a) with a zero mean and a standard
deviation of 0.05 cm™!. These errors were combined with the
"true" line positions to make‘a thousand sets of "synthetic"
line positions,’lOO per set, each of which therefore simulates
exactly the conditions assumed in Sec. D-1 for the applicability
of the unweighted least-squares formulation. The specification
of a normal distribution is, of course, not necessary here, but
one must select some type of distribution, and the particular
choice of a normal distribution will make this example useful
again in Sec. D-3-b. Applying Egq. (D-6) to each set of line positions
yields a thousand different sets of éj which scatter about the
"true" values. The extent of this scatter is shown in the
"frequency-of-occurrence histogram" of Fig. D-1, which gives for
5" the number of values that lie in small intervals about the
"true" value. The common measure of this scatter is, of course,
the variance, which is computed from the sum of the sqguares of

the residuals between the "true" value and the estimates:
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s = (D},4e = D")2/ 1000, where DJ_ _=6.0x10"® cm™. The
standard deviation sy of the scatter is the square root of sgS?.
For the D" values in Fig. D-1, s; =6.26x107° cm™ and D¢, . % sg
are marked by the arrows. The powerful MV property of these
1000 estimated 5" values can now be visually appreciated.
Namely, there is no unbiased linear function of the measured line
positions y that can give values that have smaller scatter, as
measured by the variance, than this shown in Fig. D-1 (i.e.,
smaller scatter than that exhibited by the values calculated
with Eq. D-6). Any other unbiased linear estimates must exhibit
either the same or larger scatter.

Returning to real life, where, instead of hundreds of sets
of line position measurements, we have only one set that has
been fitted to yield one set of least-squares estimates é for
the molecular constants, the advantage of the MV property of
this set of values is a probabilistic one. Even though this D"
value may lie anywhere in the distribution shown in Fig. (D-1)
(e.g., far out in the left tail or near the center, close to the

"true" wvalue, etc.), we can nevertheless be assured that the

chances are better that our MV estimate D" lies closer to the

"true" value than would any non-MV estimate of D" based on the

same measurements.
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Figure D-1. Frequency-of-occurrence histogram of 1000 D" values.

The values were obtained from least-squares fits to 1000 sets of
synthetic *L -1% line positions, each set containing 100 lines:
R(J"=0), R(1), ..., R(49) and P(J"=1), P(2), ..., P(50). The syn-
thetic lines were constructed by adding random, normally-distrib-
uted "errors" with zero mean and o =0.05 cm™! to line positions
calculated from v, = 50000, B'=1.5, D' =4,0x10"%, B"=2.,0, and
D"=6.0x10"® cm™', as indicated in Eq. (D-1). The arrows denote
the locations of D;rueiss' where s, is the standard deviation

A~
"

of the differences (D)., -D") = (6.0x10-® -D")cm™?,
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(b) Estimate of the variance of the random measurement

errors. The variance of the measurement error distribution is
generally unknown. The least-squares formulation prescribes (see
the Appendix) that an estimate of this variance is to be taken

as the value obtained by dividing the sum of the squares of the
deviations between the measured and calculated line positions by
the "degrees of freedom" of the least-squares fit, i.e.,

A

62 = = (y-%XB)" (y-XB) , (D-7)
where the degrees of freedom are the number of independent mea-
surements, n, minus the number of unknowns to be estimated, five
in this example. The associated estimate of the standard deviation
of the measurement error distribution is, of course, the square

A PO
root of the variance, o= (o°)“.

Several points are noteworthy about the estimated variance.
First, it is shown in the Appendix that g® is an unbiased estimate
of the variance of the measurement erxrors. (However, this is not
strictly true of &, since the square root is a nonlinear operation.
Nevertheless, for the large degrees of freedom, the bias in § is
negligible. For an elaboration of this small point, which is
ignored hereafter, see Bennett and Franklin [p. 164-166].) Being

an estimate, ¢° is subject to variation like B due to random
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measurement errors. Figure D-2 shows the frequency-of-occurrence
histogram for the 1000 estimates of G5 obtained from the synthetic
line position fits described iﬁ (a) above.

Secondly, the estimated standard deviation ¢ is not to be
confused with the root-mean-square (rms) of the residuals, which

has a similar, but not identical, form:

l A~ ~ ;’
rms =[H (X_?SE_)T (Y_—)ﬁg‘)] 2 i (D—8)

The difference is that the standard deviation employs the degrees
of freedom n-5 rather than simply the number of measurements n.
When the degrees of freedom are large, the standard deviation and
the rms deviation are nearly identical, but when n>m, the distinc-
tion is important, particularly in model testing.

Thirdly, since ¢ is an estimate of the quality (i.e., the
precision) of the set of assumed equally precise measurements, the

value of & changes very little when the quantity of data changes.

This can be seen from the form of Eq. (D-7). As n is increased,
the increase in the sum of the squared residuals (XJ'XB)T(Z"§é)

in Eq. (D-7) is proportional to n, on the average, and for n >> 5,

the increase in degrees of freedom is also approximately propor-
tional to n. Thus, for substantially large degrees of freedom,

there will be very little change in 8 as the size of the data set
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increases. This insensitivity also can be seen in Fig. D-3.

For one of the sets of synthetic line positions described in (a)
above, the equal number of R-lines and P-lines in the least-
squares fit was varied from 3 to 100. There is little variation
of 8, except for the low J .. values where there are only a few
degrees of freedom and the least-squares fits are more sensitive
to the particular values of the random errors. The insensitivity
of o to the quantity, i.e. extent, of nearly equally-precise

data is a property that will be useful in (c) below.

Lastly, a check on the magnitude of the estimated standard
deviation ¢ and an examination of the residuals between the
measurements X_and the calculated values i_(Eq. D-5) are both
valuable diagnostics that test whether the assumptions of the
least-squares fit appear to be violated. Since 6 should be an
estimate of the precision of the measurements, this estimate
is the value that is to be compared to the spectroscopist's own
estimate of the random measurement error. If the estimated
standard diviation is more than about 3 (?) times larger than it
"should" be, then this is generally a good indication that some-
thing is wrong, usually with the selected model or with a few of
the measurements. Hence, one or more of the assumptions neces-
sary for the applicability of the least-squares method are invalid.

Furthermore, an examination of the residuals can reveal similar
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problems. A few "maverick" measurements (see Sec. D-3-a) in a

set of data can be easily spotted. Plots of the residuals against
)the rotational quantum number J; for each branch are an important
method of testing the selected model. If the residuals show
noticeable positive or negative (or both alternately) systematic
trends with J;, this is often a strong indication of the need for
one or more additional terms in the model. A further type of
systematic variation is when subdivisions of the data set have
residuals of significantly different mean sizes. This would
suggest that the measurements were not of equal precision and that
a weighted least-squares fit (Sec. E) is needed. Finally, a plot
of the frequency of occurrence of the magnitude and sign of the
residuals can reveal the measurement error distribution function
©, a point discussed in detail in Sec. D-3-a. Plotting routines
are commonly available at computing centers and, when appended

to a least-squares program, remove the tedium from carrying out
these informative tests. Additional discussions of the analysis
of residuals are given by Draper and Smith (1966, Pp. 86-99),
Daniel and Wood (1971, pp. 27-32), and Bard (1974, pp. 198-201).

(c) Estimates of the variances and covariances of the

estimated parameters. Figure D-1 shows how the estimates D" scatter

about the "true" value when the measurements are repeated many times
in an identical fashion, except for random measurement error, and

each set of synthetic line positions fitted to yield B. The
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standard deviation sg; of the scatter of the D" values is also
indicated in the figure. 1In a probabilistic sense, this standard
deviation for the 1000 D" estimates, for example, is the standard
deviation of any one of the estimates. Namely, for a small s,
indicating a narrow distribution (i.e., less scatter), then the

chances are better that any single estimate D" lies closer to the

"true" value, than for a larger sy indicating a wider distribution
(i.e., more scatter). Thus, the variance of this distribution of
5" values from many identically-repeated measurements is inter-
preted as the measure of the precision of any one of the single
5" values.

However, it is clearly impractical to compute the vari-
ance of a molecular constant from the scatter exhibited by
the values from many repeated sets of nearly identical exper-
iments! We need an estimate of this variance that can be calcu-
lated from one set of measured line positions. The least-squares
method prescribes (see the Appendix) that such estimates are to
be taken as the wvalues given by the diagonal elements of the

square (5x5, in this case) symmetric "variance-covariance" matrix

1®>
]
Q>
[V
<

(D-9)

where the dispersion matrix V is given by
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V= (X'x)T . (D-10)

Since @ is clearly a linear function of 82, it is an unbiased
estimate of @, as described in (b) above. The estimated variance-
covariance matrix contains a wealth of information and we shall
examine its major attributes in detail.

Variances and standard errors The diagonal elements ®ii

are the estimated variances of the values of the molecular
constants Go, ﬁ', 5', é", and B". The square roots of the @ii
elements are the standard errors. (The term "error" is commonly
used here, rather than "deviation" to distinguish standard errors
of the molecular constants from the standard deviation of the
measurement errors.) For one of the sets of synthetic lines con-

sidered above (the first 50 R-lines and 50 P-lines and assuming

a==0.05 cm™!'), the diagonal and above-diagonal elements of the
matrix @_is given in Table D-1 and the parentheses on the diagonal
contain the standard errors. (Since @ is symmetric, there is no
need to list the below-diagonal elements and the space is used

to list the correlation coefficients, which will be defined
below.) It is important to note that the standard error of 5",
é?5==6,4lx10'e cm~, is very nearly equal to the standard devi-

ation s =6.26%x10"% cm~! computed from the deviations of the

1000 estimates in Fig. D-1 from the "true" value.
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Thus, we see that the values of éii computed from Eg. (D-9) and

L
Eg. (D-7) based on one set of measured line positions is indeed the
variance that would be computed from the scatter of many identically-
repeated sets of measurements, if this were practical. Further-

more, ®;; has the same probabilistic interpretations discussed

above; namely, for smaller ®ii' it is more likely that the

estimated value B; is closer to the unknown "true" value than it

A

is for larger @,;. Because of this, the magnitudes of the estimated
standard errors é?i are important least-squares indicators. For
example, a D" value itself makes no statement about the width
(i.e., standard error) of the scatter in Fig. D-1. The scatter
may be as large as D" itself, as it often is for this molecular
parameter, or it may be a small fraction of D" itself, as it is
in the example. The point is that without the standard errors
@?i there is no indication of the quality (i.e., precision) of
the éi values.

We are now in a position to see what the precision é?i of
an estimated molecular constant (equivalently, e.g., the scatter in
Fig. D-1) depends on. An analysis of this dependence is worthwhile
because achieving smaller variances for the molecular constants is
one clearly desirable goal of spectroscopic measurements. Toward
this end, it is important to note in Eqg. (D-9) that the éii are

~

the product of two distinctly different factors, o® and Vii-
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These two factors show how the uncertainty in an estimated molec-
ular constant arises from separate sources. Specifically, the
factor 82 reflects the contribution from the precision of the
measurements and the dispersion matrix element Vii reflects the
contribution from the structure of the measurements and the model.
The first of these contributions appeals to intuition; namely,
precise measurements (i.e., small ag)must be a factor in obtaining
precise estimates (i.e., small éii)for molecular constants. However,

the dependence of éii on V.

i shows that precise measurements alone

are not sufficient; the data and the model must have a favorable
structure. ' The following example sharpens our understanding of

this last point.

The separate contributions of 82 and Vii can be examined by
considering how the precision of the estimated molecular constants
changes with the enlargement of the structure of the data set,
namely, as the number of equally-precise lines n increases in
going to higher J' and J" levels. It was seen in Fig. D-3 that

0® is almost insensitive to such a change. However, in contrast

to this near-constancy of the ¢? component, is remarkably

Vii
sensitive to the structure of the data set. Because there are
few among us that can peer back through the matrix inversion,
multiplication, and transposition to see how the size of a given

element Vii==[(§F§)‘1]ii depends on the structure of X, this is

best examined with a numerical example., Figure D-4 shows the
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variation of the V?i elements that are associated with v,, B',
B", D', and D" as a function of n/2, which is the number of
R-lines [R(J"=0), R(1), ..1,R(n/2-l)] and the equal number of
P-lines [P(J"=1), P(2), ...,P(n/2)] composing the nx5 matrix X.
For this symmetric example, the variance associated with B' and
B" are equal, and similarly for D' and D" (see Table D-1). These
equalities are the result of the symmetries of %{see Eg. D-4).

For the range covered, the V?i elements associated with Vo'.
B, and D decrease by about 1, 2, and 5 orders of magnitude,
respectively. This relative behavior certainly agrees with the
spectroscopist's expectations that Go is least sensitive to the
presence of high-J lines and 5 is most sensitive.

As an example of a particular case, Fig. D-4 shows that if
(i) each branch could be traced on for 10 more lines, i.e., the
R-lines inéreased from R(J"=0), R(1), ...,R(49) to R(J"=0), R(1),
...,R(59) and similarly for the P-branch, and (ii) the measure-
ments were of the same precision, then the standard errors of
Vo, B, and D would decrease by factors of 1.10, 1.31, and 1.88,
respectively. This would mean that if the measurements could be
repeated many times in an identical fashion, the scatter in the
resulting sets of values of Go, ﬁ, and B would decrease by these
factors. Using 1000 sets of synthetic lines constructed and

fitted in the same manner described in Sec. D-2-a above except
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that each of the branches have 60 members instead of 50, the
frequency-of-occurrence histogram in Fig. D-5 was made for 6".
The horizontal and vertical scales are the same as those in
Fig. D-1, which was for the same conditions except for only 50
lines in each branch. Thus, comparison of these two histograms
shows visually how the precision of an estimated molecular con-
stant depends on the structure of the data, for a constant pre-
cision of the line position measurements themselves.

A few more short examples of this sensitivity of the variance
of the molecular constants to the structure of the data will
suffice. Frequently, in practice, the R-branch can be traced to
higher J levels than the P-branch because of the relatively larger
HYnl-London factors (Herzberg, 1950, pp. 126 and 204). It is
interesting to note that even the extension of one branch improves
the precision of the estimated molecular constants. The first
three lines of Table D-2 show the V?i elements of three cases,
two with symmetric branch structure and one with asymmetric
structure. Note that the asymmetric 75 R-lines, 50 P-lines is
better (smaller V?i elements) than 50 R-lines, 50 P-lines, but,
as expected, is worse than 75 R-lines, 75 P-lines. Furthermore,
the standard errors associated with B' and B" will now be slightly
different, as will be those associated with D' and D". The

AT = +1 selection rule keeps them from being very different,
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The values were obtained from least-squares fits to 1000 sets of
synthetic 1Z -1% line positions, each set containing 120 lines:
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thetic lines were constructed like the ones described in Fig. D-l.
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The arrows denote the locatlons. of Dtrue

standard deviation of the differences (D't'.rue —f)") =6,0x10"*° -f)")cm"’- .
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however. The fourth line in Table D-2 shows the effect on the
molecular constants of ten missing low-J R-lines, which corresponds
roughly to the commonly-occurring situation where the lines of a
densely packed band head cannot be resolved. The effect of the
missing low-J R-lines is pronounced only for vy, again indicating
the relative sensitivity of this molecular constant on low-J

lines. The last line in Table D-2 is for the case that may occur
in laser emission spectroscopy where only one branch can be mea-

sured. Note that the fact the XL

—

X can be inverted demonstrates
that molecular constants can, in fact, be determined, albeit
poorly, from just one branch, a possibility that does not appear
to be widely recognized.

Such tests are very valuable exercises, since V is independent
of the wavelength of the lines and the magnitudes of the molecular
constants in a given model. Thus, with a good guess for 8 (which
most positional spectroscopists can quote from past experience,
even before the measurements are made), the standard errors of
each molecular constant can be predicted as a function of rotational
development. For example, with the 50 P-lines described by the
fifth line of Table D-2 and a measurement precision of 8:&0.05 cm™?t,
B" could be determined to a standard error of approximately
0.0049 cm™*. Simple calculations like this can be very useful in

planning the recording of the spectrum if, for example, an



40

improvement in the precision of existing molecular constants, or
the determination of a particular small constant associated with
some weak molecular interaction, is the goal. This utility has
also been pointed out by Pliva and Telfair (1974), who give
similar examples. Naturally, it also applies to molecular models
other than the one used as the example here.

Covariances and correlation coefficients. As described

above, the diagonal elements of the @_matrix are the estimated
variances of the molecular constants. The off-diagonal elements
éij (i#j) are the estimated covariances. For the !¥ -1§% example
at hand, the covariances of the molecular constants Vo, B', D',
B", and D" are the upper off-diagonal elements in Table D-1.
Unlike a variance, which refers to one molecular constant, a

covariance refers to a pair of molecular constants. For example,

the element @, , =-8.262588x10"8% cm~2? is the covariance of Ve and

B'. Since @ is a symmetric matrix, the covariance of Vo and B'

~

is always equal to the covariance of B' and Vo, i.e., @ =@

ij ji-
Furthermore, because the particular example has branches of
equal extent, the ®ij elements in Table D-1 have the additional
symmetries that @,, =-0,,, 8,; =-0,5., ®23 =045, and By =05, .

However, these exact symmetries do not exist for % -1Y bands of

general structure (although they often hold approximately) .
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The covariances, in contrast to the sought-after variances
(or their square roots, the standard errors), are a generally
neglected part of the variance-covariance matrix é, Seldom is
the computer even requested to print them out. Nevertheless,
the covariances carry useful information about the least-squares
estimates é of the molecular constants, and the remainder of this
Section will consider some of the details of this information.

First, the concept of covariance is best examined in terms
of what are called correlation coefficients, which are formed by
normalizing the variance-covariance matrix to form a new matrix
C, whose diagonal elements are all 1 and whose off-diagonal

elements lie between -1 and +1:

1
~ " ~ /2

Cij = ®ij/(®ii®jj) . (D-11)
5ince the correlation matrix C is also a symmetric matrix and the
diagonal elements are always unity, it is sufficient to give only
the upper or lower off-diagonal elements. 1In Table D-1, the
correlation coefficients of v,, B', D', B", and D" are given in
the lower off-diagonal positions. For the particular *r-1X

example in Table D-1, C has the additional symmetries mentioned

above.
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As Table D-1 shows, correlation coefficients can be near zero,
e.9., C,, =-0.0407 for B' and vy, and can be near 1 or -1, e.g.,
Cy2=0.9941 for B' and B”. The magnitude of the correlation
coefficients gives a measure of the interdependence of the molecular
constants B for a given data set. If Cij (i#j is understood when
discussing correlation coefficients) is very near +l1, the inter-
dependence is very high and if Cij is very near zero, the inter-
dependence is very low. For example, the large positive corre-
lation coefficient between B' and B" means that if a least-squares
estimate é' for B' differs from the "true" value by a positive
(or negative) error, then the accompanying least-squares estimate

B" for B" will also differ from the "true" value by approximately

the same positive (or negative) error. Thus, the errors in B'

A~
-

and B" are "linked together." Nearly the same interdependence
exists for the errors of 5' and 5", since their correlation
coefficient of 0.9875 is also very close to unity.

One effect of the large correlation coefficient of D' and D"
is shown in Figure D-6, in which are plotted the pairs of B' and
5" values obtained from the least-squares fits to the first 50
sets of synthetic 'T -1% line positions described in Sec. D-2-a
above. Each point represents the pair of D and B" values obtained

from one of the least~squares fits. The vertical and horizontal
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scales are the same as that used in Fig. D-1, namely, about 4
standard errors centered on the "true" values. The fact that the

errors of D' and D" are strongly "linked together," i.e., corre-
lated, is clear from the pattern of the departures from the

center of the figure, which represents the "true" values. A rela-
tively large positive (or negative) error in D' is probable only
if it is accompanied by nearly the same positive (or negative)
error in D". Alternatively, a large positive (or negative) error
in D' and a large negative (or positive) error in D" is extremely
unlikely. 1If the strong correlation coefficient of D' and D" had
been negative instead of positive, the points in Fig. D-6 would
have a corresponding negative slope.

For smaller correlation coefficients, the small axis of the
"ellipse" in Fig. D-6 would be larger and the points would show
more "scatter” in all four guadrants. The 19-1% band also affords an
example of this. Table D-1 shows that the correlation coefficient
of v, and D" is 0.0479. One effect of this nearly zero correlation
is shown in Fig. D-7, which contains the pairs of Ve and D" values
obtained from the least-squares fits to the first 50 sets of syn-
thetic 'Y -1Y% lines. The virtually random scatter shows that the
errors of Qb and D" values have no relative constraints, i.e.,
essentially zero correlation.

Plots similar to Fig. D-6 could be made for the pairs (B',D"):
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(B, B");(D,“B");(B',D'); and (B",D"), since they have relatively large
correlation coefficients. Similarly, plots like Fig. D-7 could be
made for the pairs (vq,B'); (ve,D'):; and (v,,B"), since they have
relatively small correlation coefficients.

A

Like the variances ®;;, the covariances @i (i#3j) of the molec-

J
ular constants are estimated quantities made up of two distinctly
different factors (see Eg. D- 9): the estimated variance of the
measurement error distribution 62 (which is why the covariance is
an estimate) and the dispersion elements [(§?§)_l]ij (i#3). The
first factor o2 reflects the contribution of the precision of the
measurements and the second factor, the dispersion elements, reflect
the structure of the data and the model, as was discussed above
for the variance.

On the other hand, a correlation coefficient Cij is not an
estimate, because the 82 factor cancels in Eq. (D-11l). Thus, c
is determined only by the dispersion matrix V. Hence, the corre-
lation coefficients are known properties of only the structure of
the data and the model, and not of the precision of the measurements.
For a given model, varying degrees of rotational development of
the branches alters the correlation coefficients, as it does the
diagonal elements of the dispersion matrix, which was illustrated

in Fig. D-4. The variation of the correlation coefficients for

(Vo,D") and (B',B") with the number of R-lines and the (equatl)
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number of P-lines is given in Fig. D-8. The variation is very
sharp when the number of lines is small, but C(v,,D") and c(B',B")
approach zero and unity, respectively, very rapidly. Certainly,
in the range of most spectroscopic measurements, these two coef-
ficients are nearly constant and are approximately 0.1 and 0.9,
respectively for a *T -'Z band. The other correlation coefficients
involving v, behave very much like C(v,,D"), and the remainder
involving B', D', B", and D" behave very much like C(B',B").
Examples of correlation coefficient matrices have been given
for other spectroscopic applications: *A-1!3 molecular constants
and ' -1% term values, Albritton, Harrop, Schmeltekopf, Zare,
and Crow (1973); 201 - 21l molecular constants, Albritton, Harrop,
Schmeltekopf, and Zare (19732) ; 17 - 2% molecular constants,
Albritton, Harrop, Schmeltekopf, and Zare (1973b) ; Dunham Yij
coefficients, Roh and Rao (1974) and Kildal, Eng, and Ross (1974);
and various !y -1!3% configurations, Pliva and Telfair (1974). An
example of a variance-covariance matrix for a 1y -'% band is
given by Albritton, Schmeltekopf, Tellinghuisen, and Zare (1974).
It is very important to realize that the least—-squares
estimates é_(or more strictly speaking, their errors) are always

correlated in general; i.e., V is generally not a diagonal matrix.

The appearance of non-zero correlation is not, of course, limited

just to spectroscopic least-squares fits. For example, in their
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1973 least-squares adjustment of the fundamental constants, Cohen
and Taylor (1973) list with their estimates of the constants and
their standard errors the reminder that "the uncertainties of
these constants are correlated" (see footnote a to their Table 33.1).
Only when the parameters of the model are parameters of orthogonal
functions is there zero correlation between the errors of the least-
squares estimates (e.g., see Hunter, Khandekar, and Prokopenko, 1974).
The properties and implications of correlation coefficients
have been examined in great detail; see for example, the discussion
in Bennett and Franklin (1954, Sec. 6.4) on the correlations of
raw data, and the comments in Dixon and Massey (1969, Chap. 1l1l) on
the relation between least-squares fits and correlation. Further-
more, "partial" correlation coefficients have been defined and have
many useful properties, see the interesting example given by
Hamilton (1964, pp. 184-188, particularly Example 5-9-2). However,
our use of correlation coefficients per se here will be restricted

just to their usefulness as gqualitative indicators. For example,

it will be shown (i) in Sec. G-2-a that nonzero correlation among
the values of the molecular constants indicates that the general
rules of propagation of error, which involve the covariances as
well as the variances, must be used when computing the standard

errors of quantities calculated from the molecular constants;

(ii) in Sec. G-1-d that any large correlation coefficient
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among a set of molecular constants indicates that the least-
squares values for these constants often cannot, without loss of
information, be rounded to reflect one standard error; and (iii)
in Sec. F-1 that large correlation coefficients among the input
quantities of a least-squares fit indicates that the most general

formulation of the least-squares method must be used.

3. Confidence Limits

It was stressed in Sec. D-2-a that the least-squares values
é'for the molecular constants @, obtained from a set of measured
line positions, are only estimates of these constants and
generally differ from the unknown "true" values. Further-
more, it was shown in Sec. D-2-b that the estimated standard

3
errors ®ii were measures (deliberately vague) of how much the
estimates é_could be expected to be different from the "true"
values. 1In this Section, this measure is made quantitative -in
terms of confidence limits (often referred to as confidence
intervals), which permit an expression of the probability (i.e.,
confidence) that the unknown "true" value lies within a specified

range about an estimated value B8;.

(a) Normal distribution, However, to construct confidence

l1imits, which reflect probability, the distribution function
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of the measurement errors must be specified. We use here the
normal distribution, because of the tendency of the errors
occurring in many types of measurements to be normally distributed.
This pleasant situation is most likely due to the central-limit
theorem, which states that if an error e¢; is composed of a sum of
errors from several independent sources, each component having an
arbitrary error distribution, then the sum will have a distribution
that becomes more nearly normal as the number of individual com-
ponents grows larger (Draper and Smith, 1966, p. 17). Thus, the assump-
tion of a normal distribution is not unreasonable and, at any rate,
the error distribution associated with a given experimental situ-
ation can be tested for normality, as will be described below.
The literature of the normal distribution is enormous and the
references cited here are obviously only a small fraction.

The form of the normal equation that is useful here is the
one that yields a normal curve that has the same area as a given

frequency-of-occurrence histogram (Dixon and Massey, 1969, p. 57)

eplx) = % exp[-% (3{—;——*5)2] " (D-12)

where ¢ is the height of the curve at the value x, n is the total
number of occurrences, { is the length of the class interval of

the histogram (i.e., the width of each vertical "bar"), o and pu
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are the standard deviation and mean, respectively, of the distri-
bution. The area under such a curve is ni.

Figure D-9 gives an example of how the errors in spectroscopic
line position measurements frequently approach a normal distribution.
The n= 272 residuals between the observed lines and those calculated
from the fitted molecular constants of the (3,1l) band of the O;'

b 425’-—a 4Hu First Negative system (Albritton, Schmeltekopf, Zare,
and Czarny, 1975) were sorted into narrow intervals about zero.

The width of each interval was L==3/5, where 8w=0.0306 em™!. Thus,
the histogram in Fig. D-9 shows the frequency of occurrence of the
different sizes of errors about ﬂ==0. The solid curve is the
normal curve computed from Eg. (D-12) withn, %, &, and & as given.
It is clear from Fig. D-9 that the shape is roughly normal.

However, a comparison that the eye can better judge is the
simple and useful one shown in Fig. D-10, which was constructed in
the following way. The number of occurrences in each class interval
(i.e., "bar") of Fig. D-9 is divided by n =272, to convert it to a
percentage, Then, the resulting percentages are summed from left to
right and the accumulating total is plotted in Fig. D-10 after each
step of the summation. The resulting distribution as a function
of the class interval bears the bulky full name of "cumulative per-

centage frequency-of-occurrence distribution." The grid of this

figure is that of "normal probability graph paper," which is
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commonly available and the vertical axis of which is constructed
so that a cumulative normal distribution will be a straight line,
as is represented by the dashed line in Fig. D-10. The solid
line is the cumulative percentage distribution corresponding to
the histogram of O;_ quartet residuals (Fig. D-9), which should,
on the average, follow the dashed line, if the residuals are

normally distributed.

The attractiveness of this type of comparison is that we all
have an intuitive feeling of when a line is nearly straight. 1In
Fig. D-10, the solid line is indeed nearly straight, except at
the upper end. This departure is due, for the main part, to the
two "outliers" on the far right side of the histogram in Fig. D-9,
whose rejection could be considered using one of several criteria
for removing such measurements from the fit (see Worthing and
Geffner, 1943, p. 170; Dixon and Massey, 1969, p. 328; and

!
Anscombe, 1960). Thus, our conclusion from the cumulative per-
centage distribution plot in Fig, D-10 is that the residuals are
nearly normally distributed. If the model is believed to be
adequate, as it is in this case, then the residuals are taken to
be reliable estimates of the unknown measurement errors and the
conclusion of near-normality is extended to the unknown measurement
errors themselves.

It should be stressed in using such cumulative percentage
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plots that even if the residuals were drawn randomly from a
distribution that is known to be normal, the cumulative percentage
distribution would still be a zig-zag line with varying degrees

of "zig" and "zag," because of the randomness of the samples.

The line will, howevef, get smoother as the sample size n increases
and the class interval { decreases. In order to give a feeling

of how cumulative percentage plots of truly normal distributions
can look, Bennett and Franklin (1954, pp. 92-94) have given very
useful plots of random samples of size 50, 100, and 200. Other
examples, some normal and one non-normal, are given by Dixon and
Massey (1969, pp. 61-66). Both of these references discuss this
and other tests of normality in detail.

(b) Construction of the confidence limits. Provided the

measurement error distribution is approximately normal, we are
now in position to determine limits B; + w; centered on the estimate
Bi within which we may be "reasonably confident" that the unknown

"true" value of B; lies, provided we define what is meant by

"reasonably confident." If iy

i is of such magnitude that the

chances are about 95 in 100 that the "true" value lies inside the
limits éiﬂ:&i_and about 5 in 100 that it lies outside, then such
limits are called 95% confidence limits; i.e., if we state that
the "true" value of B, is between the limits éi"&i and éi'k&i'

then we shall be correct 95% of the time. Alternatively, the
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risk is 5% that we will be making an incorrect statement. To
the more cautiously inclined, a 5% risk of being wrong may seem
too high. 1If so, 99% confidence limits, with a 1% risk of being
wrong, may seem more attractive., Of course, for a given problem,
the 99% limits will always be more widely spaced than will be the
95% limits. The point to be made here is that one is free to
select the half width &i of the confidence limits to reflect one's
own taste in balancing the desire to be specific against the fear
of being wrong. Confidence levels of 95 and 99% are popular
choices (see Bennett and Franklin, 1954, pp. 148-149).
Specifically, within the assumptions of the least-squares
method and the assumption of a normal distribution of measurement
errors, one can be 100(1-q)% confident that the unknown "true"
value of B, lies within the interval

~ A

Bi tt(n-m, 1-a) B4 . (D-13)

Thus, confidence limits are given by some appropriate multiple

of the standard error. The multiplicative factor is a function
of the degrees of %reedom n-m (sometimes referred to as df or v)
and the selected degree of confidence 1l-q, and is referred to as
"Student's" t-factor [titled after its originator W. S. Gosset
(1876-1937), who was a chemist employed by the Guinness Breweries

and published pioneering statistical papers under the pseudonym
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of "Student"]. The magnitude of the t-factor takes into account
the possible variation of éi from the true value in units of the
estimated standard error é?i and the reliability of this estimated
standard error as a unit (i.e., the possible variation of 83 from
the "true" variance). Student's t-factors are tabulated as func-
tions of n-m and l-a (or more frequently l-%a). Among the refer-
ences cited here, Dixon and Massey (1969) have the most extensive
and useful set of statistical tables. A large number of t(df, 1-%q)
factors are listed in their Table A-5.

For our use here, Fig. D-11 gives the t-factors for four
levels of confidence: 90, 95, 99, and 99.9%. For the example of
50 R-lines and 50 P-lines and 5 molecular constants, the degrees
of freedom are 95. Choosing a 95% level of confidence, Fig. D-11
yields a t-factor of 1.99, or conveniently rounded to 2.0. Thus,
95% confidence limits for, say, D" would be 5":t2.0@§5, or from
the first line of Table D-2, D" % 2.05(1.3x10%) = D" £ 2.60x107%.
From the 5" and 8 values of the 1000 least-squares fits described
in Sec. D-2-a, this 95% confidence limit can be tested, since it
predicts that the true value 6x10~® cm~™! will lie inside of the
limits ﬁ":t2.63x10'6 for 950 of the (D",s) values. In fact, 961
of the confidence limits included the true value, only 1% different
from the prediction.

Figure D-11 shows that each t-factor converges very rapidly
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to nearly a constant value as the degrees of freedom increase.
For n-m=< 30, the t-factor for 95% confidence is approximately
2.0 and for n-m< 60, the t-factor for 99% confidence is approx-
imately 2.6. Since a 95% confidence limit has been a popular
choice and since degrees of freedom are frequently greater than
30, it is clear why "+ two standard errors" are often quoted as
the "experimental uncertainty" in reported least-squares values.
It should now be equally clear, however, that such a statement
makes implicit assumptions about the degrees of freedom, confi-
dence level, and approximate normality.

Confidence limits provide one of the simplest ways of model
testing (Kirchhoff, 1972). 1If a particular confidence limit
éii wi'includes zero, then to the chosen level of confidence, the
estimate éi is not significant; i.e., there is no reason to believe
that the "true" value of B, is different from zero. Thus this
molecular constant may be omitted from the model. On the other
hand, if the confidence limit does not include zero, then to the
chosen level of confidence, the estimate éi is significant. There
are, of course, many more sophisticated and powerful ways of model
testing. See, for example, Curl (1970); Draper and Smith, 1966,
pp. 24-26, 71-72; Hamilton, 1964, pp.;68—173; and Beaton and
Tukey, (1974).

The confidence limits given by Eq. (D-13) describe the

"limits of error," for a chosen degree of confidence, for any
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one molecular constant. However, it was shown in Sec. D-2-c

that when the correlation coefficients of the molecular constants
are nonzero, the errors of the estimated values of the constants
are not free to independently have any values over the separate
confidence intervals. This shows the utility of considering a

joint confidence region for two highly correlated constants.

For a pair of constants, for example, the joint confidence region
is an ellipse enclosed within a rectangle whose sides are approxi-
mately the separate confidence limits. The large correlation coef-
ficient between D' and D" implies that there are large regions

of the rectangle, whose sides are given by the separate confidence
intervals ﬁ':tt@?a and ﬁ“:tt@?s, that are virtually inaccessible to

values of D' and D" simultaneously. The true region accessible to

simultaneous D' and B" is a thin ellipse inside the rectangle,

the shape of which can be visualized by the scatter of the 50
pairs of estimates (ﬁ',ﬁ") in Fig. D-6. The near-zero correlation
coefficient of v, and D", for example, implies that the joint
confidence interval for these two will be essentially as large

as the rectangle formed by their separate confidence limits.

The scatter of the 50 pairs of estimates (QO,B") in Fig. D=7

gives an indication of this. Further discussion and application
of joint confidence regions are given by Draper and Smith (1966,

pp. 64-67).
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E. WEIGHTED LEAST-SQUARES FORMULATION

In this section, we examine the least-squares formulation
that is appropriate when the data to be fitted are known to be of
unequal precision, in contrast to the equally precise data considered
in Sec. D. Again, a familiar spectroscopic example is used to

illustrate this formulation.

1. Statement of the Problem.

A set of p measured line positions Vi i=1,2, ..., p for an
infrared vibration-rotation band and a set of g measured line
positions Yo i=p+l, p+2, ..., pta=n for microwave transitions
between the rotational levels of the lower vibrational level of
the infrared band are both used together to obtain least-squares
estimates of the familiar molecular constants v,, B', D', H', B",
D", and H". An example of this problem could be the determination
of the molecular constants of the v=0 and 2 vibrational levels
of the co X 't state from the R- and P-lines of the (2,0) infrared
vibration-rotation band and the microwave transitions between the
adjacent rotational levels, i.e., J-+J+l1, of the v=0 level.

These data sets are clearly of significantly different precision;

thus, this application requires the weighted least-squares
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formdlation.

The model is expressed by the n- equations relating the molecular
constants to the measured line positions, p equations for the infra-

red lines:
Yy = Vot B'Jy (Ji'+l) -D'[Jy (Ji'+l)]3 +H' [Ji'(J]-_'+l)]3— B"J," (3{"+1) +

D" (3" (J+1)]% - H" [T (T4"+1) 12 + ¢y i=1,2, ...,pP,

(E-1a)
and g equations for the microwave lines:

— n " —n" n 3 " n 3 na "
Y; = B 2(Ji+l) D 4(J.1+1) +H 2(Ji+1) (3T"2+6J"+4) +ey

i=p+l, p+2, ..., ptd=n (E-1Db)

The least-squares assumptions (Sec. C-2) of this problem are the
same as those made for the unweighted problem in Sec. D-1, except
that here the unknown measurement errors g; are assumed to be
described by distributions of generally unequal variances cf , but
whose ratios cf/of, i#j, are adequately known.

'In matrix notation, Eg. (E-1) can again be written quite

succinctly as
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Yy =X +e (E-2)

The vector B of the seven unknown molecular constants is given

by

@;T = [\)o B' D' H' B" D" H"] (E—3)

and the vectors y and ¢ of the measurements and their errors have
the same form given earlier in Eg. (D-3). The matrix X is defined

by the coefficients in Eq. (E-1). For the specific case (repre-
sentative of CO X 13t) of the first 50 R-lines [R(I"=0), R(1), ...,
R(49)] and the first 50 P-lines [P(J"=1), P(2), ...,P(50)] in a
vibration-rotation band and the first 7 rotational transitions
(J"=0) + (J"=1), (J"=1) » (J"=2),..., (J"=6 4 (J"=7), the i=1, 50, 51,
100, 101, and 107 lines of the coefficient matrix §_[which correspond

to the R(J"=0), R(49), P(1), P(50), (3"=0) » (J"=1), and (J"=6) +

(J"=7)] are
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In matrix notation, the assumed variances and covariances of the

measurement errors ¢ take a particularly concise form; namely,

the variance-covariance matrix & of the measurement errors has

the nyn diagonal form

pe-

(E-5)

where the ratios of/Q%; , i#j, are assumed to be known. Alter-

2
natively, the assumption that the ratios of/bj are known can be
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stated equivalently by the assumption that ¢ is known to within a

common factor, or

Ml (E_6)
2,

where o, 1is the unknown common factor and the measurement error

dispersion matrix M is a known diagonal matrix whose nonzero

elements are ratios of variances; for example,

0,° /o

M = 05 /02 i (E-7)

The location of the unity element(s) is, of course, arbitrary,

but we shall see in Sec. E-2 below that the location of the unity

element (s) determines the interpretation of the common factor G;a.
In summary, the weighted least-squares formulation should

be used when the variance-covariance matrix ® of the measurement

errors has at least some unequal variance elements on-diagonal,

zero covariance elements off-diagonal, and can be specified within

a common unknown factor. Thus, a perhaps more accurate, but less
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recognizable, label for this formulation would be the "unequally
weighted, uncorrelated" least-squares. Finally, it should be
clear that the unweighted formulation described in Sec. D is just
a special case of the present formulation with gf=o°£! where ¢®
is the common unknown variance of all of the measurements errors

and I is the identity matrix.

2. Variance-Covariance Matrix of the Measurement Errors

The matrix &, or M, is obviously the key factor in the weighted

least-squares formulation and it is worthwhile examining its prop-
erties in detail.

As will be shown below, it is actually the inverse of § that
appears in the expression for the estimated molecular parameters

A

8. This inverse is given by

1/0,2

37 = 1/62 . (E-8)

The matrix
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02/0,

(E-9)

1=

i}

1
H
Il

fo
S w
~
a
L

is frequently referred to as the weight matrix, hence the name
"weighted least-squares." It is clear from Eg. (E-9) that the
weights, i.e., the diagonal elements of W, are inversely propor-
tional to the variances cf . The common factor c;, therefore,
is the unknown variance of the measurement(s) with unit weight.
The terminology of "weights" can actually be a source of
confusion unless it is accompanied by explicit definitions. For
example, occasionally one sees where the so-called weight matrix
in a weighted least-squares was constructed with diagonal ele-
ments inversely proportional to Oy rather than of . As we
shall see below, this means that the é values were not minimum-
variance estimates.
Since § must be known to within a common factor before é
can be calculated, its construction is the first step in applying
the weighted least-squares formulation. This choice of the
relative sizes of the diagonal elements of § may appear, at first,

to introduce an intolerable degree of arbitrariness into this

least-squares formulation, since clearly by altering the relative
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sizes of the elements of §, the values of é can indeed be manipu-
lated almost at will. However, in most cases, an honest assignment
of the relative sizes of the elements §,, can be made without undue
arbitrariness. Consider two extremes. First, for a group of line
position measurements made under one set of ekﬁerimental conditions
(same wavelength range, resolving power, exposure time, etc.), it
may be difficult to estimate with appreciable confidence that one
line is significantly (i.e., oa/cbesl.S?) more precise than others.
In such cases, the unweighted, least-squares formulation of Sec. D
would probably suffice, in view of the inability to segregate
measurements of clearly different precision. On the other hand,
the present example of combining infrared and microwave measurements
in one least-squares fit represents nearly the other extreme.
Taking the precision of an infrared line position measurement to

be EIRsle’s cm™ (Rao, 1972, p. 349) and the precision of a micro-
wave transition to be G, ~ 0.03 MHz =10~% cm™! (Morino and Saito,

M
1972, p. 11), it is fairly clear that a ratio of E;R/EQ =10° would

be representative and it is absolutely clear that the weighted least-
squares formulation must be used. (Here, we use the tilde ~ to denote
an estimate that is only a "guess" or "hunch"). It is fortunate that
only approximate relative variances prove to be generally adequate.

For example, an analysis of the residuals of a preliminary unweighted

least-squares fit often can provide adequate estimates of the

weighting factors, should subdivisions of the data show residuals
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of significantly different magnitudes. As Tukey (1974, p.5) points
out, the assignment of relative variances in $, if reasonably done,
is almost never a crucial issue in least-squares applications.
To this we add that if the assignment of significantly different
relative variances can indeed be reasonable done,\then it always
should be done.

Continuing with the infrared-microwave example, the matrix

$ could be given by

108

108
& (E-10)

e
1l

i . 3 .
and in this case oM represents the unknown variance of the
microwave data. However, this construction of § is not unique,

since § only need be specified within a common factor. One

alternative is clearly

(E-11)

o
1l
Q
H Y
]

107

" 10-e |




. . -]
and in this case O1R

red data.

Another alternative is to use,

. ~ 2 ~ 2
crude estimates O1R and Oy themselves,

[107®

107®

10"12

not the ratios,

-

107%
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represents the unknown variance of the infra-

but the

. (E-12)

In this case, ¢° represents the unknown variance of neither the

microwave nor the infrared data,

since neither of these are

represented by unity elements, but rather will have an estimated

value 02 near unity, provided &

be discussed in the next part below.

tions of g_in Egs. (E-10),

(E_ll)l

IR

and 7

and

M

are realistic,

as will

Since the three construc-

(E-12) differ only by

constant factors, we shall see that they will yield the same

A

values for B.

If ¢ is unwarrantedly set equal to caz'when the data are of

significantly unequal precision, the resulting estimated molecular

constants B*will still be unbiased linear estimates, but they will

not be minimum-variance estimates (Hamilton, 1964, p. 146 and

Draper and Smith,

1966, p.80).

This means that if the measurements

could be made repeatedly under identical experimental conditions,
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except of course for random errors, the resulting sets of estimates
waill scatter about the "true" values in a way that the average
approaches the true values as the number of repetitions grows, but
the scatter, as indicated by the variance, will be larger than

that occurring when the proper ¢ is used. This wider scatter is

not a trivial matter, since it means that the chances are greater

that the one set of estimates ¥ calculated with $ =0°I from the

~

one set of available measured line positions will be further from
the "true" values than the estimates é_calculated with the appro-
priate ¢ from the same measurements. Of course, this does not pro-
hibit a given set of estimates g'from being nearly identical to the

"true" values, but over a scientific lifetime, a scorn of proper

weighting will surely take its toll.
3. Estimated Molecular Parameters

For the weighted least-squares formulation, the expression
for the estimated molecular constants takes on a more general
form than that given earlier in Sec. D. The appropriate new
expression is stated here as a prescription; it is derived in
the Appendix. In particular, the MVLU estimates é_of the molecular

constants are calculated from the expression
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8 = My (E-13)
which, of course, necessarily involves only known quantities:
namely, the coefficient matrix X, the measurement error dispersion
matrix M, and the vector of measurements Y. One frequently sees
Eq. (E-13) written explicitly in terms of the weight matrix W
(e.g., see Kildal, Eng, and Ross, 1974, Eg. 4). Furthermore, it
may also be written in terms of §, rather than M or H} since tﬁe

common factor g® will cancel out:

= (XTg7X) Ky . (E-14)

(‘(D>

For the special case of gf=oa£, Egs. (E-13) and (E-14) are iden-

tical to Eg. (D-6) given earlier.
4, Estimated Variance

The common unknown factor ¢® in the variance-covariance matrix

$ of the measurement errors is calculated from the expression

6% = L (y-x8)TM (y -XB) (B-15)

n-m

where n-m are the degrees of freedom. For the special unity-weighted
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case where M=1I, Eg. (E-15) is the same as Eq. (D-7). As remarked
earlier, for the special case of § constructed with estimates of
the measurement variances Ef (e.g., Eq. E-12), 89 will be approx¥
imately unity if the estimates are reasonable. This can be seen

from Egq. (E-15), which can be written in summation form as

~ l N 2 ~

a _ - y 2 -] -

c® xR -21 (yi-vy)2/568 . (E-16)
1=

Thus, if, on the average, f is an adequate estimate of cf and

Ql

if the residual Yi"§i is an adequate estimate of the measurement
error ¢, then (yi-§i)?/gf will fluctuate randomly about approx-
imately unity. This implies that o® will be near unity. Therefore,
this particular construction of § provides a useful test of the
reasonableness of the estimated variances Sf =

5. Estimated Variances and Covariances of the Molecular Parameters

The mxm (for the present example, m=7) symmetric variance-covar-

iance matrix ® of the estimated molecular parameters B is given by

& = 62 (X'M™1X)-1 . (E-17)
b4 P~ —

For the special unweighted case where M=1I, Eq. (E-17) is the same
as Eq. (D-9).

Like B, ® is oblivious to a common factor in M or W. This

can be seen by using Eg. (E-15) to eliminate 33 from Eq. (E-17)
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1(y -XB) (XMTIX)T (E-18)

which, despite its ungainliness, shows that any common factor

always cancels. This is a point worth remembering: specifically,
if M is replaced by M' =cM, where c is any constant, then é given
by Eg. (E-17) and é given by Eg. (E-13) are unchanged. Only 82

is changed, (82)'==82/c: i.e., ¢ is simply absorbed into o .

Since ¢® alone absorbs any constant factor in the assigned variance-
covariance matrix § of the measurement errors, then it is under-
standable why the values of 62 from weighted least-squares fits

can have sﬁch "curious" magnitudes.

Returning to the example of combining infrared vibration-
rotation data with microwave data, it is very instructive to
examine the elements of the resulting estimated variance-covariance
matrix @_of the seven molecular constants, since they are the
indicators of how well the molecular constants have been determined
and what gains have been made by combining the two types of data.

For the §_matrix in Eg. (E-4) and the $ matrix in Eq. (E-10),
with 3M taken to be 107% cm™!, the é_matrix is given as the diagonal
and upper-right elements of Table E-1. The standard errors @ii
are given in parentheses and the correlation coefficients are
given as the lower-left elements. First, it is interesting to see

the effect of the asymmetries introduced by the microwave rotational
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lines. For example, the standard errors of B", D", and H" are
factors of 11, 1.3, and 1.2 smaller than those of B', D', and H',
respectively. Furthermore, the correlation coefficient B" with
D' is 0.6656, but B' with D" is only 0.0417. All of these would
have been equal with only the infrared vibration-rotation lines.
Secondly, it is even more interesting to examine'what gains
have been made by combining the two types of data. This is done
in Table E-2, in terms of 95% confidence limits, assuming that
the measurement errors are normally distributed. It will be
recalled from Sec. D-3-b that such a limit is éiit(n—m,0.95)é?i
and it represents the interval within which it may be said that
the "true" value of B; lies, with a 5% risk of being wrong.
The first line gives the 95% confidence limits for the infrared
vibration-rotation band alone. These data have two advantages
with regard to determining a statistically significant value for
the elusive molecular constant H. First, since they have high
degrees of freedom, the t-factor, t(93,0.95) =1.989, is near its
minimum value (see Fig. D-11). Secondly, since the data go to
high rotational levels (Jmax==50 here), the dispersion matrix
element is small, V?,==l.332x10'9. As shown, the 95% confidence
interval for H' (and H", since these lines are "symmetric") 1is
.éH:tt(93,0.95)é?7==éHil.989xlﬂ 332)(10'“’==éHi2.65xlO'19 cm~!, This

means that an estimated wvalue IfI==5><lO'12 cm~!, which is fairly
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typical for this constant, would be statistically significant at
the 95% level. 1In fact, a value of 5x107'? cm~! would be signifi-
cant at the 99.95% level [i.e., (5x107%%)/(1.332x10"12) =3,754 =
t(93,~0.9995)] (Federighi, 1959), which is very significant
indeed.

In contrast to this ability of the infrared data to determine
H, the second line of Table E-2, which gives the 95% confidence
limits for the microwave rotational data alone, shows that these
data cannot determine with 95% confidence a value for H" that is
smaller than 2.11x1071° cm~™!. Although the microwave data are
extremely precise, they are handicapped here in two ways. First,
because of the small degrees of freedom, they have a large t-factor,
t(4,0.95) =2,776. Secondly, and more importantly for the molecular
constant H", since the data only go to low rotational levels

(J =7 here), the dispersion element is large, V?3==7.6lx10’5.

max
However, note that the microwave data can determine an estimate
of B" that is 28 times more precise than the estimate determined
from the infrared data. For this molecular constant, the 10°
factor of increased precision between the microwave and infrared
measurements overcomes the 1.396 t-factor handicap and a 25.75
dispersion-element handicap.

Thus, the first two lines of Table E-2 show that the infrared

data are much better at determining H", the microwave data are
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much better at determining é",and the two sets of data can deter-
mine D" about equally well. Such a situation clearly suggests
that gains in the precision of the molecular constants are avail-
able by combining the two sets of data into one weighted least-
squares fit. The third line of Table E-2 shows that this is
indeed true.

Comparison of the three lines of any of the last three columns
shows that the precision of the estimated molecular constants ﬁ“,
5", and ﬁ" from the fit to the combined infrared and microwave
data is in each case better than that from a fit to either the
infrared or the microwave data alone. Furthermore, note that this
improvement propagates into the upper state constants B', D', and
H', via the correlation between the upper and lower state constants
arising from the infrared vibration-rotation lines (see Table D-1).
Clearly the possibility for such a straightforwardly obtained
improvement in the precision of estimated molecular constants
should not be ignored! Only the band origin v,, which is not
involved with the microwave rotational data and which is only very
weakly correlated with the rotational constants (see Table D-1),

escapes significant improvement, as expected.
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F. CORRELATED LEAST-SQUARES FORMULATION

We now examine the most general least-squares formulation,
namely, the one that is appropriate when the data to be fitted
are known to have both unequal weights and nonzero correlations.
The problem that is used here as an example arises frequently
in spectroscopy, but the present application of correlated
least-squares toward its solution is relafively new (Albritton,
Schmeltekopf, Zare, and Czarny, 1975; Saenger, Zare, and Mathews,

1975).

1. Statement of the Problem

The problem of combining infrared vibration-rotation and
microwave rotation data to obtain an optimum set of molecular
constants is considered again here. However, the present approach
differs from the single weigﬁted least-squares fit to both the
infrared and microwave data simultaneously that was used in
Sec. E, where only an educated "guess" was used for the ratio of
the variances of the infrared and microwave line position measure-
ments. Here, unweighted least-squares fits are first made sepa-
rately to the infrared and to thg microwave measurements to obtain

separate infrared and microwave MVLU estimates for the molecular
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constants, their variance-covariance matrix, and the variance of
the measurement errors. Not only do these separate fits yield
MVLU estimates of the infrared and microwave measurement-error
variances to replace the "guesses," but they also provide the
important opportunity to test for relative systematic errors
between the infrared and microwave measurements, as described
below. In the event such tests prove negative, the two sets of
estimates are then merged in an optimum way. Namely, a correlated
least-squares fit is made to both the infrared and the microwave
estimates simultaneously to obtain an optimum single set of MVLU
estimates for the molecular constants. Therefore, the problem is
solved in two steps instead of one, and the second step serves
here as an example of the application of the correlated least-
squares formulation.

Specifically, the p infrared line position measurements

. . . T
Yrr are assumed to have a variance-covariance matrix E(QIRQIR) =

2
= . r i to t del =
EIR GIRIIR These measurements are fitted to the mo XIR
i i tants
gIRQIR-FEIR to obtain the estimates of the mIR molecular constan
AT =3 N Au Al Al All AII Au 3
EIR [vOIR BIR DIR HIR BIR DIR HIR]' the measurement error variance

A

02 , and them xm variance-covariance matrix of the molecular
IR IR IR
constants © ==82 \Y where the dispersion matrix is given b
21r T O trYIR’ p N gt y

T = — .
Vir = (X1pX1R)"'. A specific example of the pxmrp coefficient
=

matrix R used in this unweighted least-squares fit is given in
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the first 100 rows of the matrix in Egq. (E-4). Similarly, the g

microwave line position measurements Yy are assumed to have a

T

et =1

3
2y = ol

variance-covariance matrix E( Iye These measurements
are fitted to the model ¥M==¥M§M'F§M to obtain the estimates of
the mM molecular constants §M==[éﬂ é& %ﬁ], a;, and éM==&;YM’
where YM==(§E¥M)'1. A specific example of the XMy matrix XM
used in this unweighted least-squares fit is given in the last

7 rows and the last 3 columns of the matrix given in Eq. (E=-4).

In general, the infrared esﬁimates and the microwave estimates
for the lower-state constants B", ﬁ", and H" will differ. Before
proceeding to the secand step where optimum single values are
determined for these constants, it is always very valuable to
test whether such differences are consistent with the confidence
limits of the infrared and microwave estimates. If the differences
are much larger than could be expected on the basis of the confi-
dence limits, then one suspects that non-negligible systematic
errors may exist in either or both of the sets of measurements.

If such systematic errors are ignored and the infrared and micro-
wave results are combined, then the statistical meaning of the
resulting combined values can be seriously impaired and misleading.

The simplest test for internal consistency is to see whether

the, say, 95% confidence limits of the infrared results and 95%

confidénce limits of the microwave results overlap for most of
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the common constants. TIf’so, one is encouraged, since this
suggests that gross relative systematic errors are probably absent.
A more sophisticated test is to compute the confidence limits for

the difference of each pair of corresponding estimates, e.g.

é;R'-éﬂ » and see if they include zero. The details of the compu-
tation of the confidence limits of the differences, which again
involve Student's t-factor, are given by Bennett and Franklin
(1954, pp. 176-180), Hamilton (1964, pp. 92-94), and Dixon and
Massey (1969, pp. 114-119). 1If, say, the 95% confidence limits

do not all include zero, then one becomes concerned that there are
significant relative systematic errors, suggesting a reexamination
of the experimental procedures or the models used in fitting the
data. On the other hand, if most of the important confidence limits
do include zero, then one is justified in combining the results,
as is assumed to be the case for the example here.

A

and é from the first

The output quantities éIR' O By On

step are taken as the input quantities of the second step. Namely,

a vector of n=mrp + My "observations"

g*IR
Y_ = ’ (F_l)

By
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is formed from the subvectors EIR and EM . The nxn variance-

covariance matrix E(eeT)

=& associated with these observations

is

" =
-
OIrVIR o
P = o-zbi = g?° , (F—Z)
n2
° oMYM

whose elements are formed from the MppXMIR and Ty XMy submatrices

8§RYIR==@IR and cﬁYM==QM, respectively.

The "observations" y are fitted to the linear model

——

y=X8+e (F-3)

where the m molecular constants to be estimated are

ET = [vy B' D' H' B" D" H"] . (F~-4)

The nxm coefficient matrix is given by
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\)o BI DI Hl Bll DII HII

e —

vo [1 0 0 0 0 0 o

Bijg/ 0 1 0 0 0 0 O
D;:R 0 01 0 0 0 O
Hix[0O 0 0 1 0 0 ©
Big|© 0 0 0 1 0 0O

X = . (F-5)

IR
H;R 0 0 00 0 0 1
Bl:;l 0O 0 0 01 0 O
Dy |0 0 0 0 0 1 o
Hy |0 0 0 0 0 0 1

Thus, the "model" assumed here is a particularly simple one,
namely, that there is one value for each molecular constant.
This is a relatively rare example of a perfect model. Note that
the model allows for changes (i.e., improvements) in the molecular
constants v,, B', D', and H', even though the microwave measurements
do not involve these constants, because of the correlation of these
constants with the lower-state constants.

Since Eq. (F-2) shows that the errors of the "observations"
z'have not only unequal variances but also some nonzero covariances,

even the weighted least-squares formulation is inappropriate. This
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application requires the correlated least-squares formulation

(i.e., weighted and correlated least-squares), which is the most
general formulation of the least-squares method for errors only

in the dependent variable.

2. Least-Squares Estimates

In the Appendix, it is shown that for n observations y whose
errors g_have a variance-covariance matrix 2f=02§_with finite
elements and for X_linearly related to m parameters gtthrough
the nxm coefficient matrix X, y=XB +e¢, the MVLU estimates of the
parameters é! the variance 82, and the variance-covariance matrix

of the constants @ are given by

B = (XMlX)T X MTly , (F-6)

5 = -1 (y -xB) Mt (y - %), (F-7)
n-m = -~ -~ =

A fey o a2 (wim—lx) -1

@ = o°V=0" (X'MT'X) (F-8)

The unweighted and the weighted formulations of Secs. D and E are

clearly just special cases of this general formulation with M=T1 and
M equal to a diagonal matrix with unequal elements, respectively.
For the present example, the degrees of freedom for the

correlated fit are small, n-m= 3, which means that the variance




80

of the estimate g2 given by Eq. (F-7) is relatively large. Hence,
for the present example of sequential least-squares fits, it is

best to compute 62 from the alternative expression

T
R — — = — AQ —_
YIR XIR Irr/O1R o
- - 1 il wa & s 5 a "
p+g-m - 3
Y o Xy 0 In/ Oy
¥IR ?&m
e _ Fed)
Y 0 . Xy
— a—— |—— R

Equation (F-9) uses the p+q residuals constructed from the optimum
estimates é and the measured line positions YIR and yy to estimate
82. In contrast, Eg. (F-7) uses the 10 residuals constructed from
the optimum estimates é and the "observations" EIR and EM' Since
p+g >> 10 in general, the former turns out to be a preferable
estimate for this example.

By analogy with Eq. (E-9) of the preceding Section, it is

useful to define a "generalized" (i.e., nondiagonal) weight matrix,

W=M"1., For the present example,
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-1 /02
VIr/OIr 2
W= M1 = 7
-l -
o VM /o
[ 2 T
XTRXIR/OIR o
_ . (F-10)
T 2
° XvEm/ oM
i e

The latter, more-explicit form of w'shows how the correlated
least-squares fit utilizes simultaneously, as generalized "weights"
(i.e., as reciprocals), both the differing precision estimates

8§R and Gﬁ and the differing dispersions (§§R§IR)'1 and (§§§M)_1
of the separate infrared and microwave data in determining the

optimum estimates of the molecular constants § and their variances

~
and covariances 0.

Albritton, Schmeltekopf, Zare, and Czarny (1975) have shown
that these values for é and @ are identical with those that would
be obtained from a single weighted least-squares fit to both the
measured infrared and microwave lines y;p and yy simultaneously

2

using 8§R and GM in the weight matrix. 1In other words, the present

correlated least-squares fit gives results identical to the
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weighted least-squares fit of Sec. E, provided the "guesses" EER
and E; are replaced by the MVLU estimates G;R and 8; obtained

from the individual fits to each type of data separately. Thus,
all of the comments made in Sec. E-5 about the gains available by
combining infrared and microwave data apply equally well here to
the identical results of the present correlated fit. The key
point here is that, in both of these equivalent fits, initial
least-squares fits were made to separate subdivisions of the whole
data set. In the present case, there are two subdivisions, the
infrared data and the microwave data. These gave the individual

~

subsets of estimates (QIR'ciR'@IR) and (EM’ o2, @

mr 8@y) . The weighted

fit then uses (XIR' aiR' Yyme 8;) as input; the correlated fit uses

(QIR’ QIR' QM' QM) as input. Both give identical final results.

However, it is important to realize that an unweighted fit to

(XIR'XM) simultaneously will not generally give the same results (these
results will not be MV), since it would not utilize the information
that &IR;éaM gained from the key "interrogations" of the infrared

and microwave subsets separately.

Clearly these techniques are not limited to just combining
infrared and microwave data or even to combining only two subsets of
data. For example, both the weighted and the correlated fits are
very useful for reducing a multi-band system to an optimum set

of molecular constants. The choice between the two is dictated
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only by convenience. For applications to nonlinear models, the
two-step correlated approach appears to be more practical than
the two-step, weighted approach. In the former, the second step
is a simple, linear fit and in the latter, the second step is

an often-large, nonlinear fit, which can be very expensive.

In the present example, the correlation among the quantities
to be fitted arose because they were output from a preceding
least-squares fit. Correlation among quantities to be fitted
can also arise because they are the output of a preceding linear

transformation. One of the simplest types of transformations

occurring in molecular spectroscopy is that of forming new
quantities that are differences between other quantities. One
example is the construction of MGy values from band origins v,.
As noted by Lees (1973), another example is the calculation of
the splittings between the measured frequencies of multiplet
components. In these cases, errors in the AGV+% values that
involve the same v, and the errors in the splittings that involve
the same multiplet component will be correlated with correlation
coefficients of -%, as can be straightforwardly shown using the
propagation of variance and covariance (see Sec. G-2-a). There-
fore, such AGy4l values and splittings must be fitted with the
correlated least-squares formulation in order to obtain MV

estimates.
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G. REPORTING LEAST-SQUARES RESULTS

The preceding Sections have dealt with the assumptions of
the least-squares method, the properties of its estimates, and
the mechanics of its application. The subject of this concluding
Section is the next logical topic; namely, once the least-squares
estimates have been obtained, what should be reported and how
should it be reported in order to convey to the user a reasonably
complete set of information. Here, we divide the least-squares
input and results into two categories, first those that appear
to be essential to report and secondly, those that are useful but

sometimes impractical to report.

l. Essential Information

(a) Basic observations. The data to be fitted, y, clearly

occupy a fundamental position in the whole endeavor of this
Chapter. Therefore, their presentation is essential and may, in
time, prove to be the most valuable part of a publication. We
are all aware of examples where high-quality line positions that
are decades old have "outlived" the accompanying estimates of the

molecular constants, in that improved models were later devised

that fit these data much better than those available initially.



85

To be sure, the large number of line positions frequently recorded
in molecular spectroscopy creates a problem in their presentation
in journals, but photoreduction of data tables, as well as per-
manent data depositories, contribute to its solution.

It is traditional to list all of the line positions that
were measured in the investigation. For any of several reasons,
some fraction (usually small) of the measured lines are often
not satisfactorily represented by the model and hence were not
included in the least-squares determination of the model parameters.
For two reasons, it is useful to have these rejected but listed
data identified. First, the particular measurements on which the
estimates of the molecular constants were based are then clearly
identified by "default." Secondly, it is possible that many of
the rejected measurements may later prove to be a valuable source
of new information. The classic spectroscopic example is that of
initially-unfitted perturbed lines later yielding to analysis and
providing the identity and location of new electronic states.

(b) Weight matrix. From the preceding Sections, it is clear

that the variance-covariance matrix of the measurement errors
§j=oa§_must be considered as input that has equal standing with
the observations y themselves. Therefore, to completely define

the input to a least-squares fit, the matrix M must be adequately

stated. For unweighted fits, this requirement is met with only
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a few words. For weighted fits, the elements of the diagonal
weight matrix E==¥f1 can be given. Only for correlated fits must
a full generalized weight matrix be given.or described.

(c) Model. Since the model basically defines the nature of
the physical constants being estimated, it is clearly essential
information to be reported. Without it, the estimates lose thelir
usefulness as predictors. Some models are simple to specify, e.g.,
the vibrating-rotator used as examples here. On the other hand,
the complex models of multiplet states require a more elaborate
presentation, or careful reference, of Hamiltonian matrix elements.
Part of model specification may also include the results of tests
of significance of "borderline" constants like H, that were not
included in the model.

(d) Estimated molecular constants. Since it is needless to

elaborate on why the estimates of the molecular constants é should
be reported, we consider here the important point of how to report
them without loss of information. These values appear first on
the computer output, where they are printed with the number of
digits determined by the extent of the chosen format statement,
which is deliberately oversized. Clearly, not all of these digits
are significant, and rounding up to the last significant digit

before reporting these estimates is certainly called for. This

apparently-trivial task is actually quite deceptive.
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Since the standard error is a measure of the uncertainty of
an estimate, the practice of rounding the estimate so that the
last remaining digit reflects one standard error is a common one,
For example, B' =0.3224994... and B" = 0.3320580... cm-!, with

standard errors of 0.0000075... and 0.0000076... cm™!, respectively,

the number in parentheses reflects the standard error in the last

digit). However, in this particular fit (Albritton, Schmeltekopf, Zare,

and Tellinghuisen, 1974), AB=B'-B" =-0.0095586... cm~!, with a
standard error of 0.00000039... cm™}. (The difference between two
highly-correlated constants is almost always more precise than the
two constants themselves. See Pliva and Telfair, 1974, and Albritton,
Schmeltekopf, Tellinghuisen, and Zare, 1974,) Therefore, these two
overly-rounded values cannot yield the AB value with full precision;
one more digit is required, e.g., B' =0.3224994(76) cm~!. Because

of this, such overly-rounded values may yield calculated line
positions that are significantly in error, thereby impairing, for
example, the predictive usefulness of these reported values.

The possibility that rounding to reflect one standard error
does indeed result in over-rounding increases with the correlation
between the molecular constants. The reason for this is that,
while the standard error is indeed a measure of the absolute preci-
sion of an estimated constant, the covariances describe the relative

precision among the set of estimates. Thus, for large correlation
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coefficients, using the standard errors alone as a guide for rounding
can result in considerable loss of relative precision, which is
important anytime the estimates are used as a set. An example of

detrimental loss of relative precision by over-rounding follows,

Figure G-1 shows a computer output giving the results of an
equally-weighted least-squares fit, E;=£/(O.30)9 cm?, to a set of
19 "measured" absorption band origins v,(v',0) to determine esti-
mates of the electronic term energy T, and the five vibrational
Dunham coefficients Yi4, i=1, 2, ...,5, (commonly recognized as

W “WeXgr WoYqr e..) based on the familiar model

el

b
Vo (v',0) = Toe + L Yip(v'+k) ' (G-1)
i=1

The output lists the measured values y and the calculated values,

y==§é, and compares the differences to the estimated experimental
A L
uncertainty. The estimated values B and standard errors @;i for

the Dunham coefficients are given, along with the degrees of
freedom n-m and standard deviation of the residuals a. Lastly,
the estimated variance-covariance matrix é_and the correlation
coeffigients Cij are displayed.

One immediately notes that the errors of the estimated
coefficients are highly correlated. These magnitudes are a clear
warning that the standard errors alone, which are here often only
a factor of ten smaller than the estimated coefficient itself,

should not be the sole guide for the rounding of digits.



CALCULATION OF DUNHAM FXPANSION COEFFICIENTS FROM BAND ORIGIN VALUES

Vv MEASURED CALCULATED MEAS ~ CALC EXPERIMENTAL
NUIVs0) NU(V»0) AND STD ERR RESTDUAL UNCERTAINTY DUNHAM EXPANSION COEFFICIENTS AND STD ERR
0  64T48,48 64T74R.80(0,30) «0.32 030 * TOE @ 63996404961044B47)
1 66230.15 66229437(0419) 0.78 0630 "
2 67675.66 676764nB1019) 0,42 0430 » Y(19»0) = 1513.69778(0.5187)
3 69088440 69088¢46(0617) 0600 0430 "
4 70666427 70466418(0415) 0.09 0430 » Y(200) ®  ~1642985963(041683)
5  71809.04 T1B09+2410415) -0420 0430 * -
6  TI117.55 73117.70(n.16) ~0,15% ne30 . Y(3:0) = -1.8499716910,22640) X 10
7 764391.73 76791.70(0.15) N.073 0430 » -2
8 7563175 75631¢45(0415) 030 0¢30 » Y(440) = 1,50107240(0.1298) X 10
9  76837,33 76837,14(0,141 0,19 0+30 3 -4
.10 78008466 78008+90(0.15) -0.2¢ 0430 . Y15:0}) = -4+101630806(0,2720) X 10
11 79146491 T7914647710.15) 014 0430 »
12 80250451 BN250¢%59(N416) -0.08 0430 L3
13 A1320.n5 81720.050(0.15) 0400 0430 L] DEGREES OF FREEDOM = 13
164 82354443 82354455(0415) -0.12 0430 L
15 83352,97 83353,19(0417) -0.22 030 » STANDARD DEVIATION » 1.08
16 B4314,94 84314,73(0.19) 0e21 0+30 *
17 85237.75 85237.51(0.19) 0e24 0,30 "
18 86119,25 86119.62(0,30) -0,17 0e30 .
19 B6957.8T10.T6} »
20 B87749,70(1.66) .
"

B RN BB RRE R R SRR RR R R RN RRER R R R EERERRE RS RRERSEEERRE SR

VARIANCE-COVARIANCE MATRIX AND CORRFLATION COFFFICIFNTS

ToE Y(1,0) Y1240) Y(350) Y(430) Y(8,0)
I EEEEENNFEEENEEN I I B B N N NN IR I ESE S-S R T SR SN IR I Y I I A B B N R A B R N A
. -1 -1 -2 -3 -4 -6 .
TOE ® 2,3493183 X 10 -2,2281648 1 10 643682009 X 10 =-7.6439485 X 10 4.0686409 X 10 ~-7.9285833 X 10 "
Yilsol . -0.8863 246902173 10-1 -B.46865649 X 13-2 1,0751016 X 10-2 -5.,9199829 X 1o-a 1,1809675 X 10-5 ]
Yi2sn) - 047806 -0.9721 248329825 X 10-2 -3.7416110 X 10-3 241016128 X 10-“ ~442707581 X 10-6 .
vi3.al § —0.T042 0.9255 -0.9872 5.0156033 X 10-“ -2.8863167 X 10-5 5,9508795 X 10—7 .
Yi4s01 ‘ 046466 0.8792 0.9618 -049927 146853350 X 10-6 -3,5150273 X 10-7 .
Y15:01 . -046013 048370 ~0.9328 09766 -0.9953 7.400p576 X 10-10 .
:lIl"QOII'I‘..II“I’I...!'.'..I'.’I'..Q'.'..ll.ll'.'.ll.:

-1
(ALL UNITS ARE CM )

Figure G-1, Sample computer output of a least-squares fit to a

set of absorption band origins to estimate the upper-state Dunham

coefficients.
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Specifically, the high correlation implies that if one reports
these calculated band origins i_(which were generated by the
computer using all of its digits, significant and insignificant)
and also lists the coefficients rounded to reflect one standard
error, then these reported calculated band origins cannot be
reproduced by the reported (over-rounded) expansion coefficients.
Table G-1 gives an example of this. The second column lists,
first, the expansion coefficients rounded so that the last remaining
digit reflects one standard error, and secondly, the differences
that occur between the values calculated from these rounded values
and those calculated from the unrounded values. The error intro-
duced by over-rounding increases with increasing vibrational level
and, at the upper extent of the data, is about four times larger than
the experimental uncertainty. The third column shows that even
when one more digit is preserved, the error is still intolerable,
since it is gimply due to excessive roundoff of digits that had
relative significance. Finally, the last column shows that
approximately three digits beyond the "one standard error digit"
are required in this example to eliminate this annoying and
unnecessary error,

The digits that possess relative significance vary, of course,
with the degree of correlation, and hence are different for each

example. Although "rules of thumb" can be developed for each



90

class of least-squares fit, (e.g., one additional digit beyond

the "one standard error digit" seems to suffice for most elec-
tronic bands) it is nevertheless an excellent practice, and an
easy task, to take one's final rounded set of values for the

~

estimates B and simply verify that they do indeed give the
original calculated Yy values to some number of appropriate

digits.

(e) Estimated variance of the measurement errors. The

estimated variance &2, or equivalently, the estimated standard
deviation 3, is the best single measure of the precision of the
data and the success of the chosen model in fitting the data.
As such, ¢ should definitely be reported.

Since 62 is an estimate, it has some degree of uncertainty.
While the "variance of the estimated variance" sounds like an
elaboration of statistical minutia, it is nevertheless useful
and worth a few lines here. The reason is that, in reporting 8,
it is convenient to know how many digits are significant, a small
but practical matter. Unfortunately, as explained by Dixon and
Massey (1969, p. 101-103), there is no simple, universal expression
fmrthe-wuiancecﬁ'ag. For example, the scatter of the g estimates
in Fig. D-2 is slightly asymmetric; hence, there is no single "z&"

value that is strictly correct. However, an approximation



Table G-1. Differences between vg,(v',0) values calculated with

unrounded and rounded Yio coefficients,

coefficient rounded to one rounded to one "appropriately"
std. err. additional digit rounded

Teo 63996.05 63996.05 63996.050
X518 1513.7 1513.70 1513.6973
Yoo -16.30 ~16.299 -16.2986
Yierg -1.85x10-? -1.850x107? -1.84997x107?
¥, o 1.50x107? 1.501x1072 1.50107x10"?
¥ 5 -4.10x10™*4 -4.101x10™4 -4.10144x1074
v difference difference difference
0 0.00 0.00 0.00

1 0.00 0.00 N

2 0.00 0.00

3 0.01 0.00

4 0.02 0.00

5 0.04 0.00

6 0.06 0.00

7 0.09 0.00

8 0.13 0.01

9 0.18 0.02
10 0.24 0.02
11 _ 0.32 0.03
12 0.41 0.04
13 0.52 0.05
14 0.65 0.06
15 0.80 0.07
16 0.97 0.08 W
17 1.17 0.09

18 1.39 0.10 0.00
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that is reasonable for moderately large degrees of freedom and
approximately normally distributed measurement errors (Rossini
and Deming, 1939) is that the standard deviation of the standard

deviation 1is

~
- ~ (o)

°  [2(n-m)]%

where n-m are the degrees of freedom. This shows that seldom do
more than two figures of o have absolute precision. Thus, except
for large degrees of freedom, ¢ need only be quoted to two nontri-
vial digits.

(£) Degrees of freedom and standard errors. To report only

A

the estimated values Bi is incomplete, since no indication is given
of how "good" or how "bad" such estimates are; that is, no informa-
tion is given as to the width of the interval centered on the
estimate and within which we may reasonably expect the unknown

"true" value to lie. Without such information about the precision,
the results of two experiments, or the results of experiment and
theory, cannot be meaningfully compared. As described in Sec. D-3-b,
both thé standard errors and the degrees of freedom are required
before such confidence limits can be computed. Thus, these two

are discussed here together.

It was seen in Fig. D-11, that when the degrees of freedom of
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N

a least-squares fit are large, the t-factor (i.e., the number of
standard errors one must combine to be confident, at some level,
that an interval has been constructed that includes the "true"
value) is very nearly constant. In many spectroscopic investiga-
tions, even when the degrees of freedom are not explicitly stated,
it will be obvious that they are, in fact, large. Therefore, the
popular 95% confidence limits, for example, can be constructed
by simply doubling the reported standard error. On the other hand,
however, there are numerous investigations where the degrees of
freedom cannot be easily estimated by inspection (e.g., perhaps
the line lists were deposited). 1In instances like these, even with
the standard errors inen, the full measure of the precision of
the estimated molecular constants cannot be obtained, or, perhaps
at best, can be obtained only after tedious counting. Therefore,
since they are available as output from the least-squares fit and
are only simple integers that need only to be listed once for each
fit, the reporting of the degrees of freedom seems to be very
desirable.

Some of these remarks apply equally well to the standard
errors themselves, but since they are in fact usually reported,
in sharp contrast td the degrees of freedom, no elaboration on
why they should be stated is required. However, it is useful to

consider how they can be reported in order to convey their
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information without possible confusion.

One can question what measure of precision should be reported:
confidence limits or standard errors? As described in Sec. D-3-b,
it is only the confidence limit that has the desired probabilistic
interpretation and that corresponds to one's need for realistic
limits of uncertainty due to random errors. Thus, two standard
errors are often quoted, implying 95% confidence limits (and
large degrees of freedom). On the other hand, one standard
error is also often quoted. It is clear that such a quoted value
should not be misinterpreted as a realistic confidence limit. 1If
erroneously taken to be such, the risk of being wrong, due purely
to random effects, is a rash 33 percent. The standard error is,
however, in many ways a simpler and more appealing quantity to
quote than a confidence limit. It is easily recognized and, to
many, it lies at the heart of the meaning of precision. Further-
more, it permits the users to construct confidence limits with -
percentages corresponding to their own tastes, e.g., 95, 99, 99.9%,
provided, of course, that the degrees of freedom are given.
Actually, it does not appear to be critical whether either con-
fidence limits or standard errors are quoted; however, whichever
is quoted, it is critical that it be clearly identified as such.

One also sometimes sees, for example, five standard errors

given as the "limits of error" (e.g., see Ramsay, 1974, p. 123). Usually, such
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large multiplés are given in order to account for some degree of

"contamination" by systematic errors. While it is clear that

this procedure can have no statistical basis and the use of the
standard error as a "unit" for the multiple appears to be chiefly
for convenience, it can be nevertheless a useful statement of the
spectroscopist's judgement of the relative sizes of random and
systematic error. For example, it could have been found that
estimates of the same constant using several different bands
required five standard errors to be consistent, and, to be on the
safe side, such "limits of error" were adopted for all of the
estimates. Again, possible misinterpretation can be avoided if
the construction of the limits are clearly explained.

Since the precision of a standard error depends only on the
precision of o. the general rule for the number of significant
digits in a standard error is the same as that described above
for 6. Specifically, seldom do more than two nontrivial digits
need to be reported in quoted standard errors, except for very large
degrees of freedom. Since standard errors are rarely used as a
set (in contrast, as explained below, to the variances and
covariances), there appears to be no problem with over-rounding

of digits with relative precision.
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2. TUseful Information

(a) Estimated Variance-Covariance Matrix. If it were not

for the fact that its size often makes it impractical to publish,

the usefulness of the estimated variance-covariance matrix

{@>

==522 would place it in the category of essential infor-

mation to report. While the reporting of the standard errors does
mean that the diagonal elements of @_are known, the off-diagonal
covariances are required for the determination of the errors of
guantities whose calculation requires two or more of the estimated

A

constants &. It is informative to examine a few examples of
commonly-occurring instances where the full variance-~covariance
matrix @ is useful,.

First, for enlarging the data set X_by interpolation and
short extrapolation to the location of missing or new elements Y,
it is useful to know the standard errors of such predictions,
since confidence limits based on these errors estimate the range
over which it is practical to search for the new elements. Such

estimates of the new elements are calculated from the estimated

molecular constants

=28 , (G-3)
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where the matrix Z is generally a simple enlargement of the orig-
inal coeffieicent matrix X. The standard errors associated with
the estimates y are the square roots of the diagonal elements

~

of the estimated variance-covariance matrix of Y,

q = zézT , (G-4)

whose calculation is based on the propagation rules of variance
and covariance (the generalization of the more-familiar "propa-
gation of error, i.e. variance," see Hamilton, 1964, p. 149).
For example, Fig. G-1 shows the standard errors of the calculated
Vo (v',0) values. Here the standard error "envelope" is symmetric
about the central vibrational level of the observations because
all of the weights were equal. With 95% confidence, the location
of the origin of the predicted (19,0) band lies within the interval
86956.23 <v,(19,0) £86959,.51 cm™!, provided the model of only
five Dunham coefficients can be trusted for one additional
vibrational level.

A further related example of the usefulness of @ is the

calculation of the zero-point vibrational energy

>
>

]
4
K

-
o]
o
(S

G (v=0)

= £8 , (G-5)
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T . \ . ]
where f =[%, %, %, #5. #5]. For the example given in Fig. G-1,

é(v=0)==752.75 cm™!, In comparison of this "experimental" value
to ab initio calculations of this unobservable quantity, it is
useful to know the standard error of this value, [g? é'£]%==0.22
cm~!. Further examples of the use of the full variance-covariance
matrix have been given by Albritton, Schmeltekopf, Tellinghuisen,
and Zare (1974).

Thus, in view of the valuable information content in the
variance-covariance matrix @, it is a great pity that it is often
so large., When it is impractical to publish @, it would be
useful, almost essential, to at least briefly mention high corre-
lation, when it does exist among some of the reported constants.
Certainly, in those applications where é is indeed a publishable
size, it would be useful to make it available, perhaps in a form
similar to the array in Fig. G-1 or to Table E-1 (without the
standard errors, of course, since they are usually given separately

in the tabulation of the é_values). The variances and covariances

are quantitatively useful and the correlation coefficients are

qualitatively useful. Note that without 8, reporting just corre-

lation coefficients is not very quantitatively useful, since

correlation coefficients alone cannot be used to reconstruct 6.
This and other reconstruction problems are the reasons why the

"split" matrix containing both ® and Cij is preferable to just
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Cij alone. It should also be noted that since the matrix multi-
plication in equations like Eq. (G-4) involves differences between
large, almost-equal numbers, over-rounding of the elements of a
reported @'is a possible pitfall.

Finally, it might be thought that, since ®==82(XT§)‘1, é
could always be reconstructed from the given 69, structure of the
data, and model. However, while this is indeed true, it would
also mean that the least-squares fit would essentially have to
be repeated, which is not generally attractive. For example,

A

E and @_could be the results of a nonlinear least-squares fit.
(b) Normality. The interpretation of a confidence limit

in terms of probability is based on the assumption that the

measurement errors are normally distributed (Sec. D-3-b).

Fortunately, the reliability of the confidence limits in this

regard is not unduly sensitive to moderate departures from

normality (Hamilton, 1964, p. 173). Therefore, a brief statement

summarizing the results of even the simplest normality test, like

that described in Sec. D-3-a, would be useful information.
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H. CONCLUDING REMARKS

Equations (F-6), (F-7), and (F-8) summarize the mathematical
machinery of the method of least-squares. For a given model and
set of input data this machinery will obediently grind out a set
of resulting numbers. However, the overall goal of computing is
insight, not just numbers. A necessary condition for attaining
this goal in the campaigns of molecular constant estimation is
that the numbers constitute well-defined estimates of the molec-
ular constants. Clearly this hinges on how adequately the least-
sguares assumptions are met by the physical circumstances.

If there is fairly close correspondence, as often is the case,
then the numbers are MVLU estimates, whose desirable statistical
properties are well-defined. 1In such cases, it is particularly
important to consider the estimated value of a molecular constant
and its accompanying estimated standard error as inseparable
quantities. The former can never be more than an estimate, and
without the latter, it can never be more than an estimate of
unknown quality. The estimated value and its estimated standard
error permit the construction of a numerical range, within which
the forever-unknown "true" value is expected, with a certain
confidence, to lie. This confidence interval is the end product

of the experimentation-estimation process. 1Its width, for a given
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confidence, is the final measure of the investigator's skill.

On the other hand, if there is not fairly close correspondence
between the least-squares assumptions and the physical situation,
the resulting numbers will be impaired estimates, flawed to a
degree that may not be SuFerficially apparent. Perhaps the most
common failings are systematic measurement errors and model
deficiencies. Fortunately, estimation procedures need not be
blind to such defects; they have the ability to test, to some
degree, for the existence and extent of these failings through,

for example, the reasonability of the estimated variance of the

residuals, an analysis of the residuals for possible systematics,
the normality of the residuals, the internal consistency of confi-
dence limits, the confidence with which a new molecular constant
can be added to the model, and other more sophisticated tests.
Thus, even though the correction of these defects may be often

a formidable or impossible task, just to be aware of their
existence is nevertheless a gain. A devil known is at least

better than a devil unknown, even though it cannot be exorcised.
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APPENDIX: DERIVATION OF THE LEAST-SQUARES EQUATIONS

1. Estimated Molecular Constants

We start from the linear model equation

Yy =XB+e - (1)

which relates the n observations y;, each with error ¢;, to the m
parameters 8; (m <n) through a rectangular nxym matrix X of known
coefficients. For unweighted least squares the errors are assumed

to arise from distributions (not necessarily normal) charac-

terized by a mean value of zero

E(eg’) = oL - (3)

where I is the nxn identity matrix. We form the sum of the

squared residuals
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S(B) = (y-XB) (y-X8)
T T T,T T, T

Xy+BXXg , (4)
} T T T

where we use the matrix algebra property (AB) =B A . We then

minimize S(B8) with respect to the variation of &.

We introduce the column vector operator

Because of its definition as a column vector, YB can only be
applied to the transpose of a column vector, i.e. a row vector.
For example, if u is an arbitrary 4x1 column vector, then ZBuT

is a myx{ matrix
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,V_BB_ = 381 [ul, uz’ e o 0 u{/]

du, du, ¥y
3B o8> 9Ba
aul auz S U al.l{,
3Pm 3Bm Bm . (6)

Unless ZB is of dimension 1x1, the ordinary rules of differentiation,
such as the rule for differentiating a product, are not valid. An
exception occurs when g_and b are two arbitrary myl column vectors.
Then it is readily shown by direct evaluation that a modified
product rule holds, namely,

Tb = T)b bT (7)
yﬁ(g b) = (g2 ~4'(ZB~ )a .
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It immediately follows from Eg. (7) that if g_is a mxl column

vector independent of B8, then

(@) - el - (8)

and if Zz is a mxm matrix independent of B8, then

v5(8'278) = Z8+2 8 - (9)

The condition for S(g) to be a minimum is
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2555()|§?é =0 . (10)

Applying Eg. (10) to Eq. (4) we obtain with the help of Egs. (8)

and (9)
0=vlyy-y X8 -8 Xy+8 X 28] .
B=f
= -2xTy + 2X"%B (1)
orxr
x"K)B = Xy . (12)

Now (g?&) is a myxm symmetric matrix having an inverse. Hence
2 T

B= ®OTXy . (13)

which is Eq. (D-6).



107

2. The Gauss-=Markov Theorem

Our treatment follows that of Koerts and Abrahamse (1969,
p. 11). Consider an arbitrary linear estimate B* =Ay, which is

also unbiased, i.e., E(B*) =B. This property requires that

8 = E(ay)

= E[A(XB +¢)]

-~

E(AXB) | (14)

since E(g) =0. Eq. (14) can only be satisfied if

=1, (15)

where the identity matrix I is of order m. Hence the matrix A

can be written as

A= (XX)*X+B (16)

where

BX = 0 . (17)
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We now show that among all the unbiased linear estimates,

B==(XTX)_1XTy has minimum variance. We form the variance-

-

covariance matrix of B*. First, we see that

8*-8 = [(X'X)'X +Bly-8

= (K +Bl XBrel -8

[(X'X)-'X" +Ble . (18)

It then follows that

B(8*-8) (8*-8)7] = E{{(X'X) X" +Blee X(X'X)™* +B 1]

[(X7%) X" +B]E(ee”) [X(X'X)™* +B']

= ?[(X'X)"* +BB"] , (19)

where we have used the fact that (g?gp and (}_ngX)‘1 are symmetric

. T . . 5 .
matrices. BB  is a symmetric matrix all of whose diagonal

—

elements are greater than or equal to zero. Therefore the choice

B =0, corresponding to A.==(XTX)"1XT

_—

and thus B* =g, gives the

?‘G)>

minimum variance.

3. Estimated Vvariance of the Measurement Errors

Since the error vector e is equal to Y - XB, where B8 is

~

unknown, ¢ cannot be observed. Instead, we use the



least-squares estimate for the errors

=y-%8 =Ny

!(‘))

where
N = [I-XXX™X] .
The nxn matrix N has a number of special properties:

N =N

These are all easily proven but perhaps Eg. (25) needs some
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(20)

(21)

(22)

(23)

(24)

(25)

elaboration. The trace of a square matrix is equal to the sum

of the diagonal elements. The trace operation has the property

trace (A + B) = trace A+ trace B and trace(AB) = trace (BA), A and

_— ey

B being square matrices of the same order. Hence
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trace N = trace[;;—X(XTX)‘le]

trace I - trace[X (X X)1X']

trace E;—trace[(§?§)’1(§?§)]

1

=n-m . (26)

We now find an estimate for the unknown variance c° of the
errors. A well-known estimate of ¢® is the mean square of the

residuals

()]
I
S|

5|

Il
=R
=<
=

=Z

(27)

S+
=
=
=

This estimate is not used much because it is biased, i.e.,

E(s®) # 0. This bias can be removed, however, by noting that

E(s?) E{ [XB +¢] N(XB +¢)

|
|
=
N
=2
b
1}
= B

Ele Nel . (28)

Sl
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where use is made of §§==Q: Since E( eT)==o°£, and eTNe is a

—

scalar,

E(s?) = =

1l
|
e
H
w
o]
)
12

_n-m 5 (29)

Tt is now clear that - s® is an unbiased estimate of o2, i.e.,

5 = L [y-x8] ly-xg] , (30)

n-

which is (D-8) with m=5.
4, Estimated Variance-Covariance Matrix

The variance-covariance matrix of B is computed from

Ef (8- (XX X7 y] (8- (X'%) X y1 "

E{(B-8) (B-8)T]

E{[8- (X X) 21X (X8 +¢) ] [B- (X X)*X" (XB +¢)]" }

BT el [X XK el

Il

(K"%) K"

E(ee)X(X'X)

o® (X'X) 7, (31)

which is Egs. (D-9) and (D-10).
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5. Correlated Least-Squares Estimates

In correlated least-squares (of which unweighted and weighted

least-squares are special cases), we begin once again with the

linear model

y =Xg+e . (32)

but here the errors e, while having zero mean, also have in general

unequal variances and non-zero covariances. The variance-covariance

matrix of the errors is given by

= o°M , (33)

where g‘is a known positive definite (i.e., all eigenvalues > 0)
symmetric matrix and ¢® is an unknown common factor. The unweighted
least-squares formulation cannot be applied here because of the

form of this variance-covariance matrix. However, this obstacle

can be removed by finding a square matrix E?, independent of ¢,

that transforms the errors ¢ into y

—

!
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-..X_ —

Substituting Egq. (34) into Eg. (35) we find

= g?pP"MP . (36)
Hence the transformation must have the property
plMp = 1 . (37)
We show next that it is always possible to find such a transfor-
mation.
Since M is a real Hermitian matrix, there exists a real

unitary matrix U, i.e.

1 (38)

c
]

l
!

that diagonalizes M
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v =D, (39)

where D is a diagonal matrix whose elements A4 are the eigenvalues

of M. Since M is a positive definite matrix, A; >0. Thus we can

A

1
. . B
define a matrix D

Df; = (A3) (40)
so that
/
1
D = P,BP,% . (41)

i
The diagonal matrix D® is nonsingular and its inverse is also a

diagonal matrix D where

+_ b
D,y = (xi) . (42)
Then the matrix
p-w’ (43)

has the desired property we seek, namely,
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-1 -1
PTvp = (0 %) Tu"Mup *
-1 v ek
- (0 ©)Tpp 2
-1l 1.1
=D BDEDED 2
= _12_ ’ (44)
-7 _ % SN
where we make use of the fact (2_ )" =D since a diagonal matrix

is always symmetric. Moreover, the matrix P is nonsingular and

has an inverse given by

-1

g
i
=R
o
I
L,
|
(d

!

= D*U ¢ (45)
Hence we find from Eq. (37) that
= (e)7p (46)

and

M—l = [(BT)-IE_—I]_i

!

= PP~ . (47)
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We now transform Eg. (30) by premultiplying by g?

PT = E B P E.. . (48)

~~

Equation (48) can be recognized as the unweighted least-squares

—

model equation with PTy as the new observation vector with errors

PTe and a new known coefficient matrix PTX. Hence, we use the

—~ -~

results derived previously for the unweighted least-squares to

obtain the MVLU estimates in the general case

g = [ETEIT ETEY

[x PP x]“lePPTy

[X M‘lx]'leM Yy - (49)

The variance-covariance matrix of B is computed from

-~

@>
1l

2 [(p"x) T (PTx) 12
= O‘ [X PP X] -1

= G IXMTIKITY (50)

where the best estimate of o® is given by
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>

o2 = = (Te)T (pTe)
n-m - = ~ =

L eTPPT

e

£

= 1 [y -x81"w 1y - %B] (51)

Note that é, ®, and g can be calculated without having to know

e

the transformation matrix E? explicitly. Egs. (49—51):arenthe

general correlated least squares EQs. (F-6), (F-7), and (F-8).
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