-------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 2 1.00E-08 ) Condition no. = 6.2500E+02 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 7.0E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-08 wantse = F atol = 3.18E-16 conlim = 6.25E+05 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.250758627E+03 1.00E+00 6.62E-04 1 -1.569523708E+01 4.508643183E+02 3.60E-01 7.04E-01 8.88E-01 1.00E+00 1.2E+03 1.1E+00 1.3E+03 5.5E-01 2 2.895287270E+00 2.381656023E+02 1.90E-01 4.38E-01 1.18E+00 2.12E+00 -3.8E+02 1.4E+00 5.4E+02 2.9E-01 3 6.914168784E+00 1.496722377E+02 1.20E-01 3.16E-01 1.39E+00 3.40E+00 1.9E+02 1.7E+00 3.1E+02 1.9E-01 4 1.929180742E+00 1.044696696E+02 8.35E-02 2.43E-01 1.56E+00 4.82E+00 -1.1E+02 1.9E+00 2.0E+02 1.4E-01 5 -4.030073311E+00 7.854670980E+01 6.28E-02 1.91E-01 1.70E+00 6.39E+00 6.9E+01 2.1E+00 1.5E+02 1.1E-01 6 -8.170857369E+00 6.260650712E+01 5.01E-02 1.52E-01 1.83E+00 8.09E+00 -4.7E+01 2.4E+00 1.1E+02 9.0E-02 7 -1.028185061E+01 5.237781045E+01 4.19E-02 1.20E-01 1.93E+00 9.92E+00 3.4E+01 2.6E+00 9.0E+01 7.6E-02 8 -1.086059048E+01 4.564076779E+01 3.65E-02 9.39E-02 2.02E+00 1.19E+01 -2.6E+01 2.9E+00 7.4E+01 6.6E-02 9 -1.044238556E+01 4.113093676E+01 3.29E-02 7.27E-02 2.09E+00 1.40E+01 2.0E+01 3.2E+00 6.3E+01 5.9E-02 10 -9.437438588E+00 3.807969510E+01 3.04E-02 5.55E-02 2.15E+00 1.63E+01 -1.6E+01 3.5E+00 5.5E+01 5.3E-02 20 8.976385404E-01 3.171296389E+01 2.54E-02 1.58E-03 2.55E+00 6.46E+01 -2.3E+00 1.4E+01 3.2E+01 2.6E-02 30 9.266202721E-01 3.162326291E+01 2.53E-02 1.61E-04 3.15E+00 2.80E+02 -4.5E-01 6.8E+01 3.1E+01 1.4E-02 40 4.463025060E-01 3.162278316E+01 2.53E-02 1.44E-06 3.66E+00 6.60E+02 -6.4E-04 1.9E+01 1.2E-02 9.8E-03 50 1.000001656E-01 3.162277660E+01 2.53E-02 4.82E-09 4.14E+00 2.69E+03 -2.6E-06 1.9E+00 4.9E-06 5.2E-03 60 9.999999981E-02 3.162277660E+01 2.53E-02 2.23E-12 4.50E+00 2.93E+03 -2.3E-09 1.5E+01 3.5E-08 5.2E-03 66 9.999999998E-02 3.162277660E+01 2.53E-02 1.06E-15 4.71E+00 3.07E+03 -3.6E-12 2.5E+00 8.9E-12 5.2E-03 70 9.999999998E-02 3.162277660E+01 2.53E-02 1.88E-15 4.86E+00 3.17E+03 -2.9E-12 1.9E+01 5.6E-11 5.2E-03 71 9.999999998E-02 3.162277660E+01 2.53E-02 1.25E-15 4.91E+00 3.20E+03 4.2E-13 3.2E+00 1.3E-12 5.2E-03 72 9.999999998E-02 3.162277660E+01 2.53E-02 1.51E-17 4.94E+00 3.22E+03 -6.9E-13 6.2E+00 4.3E-12 5.2E-03 Exit LSQR. istop = 3 itn = 72 Exit LSQR. anorm = 4.94062E+00 acond = 3.22385E+03 Exit LSQR. bnorm = 1.25076E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 2.35170E-15 Exit LSQR. max dx = 1.3E+03 occurred at itn 1 Exit LSQR. = 7.2E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-08 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 7.623E-13 = sigma1 norm(s) = 3.162E+09 norm(x,s) = 3.162E+09 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 7.905E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 3.077E-03 (Ax = b) test2 = 4.879E-15 (least-squares) test3 = 5.060E-15 (damped least-squares) Solution x: 1 0.100000E+00 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 9.37E-14 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 3 1.00E-09 ) Condition no. = 1.5625E+04 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 4.6E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-09 wantse = F atol = 3.18E-16 conlim = 1.56E+07 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.124758738E+03 1.00E+00 7.28E-04 1 -2.024780599E+01 4.445459391E+02 3.95E-01 6.73E-01 8.91E-01 1.00E+00 1.0E+03 1.1E+00 1.2E+03 5.8E-01 2 -4.437078376E+00 2.497498983E+02 2.22E-01 4.11E-01 1.18E+00 2.15E+00 -3.7E+02 1.4E+00 5.3E+02 3.1E-01 3 7.016884706E+00 1.633307620E+02 1.45E-01 2.93E-01 1.38E+00 3.47E+00 1.9E+02 1.7E+00 3.3E+02 2.1E-01 4 1.026274765E+01 1.165741020E+02 1.04E-01 2.22E-01 1.54E+00 4.95E+00 -1.1E+02 2.0E+00 2.3E+02 1.5E-01 5 8.511358718E+00 8.827921379E+01 7.85E-02 1.73E-01 1.66E+00 6.61E+00 7.6E+01 2.3E+00 1.8E+02 1.2E-01 6 4.564132190E+00 6.995558376E+01 6.22E-02 1.35E-01 1.76E+00 8.45E+00 -5.4E+01 2.7E+00 1.5E+02 9.3E-02 7 6.893647511E-02 5.760137809E+01 5.12E-02 1.05E-01 1.83E+00 1.05E+01 4.0E+01 3.1E+00 1.2E+02 7.7E-02 8 -4.112941580E+00 4.909607612E+01 4.37E-02 8.05E-02 1.89E+00 1.28E+01 -3.0E+01 3.6E+00 1.1E+02 6.5E-02 9 -7.562719628E+00 4.320398305E+01 3.84E-02 5.99E-02 1.93E+00 1.54E+01 2.3E+01 4.2E+00 9.7E+01 5.6E-02 10 -1.009825707E+01 3.914274191E+01 3.48E-02 4.32E-02 1.96E+00 1.83E+01 -1.8E+01 4.9E+00 9.0E+01 4.9E-02 20 -5.040230267E+00 3.174137352E+01 2.82E-02 9.61E-04 2.54E+00 9.50E+01 -3.9E-01 3.4E+00 1.3E+00 2.2E-02 30 8.265763387E-01 3.162623208E+01 2.81E-02 2.19E-03 2.98E+00 3.77E+02 -2.9E-01 7.5E+01 2.2E+01 1.2E-02 40 1.472516426E+00 3.162289257E+01 2.81E-02 2.01E-06 3.51E+00 1.03E+03 -1.7E-03 8.7E+00 1.5E-02 7.7E-03 50 1.062876863E+00 3.162278139E+01 2.81E-02 2.61E-07 3.92E+00 2.55E+03 -3.8E-04 4.1E+01 1.6E-02 5.2E-03 60 4.710610499E-01 3.162277661E+01 2.81E-02 2.56E-07 4.24E+00 8.74E+03 -3.0E-04 3.6E+01 1.1E-02 2.9E-03 70 4.704179285E-01 3.162277661E+01 2.81E-02 3.79E-08 4.58E+00 9.89E+03 -2.1E-05 3.7E+02 7.5E-03 2.8E-03 80 1.000449459E-01 3.162277660E+01 2.81E-02 2.65E-08 4.89E+00 7.70E+04 -2.5E-05 4.5E+02 1.1E-02 1.0E-03 90 1.000000204E-01 3.162277660E+01 2.81E-02 5.48E-12 5.17E+00 8.15E+04 -2.0E-09 1.6E+01 3.2E-08 1.0E-03 100 1.000000134E-01 3.162277660E+01 2.81E-02 1.36E-14 5.48E+00 8.64E+04 -6.8E-12 3.4E+00 2.4E-11 1.0E-03 105 1.000000130E-01 3.162277660E+01 2.81E-02 2.93E-16 5.69E+00 8.96E+04 1.5E-12 1.5E+00 2.2E-12 1.0E-03 Exit LSQR. istop = 3 itn = 105 Exit LSQR. anorm = 5.68664E+00 acond = 8.96364E+04 Exit LSQR. bnorm = 1.12476E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 5.26981E-14 Exit LSQR. max dx = 1.2E+03 occurred at itn 1 Exit LSQR. = 6.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-09 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 6.823E-13 = sigma1 norm(s) = 3.162E+10 norm(x,s) = 3.162E+10 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 6.819E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 2.746E-03 (Ax = b) test2 = 3.794E-15 (least-squares) test3 = 3.792E-15 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 4.06E-11 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 4 1.00E-10 ) Condition no. = 3.9062E+05 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 1.3E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-10 wantse = F atol = 3.18E-16 conlim = 3.91E+08 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.036803633E+03 1.00E+00 7.88E-04 1 -2.290522293E+01 4.288179200E+02 4.14E-01 6.51E-01 8.98E-01 1.00E+00 9.4E+02 1.1E+00 1.1E+03 6.1E-01 2 -1.229519129E+01 2.473115009E+02 2.39E-01 3.92E-01 1.18E+00 2.16E+00 -3.5E+02 1.5E+00 5.1E+02 3.2E-01 3 2.912832494E-01 1.637962341E+02 1.58E-01 2.74E-01 1.37E+00 3.52E+00 1.9E+02 1.8E+00 3.3E+02 2.1E-01 4 8.372079751E+00 1.171216132E+02 1.13E-01 2.03E-01 1.51E+00 5.07E+00 -1.1E+02 2.2E+00 2.5E+02 1.5E-01 5 1.186968037E+01 8.809237204E+01 8.50E-02 1.54E-01 1.61E+00 6.84E+00 7.7E+01 2.6E+00 2.0E+02 1.2E-01 6 1.189447236E+01 6.891427148E+01 6.65E-02 1.16E-01 1.68E+00 8.87E+00 -5.5E+01 3.1E+00 1.7E+02 9.0E-02 7 9.555842886E+00 5.587265850E+01 5.39E-02 8.60E-02 1.73E+00 1.12E+01 4.0E+01 3.8E+00 1.5E+02 7.3E-02 8 5.773292099E+00 4.696743386E+01 4.53E-02 6.16E-02 1.76E+00 1.40E+01 -3.0E+01 4.6E+00 1.4E+02 6.0E-02 9 1.300148876E+00 4.098569994E+01 3.95E-02 4.20E-02 1.79E+00 1.75E+01 2.3E+01 5.7E+00 1.3E+02 5.0E-02 10 -3.232558656E+00 3.709579579E+01 3.58E-02 2.71E-02 1.80E+00 2.18E+01 -1.7E+01 7.1E+00 1.2E+02 4.2E-02 20 -1.047331587E+01 3.168657934E+01 3.06E-02 3.88E-04 2.42E+00 1.47E+02 -2.0E-01 3.7E+00 7.3E-01 1.7E-02 30 -2.132582570E+00 3.162440981E+01 3.05E-02 2.37E-05 2.95E+00 6.28E+02 -1.0E-02 3.3E+00 3.3E-02 9.0E-03 40 1.968519814E-01 3.162303561E+01 3.05E-02 4.40E-05 3.36E+00 1.50E+03 -3.7E-02 1.8E+02 6.7E+00 6.2E-03 50 1.512203568E+00 3.162278175E+01 3.05E-02 4.93E-05 3.76E+00 6.13E+03 -2.3E-02 7.6E+02 1.7E+01 3.3E-03 60 1.506677286E+00 3.162277863E+01 3.05E-02 8.39E-07 4.11E+00 8.59E+03 -7.3E-04 3.0E+02 2.2E-01 2.9E-03 70 1.107467137E+00 3.162277664E+01 3.05E-02 1.32E-09 4.42E+00 2.26E+04 -3.9E-07 2.2E+00 8.6E-07 1.8E-03 80 1.093040654E+00 3.162277664E+01 3.05E-02 2.76E-08 4.72E+00 2.99E+04 -1.9E-05 3.1E+02 5.8E-03 1.7E-03 90 4.760857630E-01 3.162277660E+01 3.05E-02 1.49E-09 5.02E+00 1.25E+05 -1.7E-05 2.9E+02 4.9E-03 8.3E-04 100 4.760755607E-01 3.162277660E+01 3.05E-02 4.86E-11 5.27E+00 1.31E+05 -2.8E-08 6.4E+01 1.8E-06 8.3E-04 110 4.363931561E-01 3.162277660E+01 3.05E-02 1.69E-08 5.52E+00 7.14E+05 -1.1E-05 1.3E+05 1.5E+00 3.7E-04 120 2.855415358E-01 3.162277660E+01 3.05E-02 8.20E-10 5.78E+00 1.61E+06 -5.4E-07 6.0E+03 3.2E-03 2.5E-04 130 9.999278444E-02 3.162277660E+01 3.05E-02 3.05E-12 6.04E+00 2.36E+06 -2.6E-09 2.9E+01 7.3E-08 2.1E-04 140 9.999244459E-02 3.162277660E+01 3.05E-02 1.18E-12 6.26E+00 2.45E+06 -8.9E-10 8.5E+01 7.6E-08 2.1E-04 150 9.999227011E-02 3.162277660E+01 3.05E-02 7.52E-14 6.46E+00 2.53E+06 -4.8E-11 1.0E+01 4.9E-10 2.1E-04 153 9.999226680E-02 3.162277660E+01 3.05E-02 4.79E-16 6.51E+00 2.55E+06 5.9E-11 1.4E+01 8.2E-10 2.1E-04 154 9.999226680E-02 3.162277660E+01 3.05E-02 3.93E-17 6.59E+00 2.58E+06 -9.9E-14 1.0E+00 1.0E-13 2.1E-04 Exit LSQR. istop = 3 itn = 154 Exit LSQR. anorm = 6.58996E+00 acond = 2.57947E+06 Exit LSQR. bnorm = 1.03680E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 8.19002E-15 Exit LSQR. max dx = 1.1E+03 occurred at itn 1 Exit LSQR. = 5.8E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-10 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 4.957E-13 = sigma1 norm(s) = 3.162E+11 norm(x,s) = 3.162E+11 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 4.957E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 2.418E-03 (Ax = b) test2 = 2.379E-15 (least-squares) test3 = 2.379E-15 (damped least-squares) Solution x: 1 0.999923E-01 2 0.199994 3 0.299992 4 0.399996 5 0.499990 6 0.599994 7 0.699992 8 0.799990 LSQR appears to be successful. Relative error in x = 2.69E-08 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 5 1.00E-11 ) Condition no. = 9.7656E+06 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 3.4E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-11 wantse = F atol = 3.18E-16 conlim = 9.77E+09 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.715494276E+02 1.00E+00 8.45E-04 1 -2.412106256E+01 4.116661440E+02 4.24E-01 6.34E-01 9.06E-01 1.00E+00 8.8E+02 1.1E+00 9.7E+02 6.2E-01 2 -1.824596476E+01 2.396665255E+02 2.47E-01 3.74E-01 1.18E+00 2.18E+00 -3.3E+02 1.5E+00 4.9E+02 3.3E-01 3 -7.118201010E+00 1.585407904E+02 1.63E-01 2.56E-01 1.36E+00 3.57E+00 1.8E+02 1.9E+00 3.4E+02 2.1E-01 4 2.622411370E+00 1.122939257E+02 1.16E-01 1.84E-01 1.47E+00 5.19E+00 -1.1E+02 2.3E+00 2.6E+02 1.5E-01 5 9.349109039E+00 8.319677884E+01 8.56E-02 1.34E-01 1.55E+00 7.12E+00 7.5E+01 2.9E+00 2.2E+02 1.1E-01 6 1.286861549E+01 6.400704762E+01 6.59E-02 9.65E-02 1.60E+00 9.44E+00 -5.3E+01 3.7E+00 2.0E+02 8.4E-02 7 1.344322975E+01 5.123459726E+01 5.27E-02 6.67E-02 1.63E+00 1.23E+01 3.8E+01 4.7E+00 1.8E+02 6.5E-02 8 1.153767000E+01 4.292240575E+01 4.42E-02 4.35E-02 1.65E+00 1.60E+01 -2.8E+01 6.1E+00 1.7E+02 5.2E-02 9 7.760937412E+00 3.776481275E+01 3.89E-02 2.63E-02 1.66E+00 2.08E+01 2.0E+01 8.0E+00 1.6E+02 4.3E-02 10 2.839816142E+00 3.476091919E+01 3.58E-02 1.47E-02 1.67E+00 2.74E+01 -1.5E+01 1.1E+01 1.6E+02 3.5E-02 20 -1.336969948E+01 3.166075481E+01 3.26E-02 3.64E-04 2.29E+00 2.00E+02 -7.4E-02 5.1E+00 3.8E-01 1.4E-02 30 -6.083030011E+00 3.162348609E+01 3.25E-02 3.92E-05 2.77E+00 1.04E+03 -1.7E-01 1.3E+02 2.2E+01 6.8E-03 40 -2.662235686E+00 3.162289174E+01 3.25E-02 2.07E-04 3.22E+00 2.50E+03 -2.2E-02 3.4E+02 7.4E+00 4.7E-03 50 -2.732264356E-01 3.162279151E+01 3.25E-02 1.99E-05 3.62E+00 5.31E+03 -2.4E-03 2.5E+02 5.9E-01 3.4E-03 60 1.201613436E+00 3.162277770E+01 3.25E-02 5.67E-07 4.02E+00 1.40E+04 -3.6E-04 4.2E+02 1.5E-01 2.2E-03 70 1.561188758E+00 3.162277664E+01 3.25E-02 1.08E-08 4.34E+00 4.41E+04 -7.4E-05 1.3E+02 9.5E-03 1.3E-03 80 1.560424732E+00 3.162277664E+01 3.25E-02 1.90E-08 4.61E+00 4.75E+04 -6.0E-05 1.6E+03 9.6E-02 1.3E-03 90 1.132677258E+00 3.162277660E+01 3.25E-02 5.43E-09 4.89E+00 2.01E+05 -3.0E-05 8.0E+02 2.4E-02 6.5E-04 100 1.124357793E+00 3.162277660E+01 3.25E-02 5.21E-11 5.15E+00 2.14E+05 -5.0E-08 9.2E+01 4.6E-06 6.5E-04 110 1.124338681E+00 3.162277660E+01 3.25E-02 1.11E-09 5.40E+00 2.24E+05 -6.9E-07 1.7E+03 1.2E-03 6.5E-04 120 7.263829581E-01 3.162277660E+01 3.25E-02 5.94E-08 5.65E+00 1.37E+06 -2.1E-05 5.1E+04 1.0E+00 2.7E-04 130 4.772327335E-01 3.162277660E+01 3.25E-02 5.49E-11 5.93E+00 1.83E+06 -3.8E-06 9.6E+03 3.7E-02 2.4E-04 140 4.772313748E-01 3.162277660E+01 3.25E-02 1.12E-14 6.15E+00 1.89E+06 -4.7E-11 1.6E+01 7.6E-10 2.4E-04 150 4.772313728E-01 3.162277660E+01 3.25E-02 1.22E-12 6.33E+00 1.95E+06 -3.8E-10 2.5E+02 9.5E-08 2.4E-04 157 4.772310992E-01 3.162277660E+01 3.25E-02 1.48E-15 6.52E+00 2.01E+06 4.6E-11 3.1E+01 1.4E-09 2.4E-04 158 4.772310992E-01 3.162277660E+01 3.25E-02 1.56E-15 6.53E+00 2.01E+06 -1.4E-12 4.5E+00 6.2E-12 2.4E-04 159 4.772310992E-01 3.162277660E+01 3.25E-02 2.75E-15 6.53E+00 2.01E+06 1.1E-11 5.1E+01 5.7E-10 2.4E-04 160 4.772310992E-01 3.162277660E+01 3.25E-02 1.39E-15 6.56E+00 2.02E+06 -9.8E-13 4.8E+00 4.7E-12 2.4E-04 161 4.772310992E-01 3.162277660E+01 3.25E-02 2.64E-15 6.57E+00 2.02E+06 1.5E-12 9.0E+00 1.3E-11 2.4E-04 164 4.772310992E-01 3.162277660E+01 3.25E-02 1.77E-15 6.66E+00 2.05E+06 -2.2E-12 1.4E+01 3.0E-11 2.4E-04 170 4.771614020E-01 3.162277660E+01 3.25E-02 6.04E-11 6.73E+00 2.25E+06 -1.9E-08 1.3E+05 2.5E-03 2.3E-04 180 4.718174168E-01 3.162277660E+01 3.25E-02 5.01E-10 6.92E+00 8.25E+06 -1.1E-07 7.8E+05 8.7E-02 1.2E-04 190 4.151011102E-01 3.162277660E+01 3.25E-02 4.60E-11 7.18E+00 2.81E+07 -6.9E-08 4.8E+05 3.3E-02 6.6E-05 200 1.137866609E-01 3.162277660E+01 3.25E-02 3.78E-11 7.35E+00 6.94E+07 -6.7E-07 4.6E+06 3.1E+00 4.3E-05 210 8.860577850E-02 3.162277660E+01 3.25E-02 4.89E-15 7.53E+00 7.36E+07 -1.2E-10 8.4E+02 1.0E-07 4.2E-05 220 8.860567896E-02 3.162277660E+01 3.25E-02 7.69E-14 7.69E+00 7.52E+07 -5.1E-10 3.7E+03 1.9E-06 4.2E-05 224 8.860567650E-02 3.162277660E+01 3.25E-02 5.59E-17 7.78E+00 7.60E+07 -1.3E-12 9.1E+00 1.1E-11 4.2E-05 Exit LSQR. istop = 3 itn = 224 Exit LSQR. anorm = 7.77584E+00 acond = 7.59737E+07 Exit LSQR. bnorm = 9.71549E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 1.37365E-14 Exit LSQR. max dx = 9.7E+02 occurred at itn 1 Exit LSQR. = 5.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-11 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 9.817E-13 = sigma1 norm(s) = 3.162E+12 norm(x,s) = 3.162E+12 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 9.817E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 2.083E-03 (Ax = b) test2 = 3.992E-15 (least-squares) test3 = 3.992E-15 (damped least-squares) Solution x: 1 0.886057E-01 2 0.188282 3 0.288714 4 0.388858 5 0.487640 6 0.587637 7 0.689307 8 0.787809 LSQR appears to be successful. Relative error in x = 4.22E-05 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 6 1.00E-12 ) Condition no. = 2.4414E+08 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 7.5E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-12 wantse = F atol = 3.18E-16 conlim = 2.44E+11 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.210791621E+02 1.00E+00 8.97E-04 1 -2.443055276E+01 3.951289622E+02 4.29E-01 6.18E-01 9.14E-01 1.00E+00 8.3E+02 1.1E+00 9.1E+02 6.3E-01 2 -2.224414133E+01 2.299330660E+02 2.50E-01 3.58E-01 1.18E+00 2.19E+00 -3.2E+02 1.5E+00 4.8E+02 3.3E-01 3 -1.321097804E+01 1.506103812E+02 1.64E-01 2.38E-01 1.34E+00 3.62E+00 1.7E+02 2.0E+00 3.4E+02 2.1E-01 4 -3.367416062E+00 1.049231607E+02 1.14E-01 1.66E-01 1.44E+00 5.35E+00 -1.1E+02 2.6E+00 2.8E+02 1.4E-01 5 5.036316961E+00 7.625044968E+01 8.28E-02 1.15E-01 1.50E+00 7.50E+00 7.2E+01 3.3E+00 2.4E+02 1.0E-01 6 1.099397591E+01 5.775402438E+01 6.27E-02 7.77E-02 1.53E+00 1.02E+01 -5.0E+01 4.4E+00 2.2E+02 7.6E-02 7 1.404999112E+01 4.603739639E+01 5.00E-02 4.91E-02 1.55E+00 1.39E+01 3.5E+01 5.9E+00 2.1E+02 5.8E-02 8 1.413848446E+01 3.901907185E+01 4.24E-02 2.85E-02 1.56E+00 1.88E+01 -2.4E+01 8.1E+00 2.0E+02 4.5E-02 9 1.156137863E+01 3.514014542E+01 3.82E-02 1.50E-02 1.57E+00 2.59E+01 1.7E+01 1.1E+01 1.9E+02 3.6E-02 10 6.963640872E+00 3.317616216E+01 3.60E-02 7.17E-03 1.57E+00 3.61E+01 -1.2E+01 1.6E+01 1.9E+02 2.9E-02 20 -1.261939645E+01 3.164984153E+01 3.44E-02 1.28E-03 2.19E+00 2.47E+02 -9.0E-02 1.2E+01 1.0E+00 1.3E-02 30 -1.025547906E+01 3.162318472E+01 3.43E-02 2.41E-05 2.85E+00 1.60E+03 -1.6E-01 2.4E+02 3.9E+01 5.6E-03 40 -6.772318199E+00 3.162284325E+01 3.43E-02 1.49E-05 3.21E+00 3.54E+03 -2.4E-03 8.2E+01 1.9E-01 4.0E-03 50 -3.176427368E+00 3.162278464E+01 3.43E-02 1.20E-06 3.64E+00 9.27E+03 -1.7E-03 4.0E+02 6.7E-01 2.6E-03 60 -4.553109570E-01 3.162277728E+01 3.43E-02 1.64E-07 3.95E+00 2.27E+04 -1.5E-04 7.0E+01 1.0E-02 1.7E-03 70 9.732699748E-01 3.162277671E+01 3.43E-02 1.60E-07 4.32E+00 6.79E+04 -3.6E-05 8.8E+01 3.2E-03 1.1E-03 80 1.171485938E+00 3.162277663E+01 3.43E-02 4.16E-10 4.62E+00 7.71E+04 -1.4E-05 5.5E+02 7.6E-03 1.0E-03 90 1.572724174E+00 3.162277660E+01 3.43E-02 1.59E-09 4.87E+00 3.01E+05 -1.4E-06 5.9E+01 8.0E-05 5.3E-04 100 1.574463231E+00 3.162277660E+01 3.43E-02 8.74E-11 5.10E+00 3.16E+05 -2.4E-07 1.9E+01 4.7E-06 5.3E-04 110 1.574284185E+00 3.162277660E+01 3.43E-02 6.30E-11 5.38E+00 3.36E+05 -2.0E-08 3.6E+01 7.1E-07 5.3E-04 120 1.141246616E+00 3.162277660E+01 3.43E-02 5.95E-09 5.60E+00 1.89E+06 -3.9E-05 7.1E+04 2.8E+00 2.3E-04 130 1.131290044E+00 3.162277660E+01 3.43E-02 1.59E-11 5.81E+00 1.98E+06 -6.3E-07 1.5E+03 9.7E-04 2.3E-04 140 1.131298916E+00 3.162277660E+01 3.43E-02 1.55E-11 6.01E+00 2.05E+06 -1.1E-08 8.1E+01 8.7E-07 2.3E-04 150 1.131195479E+00 3.162277660E+01 3.43E-02 4.42E-13 6.31E+00 2.17E+06 -2.0E-10 7.5E+01 1.5E-08 2.2E-04 160 1.131187165E+00 3.162277660E+01 3.43E-02 4.29E-13 6.50E+00 2.23E+06 -5.7E-10 2.2E+02 1.3E-07 2.2E-04 170 4.775640236E-01 3.162277660E+01 3.43E-02 2.84E-11 6.68E+00 2.56E+07 -4.2E-07 1.6E+05 7.0E-02 6.7E-05 180 4.775468272E-01 3.162277660E+01 3.43E-02 2.05E-12 6.86E+00 2.63E+07 -4.4E-09 1.7E+03 7.5E-06 6.7E-05 190 4.775273137E-01 3.162277660E+01 3.43E-02 3.65E-13 7.02E+00 2.69E+07 -2.1E-09 8.1E+02 1.7E-06 6.7E-05 200 4.772488504E-01 3.162277660E+01 3.43E-02 3.48E-14 7.26E+00 2.78E+07 -1.6E-10 6.3E+01 1.0E-08 6.7E-05 203 4.772488503E-01 3.162277660E+01 3.43E-02 6.47E-16 7.26E+00 2.78E+07 4.4E-11 2.6E+01 1.1E-09 6.7E-05 204 4.772488503E-01 3.162277660E+01 3.43E-02 1.29E-15 7.27E+00 2.78E+07 -4.7E-13 3.1E+00 1.5E-12 6.7E-05 205 4.772488503E-01 3.162277660E+01 3.43E-02 1.44E-15 7.31E+00 2.80E+07 9.3E-13 7.0E+00 6.5E-12 6.7E-05 206 4.772488503E-01 3.162277660E+01 3.43E-02 9.00E-16 7.31E+00 2.80E+07 -1.7E-11 1.4E+02 2.3E-09 6.7E-05 207 4.772488503E-01 3.162277660E+01 3.43E-02 1.17E-15 7.33E+00 2.81E+07 5.2E-13 4.9E+00 2.5E-12 6.7E-05 208 4.772488503E-01 3.162277660E+01 3.43E-02 1.74E-15 7.36E+00 2.82E+07 -5.6E-13 5.6E+00 3.1E-12 6.7E-05 209 4.772488503E-01 3.162277660E+01 3.43E-02 6.46E-17 7.41E+00 2.84E+07 9.4E-13 9.8E+00 9.3E-12 6.7E-05 Exit LSQR. istop = 3 itn = 209 Exit LSQR. anorm = 7.40911E+00 acond = 2.83762E+07 Exit LSQR. bnorm = 9.21079E+02 xnorm = 1.82706E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 1.51381E-14 Exit LSQR. max dx = 9.1E+02 occurred at itn 1 Exit LSQR. = 5.0E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-12 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 5.216E-13 = sigma1 norm(s) = 3.162E+13 norm(x,s) = 3.162E+13 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 5.216E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 2.187E-03 (Ax = b) test2 = 2.226E-15 (least-squares) test3 = 2.226E-15 (damped least-squares) Solution x: 1 0.477249 2 0.476897 3 0.476662 4 0.476500 5 0.476299 6 0.475971 7 0.475399 8 0.475041 LSQR appears to have failed. Relative error in x = 7.58E-03 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 7 1.00E-13 ) Condition no. = 6.1035E+09 Residual function = 3.162277660E+01 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 8.3E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-13 wantse = F atol = 3.18E-16 conlim = 6.10E+12 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 8.808458173E+02 1.00E+00 9.45E-04 1 -2.422195397E+01 3.796781520E+02 4.31E-01 6.03E-01 9.23E-01 1.00E+00 7.9E+02 1.1E+00 8.6E+02 6.4E-01 2 -2.477913716E+01 2.193708762E+02 2.49E-01 3.41E-01 1.18E+00 2.20E+00 -3.1E+02 1.5E+00 4.7E+02 3.3E-01 3 -1.776850890E+01 1.414330764E+02 1.61E-01 2.21E-01 1.32E+00 3.69E+00 1.7E+02 2.1E+00 3.5E+02 2.0E-01 4 -8.448828545E+00 9.648095038E+01 1.10E-01 1.48E-01 1.40E+00 5.56E+00 -1.0E+02 2.8E+00 2.9E+02 1.4E-01 5 7.462713431E-01 6.872328235E+01 7.80E-02 9.74E-02 1.44E+00 7.99E+00 6.8E+01 3.9E+00 2.6E+02 9.4E-02 6 8.324225295E+00 5.155052189E+01 5.85E-02 6.06E-02 1.47E+00 1.13E+01 -4.5E+01 5.4E+00 2.4E+02 6.7E-02 7 1.328456787E+01 4.146406784E+01 4.71E-02 3.44E-02 1.48E+00 1.60E+01 3.1E+01 7.6E+00 2.3E+02 5.0E-02 8 1.508697417E+01 3.605910765E+01 4.09E-02 1.73E-02 1.48E+00 2.29E+01 -2.0E+01 1.1E+01 2.2E+02 3.9E-02 9 1.370782345E+01 3.345655265E+01 3.80E-02 7.84E-03 1.49E+00 3.32E+01 1.3E+01 1.6E+01 2.2E+02 3.0E-02 10 9.665346503E+00 3.233251419E+01 3.67E-02 1.69E-02 1.49E+00 4.92E+01 -8.6E+00 2.4E+01 2.1E+02 2.4E-02 20 -1.212740117E+01 3.162905855E+01 3.59E-02 2.68E-05 2.31E+00 5.05E+02 -1.0E+00 1.8E+02 1.8E+02 9.1E-03 30 -1.326350752E+01 3.162306611E+01 3.59E-02 1.13E-06 2.83E+00 2.08E+03 -8.2E-04 2.3E+00 1.9E-03 4.9E-03 40 -9.869217608E+00 3.162281306E+01 3.59E-02 2.68E-05 3.19E+00 6.71E+03 -2.6E-02 1.5E+03 3.8E+01 2.9E-03 50 -7.146126839E+00 3.162278240E+01 3.59E-02 8.50E-06 3.63E+00 1.25E+04 -2.4E-03 9.7E+02 2.3E+00 2.3E-03 60 -3.516757348E+00 3.162277713E+01 3.59E-02 1.61E-08 3.92E+00 3.19E+04 -4.6E-05 1.8E+02 8.1E-03 1.5E-03 70 -5.570194059E-01 3.162277663E+01 3.59E-02 7.58E-10 4.19E+00 9.78E+04 -5.8E-05 2.3E+02 1.3E-02 8.6E-04 80 -5.569093646E-01 3.162277663E+01 3.59E-02 5.50E-08 4.55E+00 1.06E+05 -1.1E-05 6.3E+02 6.7E-03 8.6E-04 90 1.153934307E+00 3.162277660E+01 3.59E-02 1.41E-08 4.84E+00 3.94E+05 -1.5E-05 9.0E+02 1.3E-02 4.6E-04 100 1.155186839E+00 3.162277660E+01 3.59E-02 4.72E-12 5.06E+00 4.13E+05 -4.6E-08 4.4E+01 2.0E-06 4.6E-04 110 1.158936896E+00 3.162277660E+01 3.59E-02 2.56E-10 5.27E+00 4.65E+05 -9.9E-06 1.6E+04 1.6E-01 4.4E-04 120 1.581511370E+00 3.162277660E+01 3.59E-02 1.21E-11 5.56E+00 2.12E+06 -8.6E-09 1.5E+01 1.3E-07 2.1E-04 130 1.581431264E+00 3.162277660E+01 3.59E-02 1.08E-10 5.75E+00 2.19E+06 -2.0E-06 4.1E+03 8.2E-03 2.1E-04 140 1.581420279E+00 3.162277660E+01 3.59E-02 9.41E-12 5.94E+00 2.26E+06 -3.1E-09 3.9E+02 1.2E-06 2.1E-04 150 1.554231297E+00 3.162277660E+01 3.59E-02 1.60E-11 6.23E+00 4.96E+06 -2.5E-07 3.2E+04 8.1E-03 1.5E-04 160 1.550659861E+00 3.162277660E+01 3.59E-02 5.65E-11 6.38E+00 5.33E+06 -3.0E-08 3.7E+03 1.1E-04 1.4E-04 170 1.134189463E+00 3.162277660E+01 3.59E-02 9.65E-13 6.57E+00 1.85E+07 -4.9E-10 6.2E+01 3.0E-08 7.8E-05 180 1.134189222E+00 3.162277660E+01 3.59E-02 9.73E-12 6.78E+00 1.91E+07 -4.0E-09 6.2E+02 2.5E-06 7.8E-05 188 1.134189158E+00 3.162277660E+01 3.59E-02 1.32E-15 6.94E+00 1.95E+07 -1.4E-10 4.2E+01 5.8E-09 7.8E-05 190 1.134188757E+00 3.162277660E+01 3.59E-02 4.46E-12 6.94E+00 1.95E+07 -2.1E-09 7.6E+03 1.6E-05 7.8E-05 196 1.134185903E+00 3.162277660E+01 3.59E-02 9.84E-16 7.09E+00 2.00E+07 -4.4E-12 1.6E+01 7.0E-11 7.8E-05 197 1.134185903E+00 3.162277660E+01 3.59E-02 6.84E-16 7.09E+00 2.00E+07 2.0E-12 1.2E+01 2.3E-11 7.8E-05 198 1.134185903E+00 3.162277660E+01 3.59E-02 1.54E-16 7.10E+00 2.00E+07 -8.3E-13 7.2E+00 6.0E-12 7.8E-05 Exit LSQR. istop = 3 itn = 198 Exit LSQR. anorm = 7.09548E+00 acond = 1.99869E+07 Exit LSQR. bnorm = 8.80846E+02 xnorm = 1.82666E+03 Exit LSQR. rnorm = 3.16228E+01 arnorm = 3.45841E-14 Exit LSQR. max dx = 8.6E+02 occurred at itn 1 Exit LSQR. = 4.7E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-13 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 9.556E-13 = sigma1 norm(s) = 3.162E+14 norm(x,s) = 3.162E+14 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 9.556E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 2.285E-03 (Ax = b) test2 = 4.259E-15 (least-squares) test3 = 4.259E-15 (damped least-squares) Solution x: 1 1.13419 2 1.13396 3 1.13343 4 1.13296 5 1.13206 6 1.13106 7 1.12995 8 1.12863 LSQR appears to have failed. Relative error in x = 2.21E-02 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 2 1.00E-08 ) Condition no. = 6.2500E+02 Residual function = 1.351130091E-12 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 1.9E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-08 wantse = F atol = 3.18E-16 conlim = 6.25E+05 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.250358806E+03 1.00E+00 6.63E-04 1 -1.569523708E+01 4.497539700E+02 3.60E-01 7.06E-01 8.88E-01 1.00E+00 1.2E+03 1.1E+00 1.3E+03 5.5E-01 2 2.895287270E+00 2.360568875E+02 1.89E-01 4.42E-01 1.18E+00 2.12E+00 -3.8E+02 1.4E+00 5.4E+02 2.9E-01 3 6.914168784E+00 1.462934678E+02 1.17E-01 3.24E-01 1.39E+00 3.40E+00 1.9E+02 1.7E+00 3.1E+02 1.9E-01 4 1.929180742E+00 9.956862892E+01 7.96E-02 2.55E-01 1.56E+00 4.82E+00 -1.1E+02 1.9E+00 2.0E+02 1.4E-01 5 -4.030073311E+00 7.189983046E+01 5.75E-02 2.09E-01 1.70E+00 6.39E+00 6.9E+01 2.1E+00 1.5E+02 1.1E-01 6 -8.170857369E+00 5.403308925E+01 4.32E-02 1.76E-01 1.83E+00 8.09E+00 -4.7E+01 2.4E+00 1.1E+02 8.3E-02 7 -1.028185061E+01 4.175446117E+01 3.34E-02 1.50E-01 1.93E+00 9.92E+00 3.4E+01 2.6E+00 9.0E+01 6.8E-02 8 -1.086059048E+01 3.291017600E+01 2.63E-02 1.30E-01 2.02E+00 1.19E+01 -2.6E+01 2.9E+00 7.4E+01 5.6E-02 9 -1.044238556E+01 2.630121592E+01 2.10E-02 1.14E-01 2.09E+00 1.40E+01 2.0E+01 3.2E+00 6.3E+01 4.7E-02 10 -9.437438588E+00 2.121469253E+01 1.70E-02 9.96E-02 2.15E+00 1.63E+01 -1.6E+01 3.5E+00 5.5E+01 3.9E-02 20 8.989311751E-01 2.389468663E+00 1.91E-03 1.96E-02 2.55E+00 6.46E+01 -2.3E+00 1.4E+01 3.2E+01 7.2E-03 30 9.281365546E-01 1.820896376E-01 1.46E-04 4.94E-02 3.15E+00 2.79E+02 -4.1E-01 6.1E+01 2.5E+01 1.1E-03 40 4.463434198E-01 2.037357388E-02 1.63E-05 2.00E-03 3.66E+00 6.59E+02 -5.6E-04 1.7E+01 9.3E-03 2.5E-04 50 9.999971485E-02 1.890550349E-05 1.51E-08 3.08E-02 4.10E+00 2.67E+03 -5.3E-06 4.6E+00 2.5E-05 4.0E-06 60 9.999999994E-02 1.827111108E-05 1.46E-08 3.45E-07 4.50E+00 2.93E+03 -2.1E-09 1.5E+01 3.3E-08 3.9E-06 70 1.000000000E-01 1.827111108E-05 1.46E-08 1.02E-09 4.83E+00 3.15E+03 -6.0E-13 4.1E+00 2.5E-12 3.9E-06 80 1.000000000E-01 1.827111108E-05 1.46E-08 1.80E-12 5.14E+00 3.38E+03 -2.9E-16 5.2E+00 1.5E-15 3.9E-06 90 1.000000000E-01 1.827111108E-05 1.46E-08 1.05E-14 5.45E+00 3.68E+03 -3.5E-18 1.5E+01 5.3E-17 3.8E-06 100 1.000000000E-01 1.827111108E-05 1.46E-08 4.63E-15 5.79E+00 5.33E+03 -1.0E-18 5.5E+00 5.7E-18 3.3E-06 102 1.000000000E-01 1.827111108E-05 1.46E-08 3.09E-16 5.84E+00 5.37E+03 -3.8E-18 2.3E+01 8.6E-17 3.3E-06 Exit LSQR. istop = 3 itn = 102 Exit LSQR. anorm = 5.83666E+00 acond = 5.36980E+03 Exit LSQR. bnorm = 1.25036E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-05 arnorm = 3.29871E-20 Exit LSQR. max dx = 1.3E+03 occurred at itn 1 Exit LSQR. = 7.2E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-08 norm(x) = 1.827E+03 norm(r) = 1.52310042E-12 = rho1 norm(A'r) = 6.624E-13 = sigma1 norm(s) = 1.523E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-05 = rho2 norm(Abar'rbar) = 5.612E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 1.278E-16 (Ax = b) test2 = 7.451E-02 (least-squares) test3 = 5.262E-09 (damped least-squares) Solution x: 1 0.100000E+00 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.04E-14 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 3 1.00E-09 ) Condition no. = 1.5625E+04 Residual function = 2.340076968E-13 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 6.5E-17 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-09 wantse = F atol = 3.18E-16 conlim = 1.56E+07 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.124314110E+03 1.00E+00 7.28E-04 1 -2.024780599E+01 4.434197695E+02 3.94E-01 6.75E-01 8.91E-01 1.00E+00 1.0E+03 1.1E+00 1.2E+03 5.8E-01 2 -4.437078376E+00 2.477398064E+02 2.20E-01 4.15E-01 1.18E+00 2.15E+00 -3.7E+02 1.4E+00 5.3E+02 3.1E-01 3 7.016884706E+00 1.602402503E+02 1.43E-01 2.99E-01 1.38E+00 3.47E+00 1.9E+02 1.7E+00 3.3E+02 2.0E-01 4 1.026274765E+01 1.122030359E+02 9.98E-02 2.31E-01 1.54E+00 4.95E+00 -1.1E+02 2.0E+00 2.3E+02 1.5E-01 5 8.511358718E+00 8.242098997E+01 7.33E-02 1.85E-01 1.66E+00 6.61E+00 7.6E+01 2.3E+00 1.8E+02 1.1E-01 6 4.564132190E+00 6.240018990E+01 5.55E-02 1.52E-01 1.76E+00 8.45E+00 -5.4E+01 2.7E+00 1.5E+02 8.8E-02 7 6.893647511E-02 4.814476875E+01 4.28E-02 1.26E-01 1.83E+00 1.05E+01 4.0E+01 3.1E+00 1.2E+02 7.0E-02 8 -4.112941580E+00 3.755562129E+01 3.34E-02 1.05E-01 1.89E+00 1.28E+01 -3.0E+01 3.6E+00 1.1E+02 5.7E-02 9 -7.562719628E+00 2.943780141E+01 2.62E-02 8.79E-02 1.93E+00 1.54E+01 2.3E+01 4.2E+00 9.7E+01 4.6E-02 10 -1.009825707E+01 2.306846861E+01 2.05E-02 7.32E-02 1.96E+00 1.83E+01 -1.8E+01 4.9E+00 9.0E+01 3.8E-02 20 -5.038748544E+00 2.740631534E+00 2.44E-03 1.32E-02 2.51E+00 9.39E+01 -2.1E-01 2.3E+00 4.6E-01 6.4E-03 30 5.931390405E-01 5.390813542E-01 4.79E-04 3.82E-02 3.02E+00 3.19E+02 -8.4E-02 2.2E+01 1.8E+00 1.7E-03 40 1.472496136E+00 8.564508202E-02 7.62E-05 4.96E-04 3.51E+00 1.03E+03 -1.8E-03 2.9E+00 5.0E-03 4.0E-04 50 1.062480523E+00 1.740424505E-02 1.55E-05 7.54E-04 3.92E+00 2.56E+03 -5.9E-04 6.5E+01 3.8E-02 1.2E-04 60 4.710576356E-01 8.738037104E-04 7.77E-07 6.29E-03 4.20E+00 8.64E+03 -3.4E-05 5.0E+00 1.7E-04 1.5E-05 70 4.602569834E-01 8.588606556E-04 7.64E-07 1.43E-03 4.58E+00 1.55E+04 -4.7E-05 8.4E+02 3.9E-02 1.2E-05 80 1.000120257E-01 5.102106555E-06 4.54E-09 2.19E-02 4.89E+00 7.70E+04 -8.4E-07 2.0E+01 1.7E-05 4.2E-07 90 1.000000044E-01 1.827144408E-06 1.63E-09 8.31E-05 5.17E+00 8.14E+04 -1.1E-08 1.3E+01 1.5E-07 2.5E-07 100 1.000000007E-01 1.827111458E-06 1.63E-09 3.69E-05 5.44E+00 8.57E+04 -5.9E-10 6.9E+01 4.1E-08 2.5E-07 110 9.999999999E-02 1.827111108E-06 1.63E-09 1.66E-10 5.74E+00 9.05E+04 -1.7E-14 2.8E+00 4.8E-14 2.5E-07 120 1.000000000E-01 1.827111108E-06 1.63E-09 4.98E-10 6.03E+00 9.51E+04 -1.7E-13 1.1E+02 1.9E-11 2.5E-07 130 1.000000000E-01 1.827111108E-06 1.63E-09 4.91E-11 6.28E+00 9.94E+04 -1.6E-15 8.1E+02 1.3E-12 2.5E-07 140 1.000000000E-01 1.827111108E-06 1.63E-09 1.21E-13 6.47E+00 1.03E+05 -5.0E-17 3.2E+01 1.6E-15 2.5E-07 143 1.000000000E-01 1.827111108E-06 1.63E-09 1.32E-15 6.58E+00 1.05E+05 2.5E-19 5.9E+00 1.5E-18 2.5E-07 145 1.000000000E-01 1.827111108E-06 1.63E-09 1.09E-15 6.60E+00 1.05E+05 1.3E-19 8.7E+00 1.1E-18 2.5E-07 146 1.000000000E-01 1.827111108E-06 1.63E-09 1.33E-15 6.60E+00 1.05E+05 -6.8E-20 7.0E+00 4.8E-19 2.5E-07 147 1.000000000E-01 1.827111108E-06 1.63E-09 1.96E-15 6.61E+00 1.05E+05 5.0E-20 6.0E+00 3.0E-19 2.5E-07 149 1.000000000E-01 1.827111108E-06 1.63E-09 2.77E-15 6.70E+00 1.07E+05 1.6E-18 2.0E+02 3.1E-16 2.5E-07 150 1.000000000E-01 1.827111108E-06 1.63E-09 1.18E-15 6.71E+00 1.07E+05 -9.9E-20 1.3E+01 1.3E-18 2.5E-07 160 1.000000000E-01 1.827111108E-06 1.63E-09 5.56E-15 6.95E+00 1.54E+05 -2.2E-18 3.3E+02 7.2E-16 2.1E-07 170 1.000000000E-01 1.827111108E-06 1.63E-09 1.62E-14 7.13E+00 1.59E+05 -1.2E-18 1.8E+02 2.1E-16 2.1E-07 174 1.000000000E-01 1.827111108E-06 1.63E-09 1.26E-18 7.23E+00 1.61E+05 -4.3E-19 6.4E+01 2.7E-17 2.1E-07 Exit LSQR. istop = 3 itn = 174 Exit LSQR. anorm = 7.22692E+00 acond = 1.61087E+05 Exit LSQR. bnorm = 1.12431E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-06 arnorm = 1.66113E-23 Exit LSQR. max dx = 1.2E+03 occurred at itn 1 Exit LSQR. = 6.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-09 norm(x) = 1.827E+03 norm(r) = 8.40213541E-13 = rho1 norm(A'r) = 6.255E-13 = sigma1 norm(s) = 8.402E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-06 = rho2 norm(Abar'rbar) = 6.251E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 5.864E-17 (Ax = b) test2 = 1.030E-01 (least-squares) test3 = 4.734E-08 (damped least-squares) Solution x: 1 0.100000E+00 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.08E-13 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 4 1.00E-10 ) Condition no. = 3.9062E+05 Residual function = 5.505354820E-14 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 2.0E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-10 wantse = F atol = 3.18E-16 conlim = 3.91E+08 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.036321269E+03 1.00E+00 7.89E-04 1 -2.290522293E+01 4.276503344E+02 4.13E-01 6.53E-01 8.98E-01 1.00E+00 9.4E+02 1.1E+00 1.1E+03 6.0E-01 2 -1.229519129E+01 2.452814271E+02 2.37E-01 3.95E-01 1.18E+00 2.16E+00 -3.5E+02 1.5E+00 5.1E+02 3.2E-01 3 2.912832494E-01 1.607146736E+02 1.55E-01 2.79E-01 1.37E+00 3.52E+00 1.9E+02 1.8E+00 3.3E+02 2.1E-01 4 8.372079751E+00 1.127717708E+02 1.09E-01 2.11E-01 1.51E+00 5.07E+00 -1.1E+02 2.2E+00 2.5E+02 1.5E-01 5 1.186968037E+01 8.222083684E+01 7.93E-02 1.65E-01 1.61E+00 6.84E+00 7.7E+01 2.6E+00 2.0E+02 1.1E-01 6 1.189447236E+01 6.123052191E+01 5.91E-02 1.31E-01 1.68E+00 8.87E+00 -5.5E+01 3.1E+00 1.7E+02 8.5E-02 7 9.555842886E+00 4.606250067E+01 4.44E-02 1.04E-01 1.73E+00 1.12E+01 4.0E+01 3.8E+00 1.5E+02 6.6E-02 8 5.773292099E+00 3.472664457E+01 3.35E-02 8.33E-02 1.76E+00 1.40E+01 -3.0E+01 4.6E+00 1.4E+02 5.1E-02 9 1.300148876E+00 2.607350378E+01 2.52E-02 6.60E-02 1.79E+00 1.75E+01 2.3E+01 5.7E+00 1.3E+02 4.0E-02 10 -3.232558662E+00 1.939324792E+01 1.87E-02 5.18E-02 1.80E+00 2.18E+01 -1.7E+01 7.1E+00 1.2E+02 3.1E-02 20 -1.047254331E+01 2.009590105E+00 1.94E-03 7.06E-03 2.41E+00 1.46E+02 -1.0E-01 2.7E+00 2.8E-01 4.3E-03 30 -2.137245974E+00 3.221402721E-01 3.11E-04 1.18E-02 2.89E+00 6.15E+02 -2.2E-02 7.3E+00 1.6E-01 9.1E-04 40 8.995872471E-01 8.300854984E-02 8.01E-05 2.04E-02 3.36E+00 2.19E+03 -1.1E-01 5.2E+02 5.5E+01 2.6E-04 50 1.530312732E+00 1.305086448E-02 1.26E-05 2.53E-02 3.76E+00 6.32E+03 -3.2E-02 1.1E+03 3.5E+01 6.5E-05 60 1.486107173E+00 1.103914376E-02 1.07E-05 1.31E-02 4.06E+00 9.50E+03 -1.4E-03 5.7E+02 7.9E-01 5.1E-05 70 1.107467995E+00 1.492425368E-03 1.44E-06 2.95E-05 4.40E+00 2.25E+04 -1.2E-05 1.3E+01 1.6E-04 1.3E-05 80 1.099603724E+00 1.483272895E-03 1.43E-06 9.85E-03 4.70E+00 2.72E+04 -1.4E-04 2.3E+03 3.2E-01 1.2E-05 90 4.760838699E-01 3.567067302E-05 3.44E-08 1.38E-02 4.97E+00 1.24E+05 -1.5E-05 2.6E+02 4.0E-03 8.8E-07 100 4.760759988E-01 3.534403253E-05 3.41E-08 1.13E-05 5.25E+00 1.31E+05 -7.7E-09 6.3E+01 4.9E-07 8.8E-07 110 4.696160834E-01 3.504089573E-05 3.38E-08 5.14E-04 5.52E+00 3.14E+05 -4.1E-06 4.5E+04 1.8E-01 5.8E-07 120 4.666640910E-01 3.490144062E-05 3.37E-08 6.09E-04 5.78E+00 3.84E+05 -1.3E-06 1.4E+04 1.7E-02 5.4E-07 130 1.000056352E-01 2.344254038E-07 2.26E-10 2.35E-02 6.03E+00 2.36E+06 -5.4E-07 6.0E+03 3.3E-03 1.8E-08 140 1.000000249E-01 1.829710650E-07 1.77E-10 2.44E-04 6.25E+00 2.45E+06 -1.2E-09 2.1E+01 2.5E-08 1.6E-08 150 9.999999903E-02 1.827204515E-07 1.76E-10 5.25E-04 6.40E+00 2.51E+06 -7.9E-10 5.3E+01 4.2E-08 1.6E-08 160 9.999999832E-02 1.827111443E-07 1.76E-10 3.34E-05 6.64E+00 2.60E+06 -7.6E-11 1.6E+03 1.2E-07 1.6E-08 170 1.000000001E-01 1.827111108E-07 1.76E-10 1.02E-09 6.86E+00 2.69E+06 -2.4E-12 5.1E+01 1.2E-10 1.6E-08 180 1.000000001E-01 1.827111108E-07 1.76E-10 2.23E-09 7.06E+00 2.76E+06 -1.2E-14 5.7E+01 7.0E-13 1.6E-08 190 1.000000001E-01 1.827111108E-07 1.76E-10 2.49E-11 7.25E+00 2.84E+06 -1.8E-15 8.0E+02 1.5E-12 1.6E-08 200 1.000000001E-01 1.827111108E-07 1.76E-10 8.77E-10 7.45E+00 2.92E+06 -2.6E-15 1.8E+03 4.7E-12 1.6E-08 210 1.000000001E-01 1.827111108E-07 1.76E-10 4.78E-11 7.64E+00 3.00E+06 -4.2E-16 2.9E+02 1.2E-13 1.6E-08 217 1.000000001E-01 1.827111108E-07 1.76E-10 2.04E-15 7.79E+00 3.06E+06 6.9E-20 3.3E+00 2.3E-19 1.6E-08 220 1.000000001E-01 1.827111108E-07 1.76E-10 5.87E-13 7.81E+00 3.06E+06 -1.3E-18 4.4E+02 5.7E-16 1.6E-08 225 1.000000001E-01 1.827111108E-07 1.76E-10 2.72E-15 7.94E+00 3.11E+06 2.9E-20 1.2E+01 3.5E-19 1.6E-08 227 1.000000001E-01 1.827111108E-07 1.76E-10 2.41E-15 7.95E+00 3.12E+06 1.0E-19 4.9E+01 4.9E-18 1.6E-08 229 1.000000001E-01 1.827111108E-07 1.76E-10 5.93E-16 7.99E+00 3.14E+06 5.1E-20 2.9E+01 1.5E-18 1.6E-08 230 1.000000001E-01 1.827111108E-07 1.76E-10 1.54E-14 7.99E+00 3.14E+06 -7.4E-20 9.5E+01 7.0E-18 1.6E-08 231 1.000000001E-01 1.827111108E-07 1.76E-10 1.39E-15 8.06E+00 3.16E+06 2.4E-20 3.1E+01 7.3E-19 1.6E-08 232 1.000000001E-01 1.827111108E-07 1.76E-10 1.43E-16 8.06E+00 3.16E+06 -1.2E-20 1.7E+01 2.1E-19 1.6E-08 Exit LSQR. istop = 3 itn = 232 Exit LSQR. anorm = 8.05840E+00 acond = 3.16065E+06 Exit LSQR. bnorm = 1.03632E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-07 arnorm = 2.11090E-22 Exit LSQR. max dx = 1.1E+03 occurred at itn 1 Exit LSQR. = 5.8E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-10 norm(x) = 1.827E+03 norm(r) = 9.98544262E-13 = rho1 norm(A'r) = 6.655E-13 = sigma1 norm(s) = 9.985E-03 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-07 = rho2 norm(Abar'rbar) = 6.655E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 6.336E-17 (Ax = b) test2 = 8.271E-02 (least-squares) test3 = 4.520E-07 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 4.53E-12 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 5 1.00E-11 ) Condition no. = 9.7656E+06 Residual function = 1.359023811E-14 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 7.4E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-11 wantse = F atol = 3.18E-16 conlim = 9.77E+09 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.710346493E+02 1.00E+00 8.45E-04 1 -2.412106256E+01 4.104497706E+02 4.23E-01 6.36E-01 9.06E-01 1.00E+00 8.8E+02 1.1E+00 9.7E+02 6.2E-01 2 -1.824596476E+01 2.375711335E+02 2.45E-01 3.77E-01 1.18E+00 2.18E+00 -3.3E+02 1.5E+00 4.9E+02 3.3E-01 3 -7.118201010E+00 1.553550200E+02 1.60E-01 2.61E-01 1.36E+00 3.57E+00 1.8E+02 1.9E+00 3.4E+02 2.1E-01 4 2.622411370E+00 1.077493654E+02 1.11E-01 1.92E-01 1.47E+00 5.19E+00 -1.1E+02 2.3E+00 2.6E+02 1.5E-01 5 9.349109039E+00 7.695260886E+01 7.92E-02 1.45E-01 1.55E+00 7.12E+00 7.5E+01 2.9E+00 2.2E+02 1.1E-01 6 1.286861549E+01 5.564981711E+01 5.73E-02 1.11E-01 1.60E+00 9.44E+00 -5.3E+01 3.7E+00 2.0E+02 7.8E-02 7 1.344322975E+01 4.031108974E+01 4.15E-02 8.47E-02 1.63E+00 1.23E+01 3.8E+01 4.7E+00 1.8E+02 5.8E-02 8 1.153767000E+01 2.902297219E+01 2.99E-02 6.43E-02 1.65E+00 1.60E+01 -2.8E+01 6.1E+00 1.7E+02 4.3E-02 9 7.760937414E+00 2.064415371E+01 2.13E-02 4.82E-02 1.66E+00 2.08E+01 2.0E+01 8.0E+00 1.6E+02 3.2E-02 10 2.839815951E+00 1.443334690E+01 1.49E-02 3.55E-02 1.67E+00 2.74E+01 -1.5E+01 1.1E+01 1.6E+02 2.3E-02 20 -1.333427223E+01 1.535116353E+00 1.58E-03 2.65E-02 2.28E+00 2.03E+02 -2.3E-01 1.8E+01 4.1E+00 3.1E-03 30 -6.117633997E+00 2.153414214E-01 2.22E-04 9.94E-03 2.81E+00 1.05E+03 -3.4E-02 2.6E+01 8.9E-01 5.6E-04 40 -2.647629456E+00 8.505970382E-02 8.76E-05 7.26E-02 3.22E+00 2.52E+03 -2.3E-02 3.5E+02 8.1E+00 2.4E-04 50 6.926024354E-01 1.926556044E-02 1.98E-05 6.70E-02 3.69E+00 1.08E+04 -2.4E-02 2.5E+03 6.1E+01 6.0E-05 60 1.201266702E+00 8.316821714E-03 8.56E-06 2.15E-04 4.02E+00 1.40E+04 -4.2E-04 4.8E+02 2.0E-01 3.6E-05 70 1.561190524E+00 1.489119365E-03 1.53E-06 3.84E-04 4.34E+00 4.41E+04 -6.6E-05 9.8E+01 6.4E-03 9.0E-06 80 1.561057687E+00 1.487867213E-03 1.53E-06 5.68E-05 4.64E+00 4.72E+04 -1.1E-05 2.8E+02 3.0E-03 8.9E-06 90 1.124590798E+00 1.246657515E-04 1.28E-07 2.22E-03 4.89E+00 2.03E+05 -8.7E-06 2.6E+02 2.2E-03 1.3E-06 100 1.124359741E+00 1.225146450E-04 1.26E-07 3.95E-06 5.15E+00 2.14E+05 -1.4E-07 3.5E+02 5.1E-05 1.3E-06 110 1.123120171E+00 1.223946965E-04 1.26E-07 2.84E-04 5.40E+00 2.36E+05 -4.8E-06 1.2E+04 5.6E-02 1.2E-06 120 4.787162251E-01 5.744401707E-06 5.92E-09 3.43E-04 5.65E+00 1.74E+06 -1.8E-05 4.4E+04 7.8E-01 1.0E-07 130 4.772645319E-01 1.581210657E-06 1.63E-09 1.95E-02 5.86E+00 1.81E+06 -5.4E-07 1.3E+03 7.2E-04 5.3E-08 140 4.772415312E-01 1.418238709E-06 1.46E-09 3.66E-07 6.13E+00 1.89E+06 -1.7E-11 1.4E+01 2.3E-10 5.0E-08 150 4.772413741E-01 1.418235681E-06 1.46E-09 1.46E-07 6.33E+00 1.95E+06 -9.0E-11 9.7E+01 8.7E-09 5.0E-08 160 4.772413684E-01 1.418235626E-06 1.46E-09 1.67E-06 6.53E+00 2.01E+06 -5.3E-11 3.6E+02 1.9E-08 5.0E-08 170 4.738193339E-01 1.411776919E-06 1.45E-09 1.75E-06 6.73E+00 6.60E+06 -1.3E-09 9.3E+03 1.2E-05 2.8E-08 180 4.735931374E-01 1.411350196E-06 1.45E-09 4.79E-04 6.93E+00 7.00E+06 -3.4E-08 2.3E+05 7.8E-03 2.8E-08 190 4.714672842E-01 1.407331610E-06 1.45E-09 3.26E-04 7.12E+00 8.88E+06 -2.6E-08 1.8E+05 4.5E-03 2.5E-08 200 9.999997523E-02 1.830313587E-08 1.88E-11 3.77E-04 7.28E+00 7.11E+07 -5.5E-10 3.8E+03 2.1E-06 1.0E-09 210 9.999986526E-02 1.828931338E-08 1.88E-11 3.99E-05 7.46E+00 7.29E+07 -3.5E-10 2.5E+03 8.9E-07 1.0E-09 220 9.999986468E-02 1.828925745E-08 1.88E-11 4.40E-06 7.64E+00 7.46E+07 -1.2E-11 1.2E+02 1.4E-09 1.0E-09 230 9.999999995E-02 1.827111981E-08 1.88E-11 3.37E-06 7.87E+00 7.69E+07 -2.7E-12 1.3E+02 3.6E-10 1.0E-09 240 1.000000000E-01 1.827111112E-08 1.88E-11 2.14E-08 8.01E+00 7.83E+07 -2.7E-13 1.2E+02 3.2E-11 1.0E-09 250 1.000000000E-01 1.827111108E-08 1.88E-11 3.22E-10 8.17E+00 7.99E+07 -1.5E-14 3.7E+01 5.6E-13 1.0E-09 260 1.000000000E-01 1.827111108E-08 1.88E-11 1.16E-11 8.33E+00 8.14E+07 -3.9E-17 1.0E+01 4.1E-16 1.0E-09 270 1.000000000E-01 1.827111108E-08 1.88E-11 2.55E-10 8.48E+00 8.28E+07 -5.2E-16 6.3E+02 3.3E-13 1.0E-09 280 9.999999911E-02 1.827111108E-08 1.88E-11 1.79E-09 8.63E+00 8.44E+07 -2.2E-13 2.7E+05 5.8E-08 1.0E-09 290 9.999999911E-02 1.827111108E-08 1.88E-11 1.59E-10 8.79E+00 8.59E+07 -1.3E-15 1.7E+03 2.2E-12 1.0E-09 300 9.999999911E-02 1.827111108E-08 1.88E-11 2.26E-09 8.93E+00 8.73E+07 -9.1E-16 1.2E+03 1.1E-12 1.0E-09 310 9.999999910E-02 1.827111108E-08 1.88E-11 1.18E-08 9.09E+00 8.88E+07 -2.8E-15 3.6E+03 1.0E-11 1.0E-09 317 9.999999910E-02 1.827111108E-08 1.88E-11 1.33E-15 9.19E+00 8.98E+07 5.5E-18 7.2E+00 4.0E-17 1.0E-09 318 9.999999910E-02 1.827111108E-08 1.88E-11 2.93E-16 9.24E+00 9.03E+07 -2.3E-22 1.0E+00 2.4E-22 1.0E-09 Exit LSQR. istop = 3 itn = 318 Exit LSQR. anorm = 9.23868E+00 acond = 9.03112E+07 Exit LSQR. bnorm = 9.71035E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-08 arnorm = 4.94552E-23 Exit LSQR. max dx = 9.7E+02 occurred at itn 1 Exit LSQR. = 5.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-11 norm(x) = 1.827E+03 norm(r) = 1.15247812E-12 = rho1 norm(A'r) = 9.563E-13 = sigma1 norm(s) = 1.152E-01 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-08 = rho2 norm(Abar'rbar) = 9.563E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 6.456E-17 (Ax = b) test2 = 8.981E-02 (least-squares) test3 = 5.665E-06 (damped least-squares) Solution x: 1 0.100000E+00 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 3.91E-11 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 6 1.00E-12 ) Condition no. = 2.4414E+08 Residual function = 3.387612114E-15 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 4.1E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-12 wantse = F atol = 3.18E-16 conlim = 2.44E+11 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.205361605E+02 1.00E+00 8.98E-04 1 -2.443055276E+01 3.938615198E+02 4.28E-01 6.20E-01 9.14E-01 1.00E+00 8.3E+02 1.1E+00 9.1E+02 6.3E-01 2 -2.224414133E+01 2.277481391E+02 2.47E-01 3.61E-01 1.18E+00 2.19E+00 -3.2E+02 1.5E+00 4.8E+02 3.3E-01 3 -1.321097804E+01 1.472531389E+02 1.60E-01 2.44E-01 1.34E+00 3.62E+00 1.7E+02 2.0E+00 3.4E+02 2.1E-01 4 -3.367416062E+00 1.000443384E+02 1.09E-01 1.74E-01 1.44E+00 5.35E+00 -1.1E+02 2.6E+00 2.8E+02 1.4E-01 5 5.036316961E+00 6.938393962E+01 7.54E-02 1.27E-01 1.50E+00 7.50E+00 7.2E+01 3.3E+00 2.4E+02 9.8E-02 6 1.099397591E+01 4.832729386E+01 5.25E-02 9.29E-02 1.53E+00 1.02E+01 -5.0E+01 4.4E+00 2.2E+02 6.9E-02 7 1.404999112E+01 3.345806131E+01 3.63E-02 6.76E-02 1.55E+00 1.39E+01 3.5E+01 5.9E+00 2.1E+02 4.9E-02 8 1.413848446E+01 2.285799571E+01 2.48E-02 4.86E-02 1.56E+00 1.88E+01 -2.4E+01 8.1E+00 2.0E+02 3.4E-02 9 1.156137856E+01 1.532415806E+01 1.66E-02 3.43E-02 1.57E+00 2.59E+01 1.7E+01 1.1E+01 1.9E+02 2.4E-02 10 6.963653189E+00 1.003283279E+01 1.09E-02 2.37E-02 1.57E+00 3.61E+01 -1.2E+01 1.6E+01 1.9E+02 1.6E-02 20 -1.268926403E+01 1.278052398E+00 1.39E-03 1.02E-01 2.19E+00 2.60E+02 -2.9E-01 3.8E+01 1.1E+01 2.5E-03 30 -1.033564289E+01 1.688305957E-01 1.83E-04 1.19E-02 2.84E+00 1.58E+03 -4.3E-02 6.6E+01 2.8E+00 4.1E-04 40 -6.758424214E+00 6.481367050E-02 7.04E-05 5.31E-03 3.21E+00 3.56E+03 -4.4E-03 1.5E+02 6.5E-01 1.8E-04 50 -2.054898790E+00 1.786580010E-02 1.94E-05 7.28E-03 3.56E+00 1.48E+04 -1.1E-02 2.7E+03 3.0E+01 4.9E-05 60 -4.552999018E-01 6.568122413E-03 7.14E-06 2.54E-05 3.89E+00 2.24E+04 -6.8E-05 1.3E+02 8.7E-03 2.5E-05 70 1.171427491E+00 1.396930583E-03 1.52E-06 2.12E-04 4.29E+00 7.15E+04 -3.5E-05 8.5E+01 3.0E-03 6.8E-06 80 1.171619843E+00 1.396563671E-03 1.52E-06 2.53E-05 4.56E+00 7.62E+04 -2.5E-06 1.1E+02 2.8E-04 6.8E-06 90 1.570884640E+00 2.196095763E-04 2.39E-07 8.22E-03 4.83E+00 2.98E+05 -2.5E-05 1.1E+03 2.6E-02 1.4E-06 100 1.574464742E+00 1.837749121E-04 2.00E-07 7.26E-07 5.08E+00 3.15E+05 -5.2E-09 5.4E+00 2.8E-08 1.3E-06 110 1.573516406E+00 1.836011879E-04 1.99E-07 1.15E-04 5.30E+00 3.37E+05 -3.0E-07 5.5E+02 1.7E-04 1.3E-06 120 1.131489483E+00 1.024359056E-05 1.11E-08 8.64E-04 5.57E+00 1.90E+06 -9.9E-08 1.8E+02 1.8E-05 1.3E-07 130 1.131317194E+00 9.933742066E-06 1.08E-08 5.09E-05 5.81E+00 1.98E+06 -3.1E-07 6.2E+02 1.9E-04 1.3E-07 140 1.131300291E+00 9.905114295E-06 1.08E-08 1.81E-06 6.01E+00 2.05E+06 -9.6E-10 6.7E+01 6.4E-08 1.3E-07 150 1.131293238E+00 9.905011054E-06 1.08E-08 1.84E-06 6.21E+00 2.12E+06 -1.7E-09 6.3E+02 1.1E-06 1.3E-07 160 1.131292438E+00 9.905001184E-06 1.08E-08 4.69E-07 6.39E+00 2.18E+06 -1.0E-09 3.8E+02 3.8E-07 1.3E-07 170 4.836999456E-01 9.460476488E-07 1.03E-09 3.90E-04 6.58E+00 2.51E+07 -9.4E-09 3.6E+03 3.4E-05 1.2E-08 180 4.836281158E-01 9.403706753E-07 1.02E-09 2.86E-04 6.76E+00 2.58E+07 -3.8E-08 1.5E+04 5.5E-04 1.2E-08 190 4.826798068E-01 8.644981577E-07 9.39E-10 2.38E-02 6.99E+00 2.67E+07 -3.5E-07 1.4E+05 4.8E-02 1.1E-08 200 4.775241452E-01 5.679669775E-08 6.17E-11 6.68E-06 7.16E+00 2.74E+07 -4.5E-11 1.8E+01 8.1E-10 2.8E-09 210 4.775241440E-01 5.679667084E-08 6.17E-11 1.41E-07 7.32E+00 2.80E+07 -7.6E-12 4.7E+02 3.6E-09 2.8E-09 220 4.775241437E-01 5.679666861E-08 6.17E-11 5.48E-09 7.48E+00 2.86E+07 -1.6E-14 1.5E+01 2.4E-13 2.8E-09 230 4.775241247E-01 5.679665663E-08 6.17E-11 2.51E-06 7.64E+00 2.92E+07 -3.6E-11 4.2E+04 1.5E-06 2.8E-09 240 4.775241039E-01 5.679664356E-08 6.17E-11 6.20E-10 7.85E+00 3.01E+07 -8.4E-16 1.5E+00 1.3E-15 2.8E-09 250 4.775240929E-01 5.679664263E-08 6.17E-11 5.82E-08 8.00E+00 3.07E+07 -5.9E-13 2.5E+03 1.5E-09 2.8E-09 260 4.775240913E-01 5.679664251E-08 6.17E-11 2.15E-08 8.15E+00 3.12E+07 -2.3E-13 1.0E+03 2.4E-10 2.8E-09 270 4.775144156E-01 5.679591539E-08 6.17E-11 8.26E-05 8.28E+00 3.33E+07 -1.8E-10 7.7E+05 1.4E-04 2.8E-09 280 1.216323776E-01 1.370644216E-08 1.49E-11 6.11E-05 8.43E+00 2.00E+09 -1.0E-11 4.4E+04 4.4E-07 1.8E-10 290 1.216292871E-01 1.370548078E-08 1.49E-11 3.12E-04 8.61E+00 2.04E+09 -1.4E-10 5.9E+05 8.1E-05 1.8E-10 300 1.214237268E-01 1.364140739E-08 1.48E-11 1.05E-04 8.74E+00 2.07E+09 -6.7E-11 2.9E+05 1.9E-05 1.8E-10 310 1.212727432E-01 1.359413447E-08 1.48E-11 7.08E-07 8.88E+00 2.11E+09 -1.0E-09 4.4E+06 4.5E-03 1.8E-10 320 1.001522736E-01 2.153580371E-09 2.34E-12 5.23E-03 9.01E+00 2.20E+09 -1.6E-09 7.1E+06 1.2E-02 6.9E-11 330 1.000071690E-01 1.843978348E-09 2.00E-12 1.45E-03 9.15E+00 2.23E+09 -2.8E-11 1.2E+05 3.3E-06 6.4E-11 340 9.999991135E-02 1.827115926E-09 1.98E-12 1.12E-06 9.32E+00 2.28E+09 -1.0E-12 4.4E+03 4.4E-09 6.4E-11 350 9.999990934E-02 1.827111218E-09 1.98E-12 6.37E-08 9.45E+00 2.31E+09 -2.6E-14 2.0E+02 5.1E-12 6.4E-11 360 9.999990937E-02 1.827111116E-09 1.98E-12 3.65E-09 9.59E+00 2.34E+09 -3.2E-16 3.3E+00 1.1E-15 6.4E-11 370 9.999990937E-02 1.827111116E-09 1.98E-12 6.86E-10 9.69E+00 2.37E+09 -1.6E-17 2.0E+02 3.1E-15 6.4E-11 380 9.999990937E-02 1.827111116E-09 1.98E-12 2.80E-09 9.89E+00 2.41E+09 -1.5E-16 2.0E+03 3.0E-13 6.4E-11 390 9.999990937E-02 1.827111116E-09 1.98E-12 2.76E-11 9.98E+00 2.44E+09 -6.5E-19 1.2E+01 7.7E-18 6.4E-11 400 9.999990937E-02 1.827111116E-09 1.98E-12 4.51E-11 1.01E+01 2.47E+09 -2.1E-18 4.6E+01 9.7E-17 6.4E-11 410 9.999990937E-02 1.827111116E-09 1.98E-12 1.21E-10 1.02E+01 2.50E+09 -2.4E-17 5.5E+02 1.3E-14 6.4E-11 420 9.999991077E-02 1.827111114E-09 1.98E-12 7.37E-09 1.04E+01 2.53E+09 -1.7E-14 3.9E+05 6.7E-09 6.4E-11 430 9.999991502E-02 1.827111108E-09 1.98E-12 2.49E-07 1.05E+01 2.56E+09 -1.8E-14 4.1E+05 7.4E-09 6.4E-11 440 9.999991506E-02 1.827111108E-09 1.98E-12 1.06E-12 1.06E+01 2.59E+09 -1.4E-18 3.3E+01 4.6E-17 6.4E-11 450 9.999991506E-02 1.827111108E-09 1.98E-12 2.32E-10 1.07E+01 2.62E+09 -9.7E-18 2.5E+03 2.5E-14 6.4E-11 460 9.999991506E-02 1.827111108E-09 1.98E-12 8.09E-14 1.08E+01 2.64E+09 -3.8E-21 3.0E+01 1.1E-19 6.4E-11 465 9.999991506E-02 1.827111108E-09 1.98E-12 2.85E-15 1.09E+01 2.66E+09 2.0E-22 3.4E+00 6.9E-22 6.4E-11 466 9.999991506E-02 1.827111108E-09 1.98E-12 2.85E-15 1.09E+01 2.66E+09 -4.4E-22 1.1E+01 4.7E-21 6.4E-11 469 9.999991506E-02 1.827111108E-09 1.98E-12 2.74E-15 1.09E+01 2.67E+09 2.8E-21 9.6E+01 2.7E-19 6.4E-11 470 9.999991506E-02 1.827111108E-09 1.98E-12 1.57E-13 1.09E+01 2.67E+09 -5.6E-20 2.1E+03 1.2E-16 6.4E-11 473 9.999991506E-02 1.827111108E-09 1.98E-12 1.83E-15 1.10E+01 2.69E+09 7.3E-22 2.8E+01 2.1E-20 6.4E-11 474 9.999991506E-02 1.827111108E-09 1.98E-12 6.88E-16 1.10E+01 2.69E+09 -4.1E-22 1.9E+01 8.0E-21 6.4E-11 475 9.999991506E-02 1.827111108E-09 1.98E-12 8.06E-16 1.10E+01 2.69E+09 2.6E-22 2.3E+01 6.0E-21 6.4E-11 476 9.999991506E-02 1.827111108E-09 1.98E-12 1.26E-15 1.10E+01 2.69E+09 -3.9E-23 4.1E+00 1.6E-22 6.4E-11 480 9.999991506E-02 1.827111108E-09 1.98E-12 3.05E-14 1.11E+01 2.70E+09 -6.7E-22 7.6E+01 5.1E-20 6.4E-11 482 9.999991506E-02 1.827111108E-09 1.98E-12 6.39E-16 1.11E+01 2.71E+09 -1.2E-20 1.4E+03 1.7E-17 6.4E-11 490 9.999991506E-02 1.827111108E-09 1.98E-12 2.24E-12 1.12E+01 2.73E+09 -2.2E-18 3.0E+05 6.5E-13 6.4E-11 497 9.999991506E-02 1.827111108E-09 1.98E-12 7.45E-16 1.13E+01 2.76E+09 7.3E-23 1.0E+01 7.4E-22 6.4E-11 498 9.999991506E-02 1.827111108E-09 1.98E-12 1.28E-16 1.13E+01 2.76E+09 -2.2E-22 3.4E+01 7.5E-21 6.4E-11 Exit LSQR. istop = 3 itn = 498 Exit LSQR. anorm = 1.12949E+01 acond = 2.75822E+09 Exit LSQR. bnorm = 9.20536E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-09 arnorm = 2.63909E-24 Exit LSQR. max dx = 9.1E+02 occurred at itn 1 Exit LSQR. = 5.0E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-12 norm(x) = 1.827E+03 norm(r) = 7.22742574E-13 = rho1 norm(A'r) = 5.802E-13 = sigma1 norm(s) = 7.227E-01 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711125E-09 = rho2 norm(Abar'rbar) = 5.802E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 3.353E-17 (Ax = b) test2 = 7.107E-02 (least-squares) test3 = 2.811E-05 (damped least-squares) Solution x: 1 0.999999E-01 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 3.61E-09 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 7 1.00E-13 ) Condition no. = 6.1035E+09 Residual function = 8.463025879E-16 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 3.4E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-13 wantse = F atol = 3.18E-16 conlim = 6.10E+12 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 8.802779981E+02 1.00E+00 9.46E-04 1 -2.422195397E+01 3.783589553E+02 4.30E-01 6.05E-01 9.23E-01 1.00E+00 7.9E+02 1.1E+00 8.6E+02 6.4E-01 2 -2.477913716E+01 2.170796658E+02 2.47E-01 3.45E-01 1.18E+00 2.20E+00 -3.1E+02 1.5E+00 4.7E+02 3.3E-01 3 -1.776850890E+01 1.378525121E+02 1.57E-01 2.27E-01 1.32E+00 3.69E+00 1.7E+02 2.1E+00 3.5E+02 2.0E-01 4 -8.448828545E+00 9.115137842E+01 1.04E-01 1.57E-01 1.40E+00 5.56E+00 -1.0E+02 2.8E+00 2.9E+02 1.3E-01 5 7.462713431E-01 6.101548604E+01 6.93E-02 1.10E-01 1.44E+00 7.99E+00 6.8E+01 3.9E+00 2.6E+02 8.9E-02 6 8.324225295E+00 4.071186937E+01 4.62E-02 7.68E-02 1.47E+00 1.13E+01 -4.5E+01 5.4E+00 2.4E+02 6.0E-02 7 1.328456787E+01 2.681918944E+01 3.05E-02 5.31E-02 1.48E+00 1.60E+01 3.1E+01 7.6E+00 2.3E+02 4.0E-02 8 1.508697430E+01 1.732799020E+01 1.97E-02 3.61E-02 1.48E+00 2.29E+01 -2.0E+01 1.1E+01 2.2E+02 2.7E-02 9 1.370779512E+01 1.092432664E+01 1.24E-02 2.40E-02 1.49E+00 3.32E+01 1.3E+01 1.6E+01 2.2E+02 1.7E-02 10 9.647108004E+00 6.693642326E+00 7.60E-03 2.88E-02 1.49E+00 4.93E+01 -8.6E+00 2.4E+01 2.1E+02 1.1E-02 20 -1.212654421E+01 6.303875300E-01 7.16E-04 1.59E-03 2.31E+00 5.05E+02 -8.2E-01 1.4E+02 1.1E+02 1.3E-03 30 -1.326307032E+01 1.353049398E-01 1.54E-04 2.97E-03 2.73E+00 2.01E+03 -2.2E-03 1.7E+01 3.8E-02 3.2E-04 40 -8.964045637E+00 4.053212964E-02 4.60E-05 1.51E-02 3.19E+00 8.20E+03 -9.1E-03 5.2E+02 4.7E+00 9.4E-05 50 -3.637252841E+00 6.656900962E-03 7.56E-06 2.86E-02 3.63E+00 2.91E+04 -4.2E-03 1.7E+03 7.0E+00 2.1E-05 60 -3.516875743E+00 5.772963427E-03 6.56E-06 5.17E-05 3.92E+00 3.19E+04 -2.7E-05 1.0E+02 2.8E-03 2.0E-05 70 -5.572608044E-01 1.366434075E-03 1.55E-06 1.65E-05 4.19E+00 9.77E+04 -1.2E-06 5.9E+00 7.0E-06 5.7E-06 80 -3.621706042E-01 1.288355816E-03 1.46E-06 6.76E-02 4.44E+00 1.56E+05 -4.5E-04 2.6E+04 1.2E+01 4.5E-06 90 1.155156444E+00 2.297480913E-04 2.61E-07 4.47E-05 4.78E+00 3.90E+05 -5.0E-05 2.9E+03 1.4E-01 1.2E-06 100 1.155276704E+00 2.296600994E-04 2.61E-07 1.05E-04 5.00E+00 4.10E+05 -4.2E-06 6.7E+03 2.8E-02 1.2E-06 110 1.155877550E+00 2.294909099E-04 2.61E-07 1.55E-03 5.22E+00 4.34E+05 -2.6E-06 4.2E+03 1.1E-02 1.2E-06 120 1.581471542E+00 2.241927995E-05 2.55E-08 1.18E-03 5.47E+00 2.09E+06 -2.2E-07 3.7E+02 8.3E-05 1.8E-07 130 1.581421256E+00 2.238632168E-05 2.54E-08 5.51E-05 5.74E+00 2.19E+06 -4.4E-08 1.4E+02 6.1E-06 1.8E-07 140 1.581414973E+00 2.238604527E-05 2.54E-08 9.29E-06 5.92E+00 2.26E+06 -3.3E-08 4.2E+03 1.4E-04 1.8E-07 150 1.580349197E+00 2.235399982E-05 2.54E-08 9.94E-06 6.10E+00 2.50E+06 -5.6E-09 7.0E+02 3.9E-06 1.7E-07 160 1.144307814E+00 3.457107322E-06 3.93E-09 1.02E-02 6.35E+00 1.77E+07 -2.0E-05 2.5E+06 4.9E+01 2.6E-08 170 1.134216006E+00 8.141761493E-07 9.25E-10 6.97E-04 6.52E+00 1.84E+07 -5.7E-08 7.1E+03 4.0E-04 1.3E-08 180 1.134208456E+00 8.080405896E-07 9.18E-10 1.70E-06 6.73E+00 1.90E+07 -4.5E-10 6.2E+01 2.8E-08 1.3E-08 190 1.134261271E+00 7.959773936E-07 9.04E-10 1.68E-07 6.89E+00 1.94E+07 -4.6E-10 9.1E+01 4.2E-08 1.2E-08 200 1.134261271E+00 7.959773798E-07 9.04E-10 3.63E-08 7.11E+00 2.00E+07 -1.8E-12 6.2E+01 1.1E-10 1.2E-08 210 1.134261176E+00 7.959773261E-07 9.04E-10 8.75E-07 7.26E+00 2.04E+07 -1.1E-11 6.5E+02 7.2E-09 1.2E-08 220 1.134250214E+00 7.959708137E-07 9.04E-10 1.97E-06 7.42E+00 2.09E+07 -4.2E-11 2.5E+03 1.1E-07 1.2E-08 230 1.130638005E+00 7.938205594E-07 9.02E-10 2.63E-06 7.61E+00 3.42E+07 -2.5E-11 1.5E+03 3.8E-08 9.8E-09 240 1.129326320E+00 7.930225991E-07 9.01E-10 1.96E-03 7.78E+00 3.87E+07 -2.0E-08 1.2E+06 2.3E-02 9.3E-09 250 9.602159023E-01 6.823933510E-07 7.75E-10 1.48E-02 7.92E+00 1.96E+08 -2.0E-07 1.2E+07 2.3E+00 3.9E-09 260 5.089455495E-01 1.739366791E-07 1.98E-10 2.04E-04 8.08E+00 3.77E+08 -2.0E-09 1.2E+05 2.5E-04 1.4E-09 270 4.776028593E-01 3.774470096E-09 4.29E-12 5.26E-04 8.26E+00 3.95E+08 -2.9E-10 1.8E+04 5.1E-06 2.1E-10 280 4.775935123E-01 2.289243058E-09 2.60E-12 1.58E-07 8.39E+00 4.01E+08 -2.1E-14 2.5E+01 5.3E-13 1.6E-10 290 4.775935098E-01 2.289044002E-09 2.60E-12 1.88E-05 8.52E+00 4.07E+08 -6.0E-12 9.7E+03 5.8E-08 1.6E-10 300 4.775935083E-01 2.288815448E-09 2.60E-12 2.00E-04 8.70E+00 4.16E+08 -2.4E-11 3.9E+04 9.2E-07 1.6E-10 310 4.775935699E-01 2.286949460E-09 2.60E-12 3.32E-06 8.86E+00 4.23E+08 -3.0E-12 5.1E+03 1.5E-08 1.6E-10 320 4.775938770E-01 2.278845913E-09 2.59E-12 6.82E-06 8.98E+00 4.29E+08 -6.5E-11 1.1E+05 7.1E-06 1.6E-10 330 4.775938912E-01 2.278470218E-09 2.59E-12 1.23E-05 9.10E+00 4.35E+08 -1.4E-12 2.3E+03 3.2E-09 1.6E-10 340 4.775938914E-01 2.278465822E-09 2.59E-12 1.39E-10 9.26E+00 4.42E+08 -7.2E-18 1.8E+01 1.3E-16 1.6E-10 350 4.775938914E-01 2.278465822E-09 2.59E-12 7.15E-11 9.38E+00 4.48E+08 -6.6E-17 1.7E+02 1.2E-14 1.6E-10 360 4.775938195E-01 2.278465606E-09 2.59E-12 5.99E-06 9.51E+00 4.55E+08 -2.1E-13 5.8E+05 1.2E-07 1.6E-10 370 4.775920665E-01 2.278460346E-09 2.59E-12 2.58E-08 9.69E+00 4.81E+08 -3.0E-13 8.0E+05 2.4E-07 1.6E-10 380 4.775920647E-01 2.278460341E-09 2.59E-12 8.37E-08 9.80E+00 4.86E+08 -1.6E-14 4.2E+04 6.5E-10 1.6E-10 390 4.775920529E-01 2.278460305E-09 2.59E-12 1.49E-08 9.91E+00 4.92E+08 -2.4E-13 6.5E+05 1.6E-07 1.6E-10 400 4.775882988E-01 2.278449075E-09 2.59E-12 2.38E-05 1.01E+01 5.36E+08 -1.9E-12 5.2E+06 1.0E-05 1.5E-10 410 4.760067314E-01 2.273712680E-09 2.58E-12 9.95E-08 1.02E+01 4.05E+09 -1.6E-14 4.3E+04 7.0E-10 5.6E-11 420 4.760066398E-01 2.273712406E-09 2.58E-12 1.39E-05 1.03E+01 4.09E+09 -7.3E-13 2.0E+06 1.4E-06 5.6E-11 430 4.760063307E-01 2.273711481E-09 2.58E-12 2.36E-08 1.04E+01 4.15E+09 -7.0E-16 1.9E+03 1.3E-12 5.6E-11 440 4.760058394E-01 2.273710005E-09 2.58E-12 8.24E-07 1.06E+01 4.20E+09 -1.9E-12 5.1E+06 9.7E-06 5.6E-11 450 3.774595014E-01 1.955398490E-09 2.22E-12 6.46E-04 1.07E+01 3.35E+10 -4.6E-11 1.2E+08 5.6E-03 1.8E-11 460 2.943235837E-01 1.639487850E-09 1.86E-12 1.43E-05 1.08E+01 4.59E+10 -4.4E-13 1.2E+06 5.2E-07 1.5E-11 470 1.039701073E-01 2.960354017E-10 3.36E-13 3.27E-05 1.09E+01 6.62E+10 -3.7E-10 9.9E+08 3.7E-01 5.2E-12 480 1.000363025E-01 1.841191999E-10 2.09E-13 6.44E-04 1.10E+01 6.72E+10 -3.8E-11 1.0E+08 3.9E-03 4.1E-12 490 9.999880937E-02 1.827230458E-10 2.08E-13 1.14E-07 1.11E+01 6.78E+10 -3.7E-16 9.9E+02 3.7E-13 4.0E-12 500 9.999880886E-02 1.827230273E-10 2.08E-13 1.07E-06 1.13E+01 6.87E+10 -8.9E-15 2.4E+04 2.1E-10 4.0E-12 510 9.999854705E-02 1.827133635E-10 2.08E-13 7.69E-08 1.14E+01 6.93E+10 -1.7E-15 4.5E+03 7.5E-12 4.0E-12 520 9.999854705E-02 1.827133635E-10 2.08E-13 1.26E-07 1.14E+01 6.99E+10 -3.9E-16 1.2E+03 4.7E-13 4.0E-12 530 9.999854705E-02 1.827133635E-10 2.08E-13 1.32E-10 1.16E+01 7.07E+10 -3.8E-18 1.2E+01 4.4E-17 4.0E-12 540 9.999854704E-02 1.827133625E-10 2.08E-13 2.74E-09 1.17E+01 7.13E+10 -4.7E-17 2.8E+02 1.3E-14 4.0E-12 550 9.999854704E-02 1.827133624E-10 2.08E-13 1.65E-08 1.18E+01 7.18E+10 -6.4E-17 3.9E+02 2.5E-14 4.0E-12 560 9.999854704E-02 1.827133624E-10 2.08E-13 3.21E-09 1.19E+01 7.27E+10 -7.2E-16 4.4E+03 3.2E-12 4.0E-12 570 9.999854704E-02 1.827133624E-10 2.08E-13 1.03E-11 1.20E+01 7.34E+10 -1.8E-18 2.7E+01 4.7E-17 4.0E-12 580 9.999854704E-02 1.827133624E-10 2.08E-13 6.65E-11 1.21E+01 7.39E+10 -1.1E-18 5.0E+01 5.3E-17 4.0E-12 590 9.999854704E-02 1.827133623E-10 2.08E-13 2.38E-08 1.22E+01 7.46E+10 -1.3E-16 6.6E+03 8.3E-13 4.0E-12 600 9.999864596E-02 1.827118720E-10 2.08E-13 5.57E-05 1.23E+01 7.52E+10 -7.2E-13 3.8E+07 2.7E-05 4.0E-12 610 9.999869649E-02 1.827111109E-10 2.08E-13 9.49E-10 1.24E+01 7.57E+10 -4.8E-17 2.5E+03 1.2E-13 4.0E-12 620 9.999869649E-02 1.827111109E-10 2.08E-13 6.99E-12 1.25E+01 7.65E+10 -2.1E-19 1.4E+01 2.9E-18 4.0E-12 630 9.999869649E-02 1.827111109E-10 2.08E-13 1.09E-12 1.26E+01 7.71E+10 -3.5E-21 4.7E+01 1.7E-19 4.0E-12 640 9.999869649E-02 1.827111109E-10 2.08E-13 1.47E-14 1.27E+01 7.77E+10 -1.6E-22 9.5E+00 1.6E-21 4.0E-12 650 9.999869649E-02 1.827111109E-10 2.08E-13 2.03E-13 1.28E+01 7.84E+10 -2.0E-21 1.3E+02 2.6E-19 4.0E-12 660 9.999869649E-02 1.827111109E-10 2.08E-13 7.78E-12 1.29E+01 7.90E+10 -1.9E-18 1.2E+05 2.4E-13 4.0E-12 670 9.999869649E-02 1.827111109E-10 2.08E-13 7.70E-12 1.30E+01 7.95E+10 -8.9E-20 5.8E+03 5.1E-16 4.0E-12 680 9.999869649E-02 1.827111109E-10 2.08E-13 6.26E-11 1.31E+01 7.99E+10 -1.7E-19 1.1E+04 1.9E-15 4.0E-12 690 9.999869649E-02 1.827111109E-10 2.08E-13 6.49E-12 1.32E+01 8.08E+10 -6.3E-20 4.1E+03 2.6E-16 4.0E-12 700 9.999869649E-02 1.827111109E-10 2.08E-13 2.63E-11 1.33E+01 8.13E+10 -1.2E-18 7.7E+04 9.0E-14 4.0E-12 708 9.999869649E-02 1.827111109E-10 2.08E-13 1.49E-15 1.34E+01 8.18E+10 -7.7E-23 5.6E+00 4.3E-22 4.0E-12 710 9.999869649E-02 1.827111109E-10 2.08E-13 2.32E-13 1.34E+01 8.18E+10 -1.2E-21 3.4E+02 4.2E-19 4.0E-12 712 9.999869649E-02 1.827111109E-10 2.08E-13 2.40E-15 1.34E+01 8.20E+10 -1.9E-22 5.6E+01 1.1E-20 4.0E-12 713 9.999869649E-02 1.827111109E-10 2.08E-13 1.72E-15 1.34E+01 8.20E+10 3.2E-23 1.1E+01 3.4E-22 4.0E-12 714 9.999869649E-02 1.827111109E-10 2.08E-13 2.63E-15 1.34E+01 8.20E+10 -1.6E-23 6.6E+00 1.1E-22 4.0E-12 720 9.999869649E-02 1.827111109E-10 2.08E-13 5.57E-14 1.35E+01 8.24E+10 -2.4E-22 1.1E+02 2.6E-20 4.0E-12 730 9.999869649E-02 1.827111109E-10 2.08E-13 1.03E-11 1.36E+01 8.30E+10 -2.1E-19 9.7E+04 2.0E-14 4.0E-12 740 9.999869649E-02 1.827111109E-10 2.08E-13 1.29E-13 1.37E+01 8.35E+10 -7.2E-22 3.4E+02 2.4E-19 4.0E-12 750 9.999869649E-02 1.827111109E-10 2.08E-13 4.25E-13 1.38E+01 8.42E+10 -5.3E-21 2.5E+03 1.3E-17 4.0E-12 753 9.999869649E-02 1.827111109E-10 2.08E-13 1.12E-16 1.38E+01 8.43E+10 4.8E-22 2.2E+02 1.1E-19 4.0E-12 Exit LSQR. istop = 3 itn = 753 Exit LSQR. anorm = 1.38114E+01 acond = 8.43030E+10 Exit LSQR. bnorm = 8.80278E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-10 arnorm = 2.82782E-25 Exit LSQR. max dx = 8.6E+02 occurred at itn 1 Exit LSQR. = 4.7E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-13 norm(x) = 1.827E+03 norm(r) = 9.44510781E-13 = rho1 norm(A'r) = 7.439E-13 = sigma1 norm(s) = 9.445E+00 norm(x,s) = 1.827E+03 norm(rbar) = 1.82713552E-10 = rho2 norm(Abar'rbar) = 7.439E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 3.617E-17 (Ax = b) test2 = 5.703E-02 (least-squares) test3 = 2.948E-04 (damped least-squares) Solution x: 1 0.999987E-01 2 0.200000 3 0.300000 4 0.400000 5 0.500002 6 0.600004 7 0.700005 8 0.800006 LSQR appears to be successful. Relative error in x = 6.54E-08 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 2 1.00E-08 ) Condition no. = 6.2500E+02 Residual function = 1.343553250E-12 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 1.4E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-08 wantse = F atol = 3.18E-16 conlim = 6.25E+05 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.249337798E+03 1.00E+00 6.63E-04 1 -2.402620751E+01 4.498264693E+02 3.60E-01 7.05E-01 8.88E-01 1.00E+00 1.2E+03 1.1E+00 1.3E+03 5.5E-01 2 -2.022218888E+01 2.366648551E+02 1.89E-01 4.41E-01 1.18E+00 2.12E+00 -3.8E+02 1.4E+00 5.4E+02 2.9E-01 3 -1.368214317E+01 1.468584013E+02 1.18E-01 3.23E-01 1.39E+00 3.40E+00 1.9E+02 1.7E+00 3.1E+02 1.9E-01 4 -8.500660046E+00 9.996107126E+01 8.00E-02 2.55E-01 1.56E+00 4.83E+00 -1.1E+02 1.9E+00 2.0E+02 1.4E-01 5 -4.843832613E+00 7.213638259E+01 5.77E-02 2.09E-01 1.70E+00 6.39E+00 6.9E+01 2.1E+00 1.5E+02 1.1E-01 6 -2.325528667E+00 5.415595941E+01 4.33E-02 1.76E-01 1.82E+00 8.09E+00 -4.8E+01 2.4E+00 1.1E+02 8.3E-02 7 -5.967528345E-01 4.180081114E+01 3.35E-02 1.51E-01 1.93E+00 9.93E+00 3.4E+01 2.6E+00 9.0E+01 6.8E-02 8 5.892115846E-01 3.290744559E+01 2.63E-02 1.31E-01 2.02E+00 1.19E+01 -2.6E+01 2.9E+00 7.4E+01 5.6E-02 9 1.397830815E+00 2.626856207E+01 2.10E-02 1.14E-01 2.09E+00 1.40E+01 2.0E+01 3.2E+00 6.3E+01 4.7E-02 10 1.939370290E+00 2.116522153E+01 1.69E-02 9.99E-02 2.15E+00 1.63E+01 -1.6E+01 3.5E+00 5.5E+01 3.9E-02 20 1.826807178E+00 2.365776501E+00 1.89E-03 2.09E-02 2.55E+00 6.46E+01 -2.3E+00 1.4E+01 3.2E+01 7.2E-03 30 5.429335248E-01 1.875758189E-01 1.50E-04 6.38E-02 3.15E+00 2.78E+02 -4.5E-01 6.7E+01 3.0E+01 1.1E-03 40 2.252560241E-01 2.029787414E-02 1.62E-05 2.64E-03 3.65E+00 6.58E+02 -4.9E-04 1.5E+01 7.2E-03 2.5E-04 50 4.150697621E-05 1.969927445E-05 1.58E-08 1.23E-02 4.15E+00 2.70E+03 -5.0E-06 1.5E+00 7.4E-06 4.1E-06 60 4.192213140E-05 1.827111106E-05 1.46E-08 1.11E-06 4.50E+00 2.93E+03 -1.6E-09 1.6E+01 2.5E-08 3.9E-06 70 4.192211663E-05 1.827111106E-05 1.46E-08 6.20E-10 4.85E+00 3.16E+03 -1.7E-13 1.7E+01 2.9E-12 3.9E-06 80 4.192211662E-05 1.827111106E-05 1.46E-08 3.07E-13 5.19E+00 3.40E+03 -2.9E-15 8.4E+00 2.4E-14 3.9E-06 90 4.192211663E-05 1.827111106E-05 1.46E-08 2.00E-15 5.50E+00 3.71E+03 -3.8E-18 1.0E+01 3.9E-17 3.8E-06 92 4.192211663E-05 1.827111106E-05 1.46E-08 2.11E-15 5.58E+00 3.76E+03 -6.2E-19 3.8E+00 2.4E-18 3.8E-06 100 4.192211664E-05 1.827111106E-05 1.46E-08 4.17E-15 5.77E+00 5.30E+03 -3.3E-18 2.6E+01 8.6E-17 3.3E-06 101 4.192211664E-05 1.827111106E-05 1.46E-08 2.66E-15 5.77E+00 5.31E+03 6.1E-18 5.1E+01 3.1E-16 3.3E-06 102 4.192211664E-05 1.827111106E-05 1.46E-08 5.63E-17 5.84E+00 5.37E+03 -3.3E-19 3.0E+00 1.0E-18 3.3E-06 Exit LSQR. istop = 3 itn = 102 Exit LSQR. anorm = 5.83659E+00 acond = 5.36973E+03 Exit LSQR. bnorm = 1.24934E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-05 arnorm = 6.00127E-21 Exit LSQR. max dx = 1.3E+03 occurred at itn 1 Exit LSQR. = 7.2E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-08 norm(x) = 1.827E+03 norm(r) = 1.59350291E-12 = rho1 norm(A'r) = 7.494E-13 = sigma1 norm(s) = 1.594E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-05 = rho2 norm(Abar'rbar) = 6.345E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 1.338E-16 (Ax = b) test2 = 8.058E-02 (least-squares) test3 = 5.950E-09 (damped least-squares) Solution x: 1 0.419221E-04 2 0.100048 3 0.200058 4 0.300072 5 0.400089 6 0.500111 7 0.600137 8 0.700166 LSQR appears to be successful. Relative error in x = 4.73E-15 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 3 1.00E-09 ) Condition no. = 1.5625E+04 Residual function = 2.329778320E-13 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 1.4E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-09 wantse = F atol = 3.18E-16 conlim = 1.56E+07 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.123359829E+03 1.00E+00 7.29E-04 1 -2.363600419E+01 4.429684871E+02 3.94E-01 6.74E-01 8.91E-01 1.00E+00 1.0E+03 1.1E+00 1.2E+03 5.8E-01 2 -2.536537104E+01 2.478419375E+02 2.21E-01 4.14E-01 1.18E+00 2.15E+00 -3.7E+02 1.4E+00 5.3E+02 3.1E-01 3 -2.234334321E+01 1.605741928E+02 1.43E-01 2.98E-01 1.38E+00 3.47E+00 1.9E+02 1.7E+00 3.3E+02 2.1E-01 4 -1.850838596E+01 1.125867821E+02 1.00E-01 2.30E-01 1.54E+00 4.96E+00 -1.1E+02 2.0E+00 2.3E+02 1.5E-01 5 -1.486363650E+01 8.277614326E+01 7.37E-02 1.85E-01 1.66E+00 6.62E+00 7.6E+01 2.3E+00 1.8E+02 1.1E-01 6 -1.164113584E+01 6.269864588E+01 5.58E-02 1.52E-01 1.76E+00 8.46E+00 -5.4E+01 2.7E+00 1.5E+02 8.8E-02 7 -8.856664513E+00 4.838096211E+01 4.31E-02 1.26E-01 1.83E+00 1.05E+01 4.0E+01 3.1E+00 1.2E+02 7.1E-02 8 -6.469341196E+00 3.773364443E+01 3.36E-02 1.05E-01 1.89E+00 1.28E+01 -3.0E+01 3.6E+00 1.1E+02 5.7E-02 9 -4.430203839E+00 2.956546508E+01 2.63E-02 8.81E-02 1.93E+00 1.54E+01 2.3E+01 4.2E+00 9.8E+01 4.6E-02 10 -2.696584122E+00 2.315451278E+01 2.06E-02 7.34E-02 1.96E+00 1.84E+01 -1.8E+01 4.9E+00 9.0E+01 3.8E-02 20 2.749763454E+00 2.723170269E+00 2.42E-03 1.09E-02 2.54E+00 9.51E+01 -5.5E-01 4.5E+00 2.5E+00 6.3E-03 30 2.121950894E+00 5.420599081E-01 4.83E-04 3.02E-02 2.98E+00 3.06E+02 -5.6E-02 1.4E+01 8.1E-01 1.7E-03 40 1.134411834E+00 8.478369333E-02 7.55E-05 5.57E-04 3.51E+00 1.03E+03 -2.1E-03 6.5E+00 1.4E-02 4.0E-04 50 6.282812447E-01 1.728571150E-02 1.54E-05 3.45E-04 3.92E+00 2.55E+03 -3.0E-04 3.1E+01 9.2E-03 1.2E-04 60 2.413214821E-01 8.690280874E-04 7.74E-07 9.26E-04 4.31E+00 8.88E+03 -6.2E-06 3.1E+00 1.9E-05 1.5E-05 70 2.412372816E-01 8.683885206E-04 7.73E-07 5.88E-04 4.64E+00 9.63E+03 -5.4E-06 9.8E+01 5.3E-04 1.5E-05 80 1.157860651E-04 1.507496556E-05 1.34E-08 1.60E-02 4.89E+00 7.71E+04 -1.2E-06 2.3E+01 2.7E-05 7.2E-07 90 4.186692721E-05 1.829907537E-06 1.63E-09 3.06E-03 5.17E+00 8.14E+04 -3.1E-08 3.4E+01 1.1E-06 2.5E-07 100 4.192228537E-05 1.827111138E-06 1.63E-09 1.64E-06 5.49E+00 8.65E+04 -4.6E-10 6.5E+01 3.0E-08 2.5E-07 110 4.192210659E-05 1.827111106E-06 1.63E-09 2.11E-09 5.73E+00 9.03E+04 -3.7E-14 5.3E+00 2.0E-13 2.5E-07 120 4.192212427E-05 1.827111106E-06 1.63E-09 8.58E-10 6.03E+00 9.50E+04 -1.1E-13 4.4E+01 5.0E-12 2.5E-07 130 4.192212427E-05 1.827111106E-06 1.63E-09 3.53E-13 6.29E+00 9.92E+04 -1.0E-17 1.4E+00 1.4E-17 2.5E-07 140 4.192212414E-05 1.827111106E-06 1.63E-09 5.53E-13 6.48E+00 1.03E+05 -8.1E-18 8.4E+00 6.8E-17 2.5E-07 143 4.192212414E-05 1.827111106E-06 1.63E-09 2.59E-15 6.59E+00 1.05E+05 2.6E-19 2.0E+00 5.4E-19 2.5E-07 145 4.192212414E-05 1.827111106E-06 1.63E-09 1.43E-15 6.67E+00 1.06E+05 5.3E-20 2.2E+00 1.2E-19 2.5E-07 149 4.192212414E-05 1.827111106E-06 1.63E-09 2.51E-15 6.71E+00 1.07E+05 3.5E-19 2.5E+01 8.8E-18 2.5E-07 150 4.192212414E-05 1.827111106E-06 1.63E-09 1.57E-15 6.72E+00 1.07E+05 -3.6E-19 2.9E+01 1.0E-17 2.5E-07 151 4.192212414E-05 1.827111106E-06 1.63E-09 2.43E-16 6.76E+00 1.07E+05 2.5E-20 2.4E+00 5.9E-20 2.5E-07 Exit LSQR. istop = 3 itn = 151 Exit LSQR. anorm = 6.75962E+00 acond = 1.07441E+05 Exit LSQR. bnorm = 1.12336E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-06 arnorm = 2.99870E-21 Exit LSQR. max dx = 1.2E+03 occurred at itn 1 Exit LSQR. = 6.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-09 norm(x) = 1.827E+03 norm(r) = 8.65850491E-13 = rho1 norm(A'r) = 5.006E-13 = sigma1 norm(s) = 8.659E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-06 = rho2 norm(Abar'rbar) = 5.007E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 6.426E-17 (Ax = b) test2 = 8.554E-02 (least-squares) test3 = 4.054E-08 (damped least-squares) Solution x: 1 0.419221E-04 2 0.100048 3 0.200058 4 0.300072 5 0.400089 6 0.500111 7 0.600137 8 0.700166 LSQR appears to be successful. Relative error in x = 4.33E-13 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 4 1.00E-10 ) Condition no. = 3.9062E+05 Residual function = 5.483800908E-14 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 7.0E-17 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-10 wantse = F atol = 3.18E-16 conlim = 3.91E+08 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 1.035503865E+03 1.00E+00 7.90E-04 1 -2.196079333E+01 4.270217666E+02 4.12E-01 6.53E-01 8.98E-01 1.00E+00 9.4E+02 1.1E+00 1.1E+03 6.0E-01 2 -2.645951529E+01 2.450483281E+02 2.37E-01 3.94E-01 1.18E+00 2.16E+00 -3.5E+02 1.5E+00 5.1E+02 3.2E-01 3 -2.607148844E+01 1.607382862E+02 1.55E-01 2.79E-01 1.37E+00 3.52E+00 1.8E+02 1.8E+00 3.3E+02 2.1E-01 4 -2.401574568E+01 1.129290043E+02 1.09E-01 2.11E-01 1.51E+00 5.07E+00 -1.1E+02 2.2E+00 2.5E+02 1.5E-01 5 -2.135943597E+01 8.243448020E+01 7.96E-02 1.64E-01 1.61E+00 6.84E+00 7.7E+01 2.6E+00 2.0E+02 1.1E-01 6 -1.851085751E+01 6.145549031E+01 5.93E-02 1.30E-01 1.68E+00 8.87E+00 -5.5E+01 3.1E+00 1.7E+02 8.5E-02 7 -1.564469118E+01 4.627345613E+01 4.47E-02 1.04E-01 1.73E+00 1.12E+01 4.0E+01 3.8E+00 1.5E+02 6.6E-02 8 -1.284656410E+01 3.491021125E+01 3.37E-02 8.32E-02 1.76E+00 1.41E+01 -3.0E+01 4.6E+00 1.4E+02 5.1E-02 9 -1.016820875E+01 2.622363730E+01 2.53E-02 6.60E-02 1.79E+00 1.75E+01 2.3E+01 5.7E+00 1.3E+02 4.0E-02 10 -7.649778767E+00 1.950853237E+01 1.88E-02 5.19E-02 1.80E+00 2.18E+01 -1.8E+01 7.1E+00 1.3E+02 3.1E-02 20 2.137798634E+00 2.004766023E+00 1.94E-03 5.88E-03 2.43E+00 1.47E+02 -1.2E+00 2.0E+01 2.4E+01 4.3E-03 30 2.713136967E+00 3.187164333E-01 3.08E-04 5.17E-03 2.95E+00 6.28E+02 -3.3E-02 1.0E+01 3.4E-01 9.1E-04 40 1.839327338E+00 4.969376211E-02 4.80E-05 9.42E-03 3.36E+00 2.45E+03 -8.8E-02 4.3E+02 3.8E+01 1.9E-04 50 1.353896728E+00 2.398774165E-02 2.32E-05 4.38E-02 3.76E+00 5.79E+03 -3.5E-02 1.2E+03 4.2E+01 9.2E-05 60 1.206168167E+00 1.135670688E-02 1.10E-05 2.92E-03 4.12E+00 8.02E+03 -3.0E-04 1.3E+02 3.9E-02 5.7E-05 70 6.583646624E-01 1.481591073E-03 1.43E-06 2.89E-04 4.39E+00 2.24E+04 -6.0E-06 2.1E+01 1.3E-04 1.3E-05 80 6.481347306E-01 1.463281492E-03 1.41E-06 8.14E-03 4.70E+00 3.00E+04 -1.1E-04 1.9E+03 2.1E-01 1.1E-05 90 2.445899548E-01 3.542710640E-05 3.42E-08 2.10E-03 5.02E+00 1.25E+05 -1.4E-05 2.7E+02 3.7E-03 8.8E-07 100 2.445858329E-01 3.521012278E-05 3.40E-08 2.33E-05 5.27E+00 1.31E+05 -1.1E-08 3.6E+01 4.0E-07 8.8E-07 110 2.443786485E-01 3.519507961E-05 3.40E-08 1.49E-03 5.54E+00 1.52E+05 -3.3E-07 3.7E+03 1.2E-03 8.4E-07 120 2.414461207E-01 3.498239986E-05 3.38E-08 1.98E-04 5.79E+00 2.94E+05 -2.9E-07 3.2E+03 9.2E-04 6.1E-07 130 1.146422168E-04 6.543528194E-07 6.32E-10 1.84E-03 6.04E+00 2.36E+06 -1.0E-07 1.1E+03 1.1E-04 3.0E-08 140 6.966792712E-05 4.464172305E-07 4.31E-10 1.79E-03 6.25E+00 2.45E+06 -9.8E-09 1.1E+02 1.1E-06 2.5E-08 150 4.189962477E-05 1.827118589E-07 1.76E-10 3.48E-06 6.49E+00 2.54E+06 -1.1E-11 6.7E+00 7.3E-11 1.6E-08 160 4.191457340E-05 1.827113092E-07 1.76E-10 1.41E-04 6.68E+00 2.62E+06 -2.3E-10 2.4E+03 5.7E-07 1.6E-08 170 4.192219841E-05 1.827111119E-07 1.76E-10 6.14E-08 6.91E+00 2.71E+06 -6.6E-13 7.3E+00 4.8E-12 1.6E-08 180 4.192223911E-05 1.827111106E-07 1.76E-10 8.70E-10 7.12E+00 2.79E+06 -1.1E-14 3.1E+01 3.4E-13 1.6E-08 190 4.192223911E-05 1.827111106E-07 1.76E-10 8.01E-10 7.31E+00 2.86E+06 -1.3E-15 3.6E+02 4.7E-13 1.6E-08 200 4.192223910E-05 1.827111106E-07 1.76E-10 3.08E-10 7.46E+00 2.92E+06 -7.8E-16 5.1E+02 4.0E-13 1.6E-08 210 4.192223231E-05 1.827111106E-07 1.76E-10 1.50E-12 7.70E+00 3.02E+06 -4.8E-18 5.5E+00 2.6E-17 1.6E-08 220 4.192223231E-05 1.827111106E-07 1.76E-10 2.07E-13 7.83E+00 3.07E+06 -4.5E-19 1.0E+01 4.5E-18 1.6E-08 228 4.192223231E-05 1.827111106E-07 1.76E-10 2.62E-15 7.99E+00 3.13E+06 -2.1E-20 2.9E+00 6.1E-20 1.6E-08 229 4.192223231E-05 1.827111106E-07 1.76E-10 2.53E-15 8.02E+00 3.15E+06 5.5E-21 1.6E+00 9.0E-21 1.6E-08 230 4.192223231E-05 1.827111106E-07 1.76E-10 2.97E-15 8.06E+00 3.16E+06 -1.3E-20 5.2E+00 6.6E-20 1.6E-08 235 4.192223231E-05 1.827111106E-07 1.76E-10 2.46E-16 8.14E+00 3.19E+06 7.8E-20 3.7E+01 2.9E-18 1.6E-08 Exit LSQR. istop = 3 itn = 235 Exit LSQR. anorm = 8.13520E+00 acond = 3.19077E+06 Exit LSQR. bnorm = 1.03550E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-07 arnorm = 3.65295E-22 Exit LSQR. max dx = 1.1E+03 occurred at itn 1 Exit LSQR. = 5.8E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-10 norm(x) = 1.827E+03 norm(r) = 9.86552725E-13 = rho1 norm(A'r) = 6.659E-13 = sigma1 norm(s) = 9.866E-03 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-07 = rho2 norm(Abar'rbar) = 6.659E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 6.205E-17 (Ax = b) test2 = 8.297E-02 (least-squares) test3 = 4.480E-07 (damped least-squares) Solution x: 1 0.419222E-04 2 0.100048 3 0.200058 4 0.300072 5 0.400089 6 0.500111 7 0.600137 8 0.700166 LSQR appears to be successful. Relative error in x = 1.05E-11 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 5 1.00E-11 ) Condition no. = 9.7656E+06 Residual function = 1.353835357E-14 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 2.8E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-11 wantse = F atol = 3.18E-16 conlim = 9.77E+09 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.703527094E+02 1.00E+00 8.46E-04 1 -2.012872225E+01 4.098051391E+02 4.22E-01 6.36E-01 9.06E-01 1.00E+00 8.8E+02 1.1E+00 9.7E+02 6.2E-01 2 -2.596081160E+01 2.371904556E+02 2.44E-01 3.77E-01 1.18E+00 2.17E+00 -3.3E+02 1.5E+00 4.9E+02 3.3E-01 3 -2.724993460E+01 1.551916987E+02 1.60E-01 2.61E-01 1.36E+00 3.56E+00 1.8E+02 1.9E+00 3.4E+02 2.1E-01 4 -2.658801144E+01 1.077314213E+02 1.11E-01 1.92E-01 1.47E+00 5.19E+00 -1.1E+02 2.3E+00 2.6E+02 1.5E-01 5 -2.492214847E+01 7.702278580E+01 7.94E-02 1.45E-01 1.55E+00 7.12E+00 7.5E+01 2.9E+00 2.2E+02 1.1E-01 6 -2.267029833E+01 5.576674457E+01 5.75E-02 1.11E-01 1.60E+00 9.45E+00 -5.3E+01 3.7E+00 2.0E+02 7.8E-02 7 -2.005231567E+01 4.044553417E+01 4.17E-02 8.46E-02 1.63E+00 1.23E+01 3.8E+01 4.7E+00 1.8E+02 5.8E-02 8 -1.720991793E+01 2.915470492E+01 3.00E-02 6.42E-02 1.65E+00 1.60E+01 -2.8E+01 6.1E+00 1.7E+02 4.3E-02 9 -1.425515843E+01 2.075998677E+01 2.14E-02 4.81E-02 1.66E+00 2.09E+01 2.0E+01 8.0E+00 1.6E+02 3.2E-02 10 -1.129010604E+01 1.452597689E+01 1.50E-02 3.55E-02 1.67E+00 2.74E+01 -1.5E+01 1.1E+01 1.6E+02 2.3E-02 20 4.825087145E-01 1.545313849E+00 1.59E-03 1.94E-02 2.28E+00 2.01E+02 -1.7E-01 1.3E+01 2.2E+00 3.1E-03 30 2.832643839E+00 2.141614020E-01 2.21E-04 3.07E-02 2.82E+00 1.06E+03 -5.8E-02 4.5E+01 2.6E+00 5.6E-04 40 2.807111357E+00 8.721204267E-02 8.99E-05 5.91E-04 3.34E+00 2.33E+03 -3.5E-04 5.1E+00 1.8E-03 2.6E-04 50 2.453721081E+00 3.016164389E-02 3.11E-05 5.69E-03 3.69E+00 5.57E+03 -4.1E-03 4.4E+02 1.8E+00 1.0E-04 60 1.911627020E+00 8.229728410E-03 8.48E-06 3.42E-05 4.02E+00 1.39E+04 -1.0E-04 8.1E+01 8.4E-03 3.6E-05 70 1.269352223E+00 1.491775242E-03 1.54E-06 4.82E-03 4.34E+00 4.41E+04 -1.5E-03 1.7E+03 2.5E+00 9.0E-06 80 1.268578257E+00 1.472776766E-03 1.52E-06 2.68E-05 4.64E+00 4.72E+04 -3.6E-06 9.6E+01 3.4E-04 8.9E-06 90 6.697060394E-01 1.228821569E-04 1.27E-07 2.28E-03 4.90E+00 2.03E+05 -2.5E-06 6.9E+01 1.7E-04 1.3E-06 100 6.696027229E-01 1.216247391E-04 1.25E-07 1.05E-05 5.24E+00 2.17E+05 -3.3E-08 5.6E+00 1.8E-07 1.3E-06 110 6.695957921E-01 1.216234060E-04 1.25E-07 2.91E-06 5.49E+00 2.28E+05 -7.1E-09 1.7E+01 1.2E-07 1.3E-06 120 4.459927976E-01 8.365637303E-05 8.62E-08 6.63E-02 5.70E+00 1.29E+06 -7.0E-05 1.8E+05 1.2E+01 4.5E-07 130 2.457654616E-01 4.093501695E-06 4.22E-09 4.10E-02 5.91E+00 1.82E+06 -2.6E-06 6.5E+03 1.7E-02 8.5E-08 140 2.453436558E-01 1.412862624E-06 1.46E-09 9.62E-07 6.14E+00 1.89E+06 -2.8E-11 1.8E+00 5.0E-11 5.0E-08 150 2.453436320E-01 1.412861721E-06 1.46E-09 6.92E-08 6.33E+00 1.95E+06 -1.6E-09 3.3E+03 5.2E-06 5.0E-08 160 2.453436317E-01 1.412861712E-06 1.46E-09 1.04E-07 6.53E+00 2.01E+06 -2.4E-12 1.4E+01 3.4E-11 5.0E-08 170 2.444995544E-01 1.410432042E-06 1.45E-09 8.05E-03 6.73E+00 4.38E+06 -8.0E-08 5.5E+05 4.5E-02 3.4E-08 180 2.272988293E-01 1.359974031E-06 1.40E-09 1.58E-02 6.91E+00 1.84E+07 -2.8E-07 1.9E+06 5.3E-01 1.7E-08 190 2.159991483E-01 1.325775783E-06 1.37E-09 2.05E-04 7.17E+00 2.43E+07 -2.7E-08 1.9E+05 5.1E-03 1.5E-08 200 4.336254305E-02 5.940067963E-07 6.12E-10 7.42E-03 7.35E+00 6.51E+07 -2.6E-07 1.8E+06 4.8E-01 6.1E-09 210 4.748959598E-05 1.915702073E-08 1.97E-11 3.91E-04 7.53E+00 7.36E+07 -3.4E-10 2.4E+03 8.2E-07 1.0E-09 220 4.513145939E-05 1.864781068E-08 1.92E-11 5.33E-06 7.68E+00 7.50E+07 -1.2E-12 1.4E+01 1.7E-11 1.0E-09 230 4.323434378E-05 1.842614170E-08 1.90E-11 6.70E-03 7.85E+00 7.67E+07 -2.4E-09 3.1E+04 7.4E-05 1.0E-09 240 4.192153856E-05 1.827111107E-08 1.88E-11 1.65E-08 8.00E+00 7.82E+07 -4.4E-15 2.8E+00 1.2E-14 1.0E-09 250 4.192153802E-05 1.827111106E-08 1.88E-11 5.13E-07 8.16E+00 7.97E+07 -2.3E-13 2.5E+02 5.7E-11 1.0E-09 260 4.192153612E-05 1.827111106E-08 1.88E-11 2.24E-07 8.35E+00 8.16E+07 -5.9E-14 8.6E+02 5.1E-11 1.0E-09 270 4.192153521E-05 1.827111106E-08 1.88E-11 7.07E-11 8.51E+00 8.32E+07 -1.7E-17 1.2E+01 2.1E-16 1.0E-09 280 4.192272319E-05 1.827111106E-08 1.88E-11 3.78E-07 8.65E+00 8.46E+07 -3.6E-13 2.8E+05 1.0E-07 1.0E-09 290 4.192287776E-05 1.827111106E-08 1.88E-11 9.65E-09 8.83E+00 8.63E+07 -2.3E-14 1.8E+04 4.0E-10 1.0E-09 300 4.192287783E-05 1.827111106E-08 1.88E-11 4.19E-11 8.96E+00 8.76E+07 -1.4E-17 2.2E+01 3.0E-16 1.0E-09 310 4.192287783E-05 1.827111106E-08 1.88E-11 2.21E-11 9.09E+00 8.88E+07 -5.0E-18 1.8E+01 9.2E-17 1.0E-09 320 4.192287774E-05 1.827111106E-08 1.88E-11 1.81E-12 9.27E+00 9.07E+07 -6.6E-19 2.8E+00 1.9E-18 1.0E-09 329 4.192287774E-05 1.827111106E-08 1.88E-11 1.03E-15 9.40E+00 9.19E+07 1.1E-20 4.1E+00 4.6E-20 1.0E-09 330 4.192287774E-05 1.827111106E-08 1.88E-11 1.62E-16 9.43E+00 9.22E+07 -2.7E-22 1.5E+00 4.2E-22 1.0E-09 Exit LSQR. istop = 3 itn = 330 Exit LSQR. anorm = 9.42730E+00 acond = 9.21551E+07 Exit LSQR. bnorm = 9.70353E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-08 arnorm = 2.79529E-23 Exit LSQR. max dx = 9.7E+02 occurred at itn 1 Exit LSQR. = 5.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-11 norm(x) = 1.827E+03 norm(r) = 7.35003635E-13 = rho1 norm(A'r) = 5.605E-13 = sigma1 norm(s) = 7.350E-02 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-08 = rho2 norm(Abar'rbar) = 5.605E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 4.040E-17 (Ax = b) test2 = 8.089E-02 (least-squares) test3 = 3.254E-06 (damped least-squares) Solution x: 1 0.419229E-04 2 0.100048 3 0.200058 4 0.300072 5 0.400089 6 0.500111 7 0.600137 8 0.700166 LSQR appears to be successful. Relative error in x = 1.04E-10 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 6 1.00E-12 ) Condition no. = 2.4414E+08 Residual function = 3.374751307E-15 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 2.8E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-12 wantse = F atol = 3.18E-16 conlim = 2.44E+11 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 9.199695526E+02 1.00E+00 8.99E-04 1 -1.845383551E+01 3.932613424E+02 4.27E-01 6.20E-01 9.14E-01 1.00E+00 8.3E+02 1.1E+00 9.1E+02 6.3E-01 2 -2.491620749E+01 2.273238818E+02 2.47E-01 3.61E-01 1.18E+00 2.19E+00 -3.2E+02 1.5E+00 4.8E+02 3.3E-01 3 -2.727058314E+01 1.470028524E+02 1.60E-01 2.44E-01 1.34E+00 3.62E+00 1.7E+02 2.0E+00 3.4E+02 2.1E-01 4 -2.762338174E+01 9.992899974E+01 1.09E-01 1.74E-01 1.44E+00 5.35E+00 -1.1E+02 2.6E+00 2.8E+02 1.4E-01 5 -2.677116869E+01 6.936381708E+01 7.54E-02 1.27E-01 1.50E+00 7.50E+00 7.2E+01 3.3E+00 2.4E+02 9.8E-02 6 -2.508690921E+01 4.836804697E+01 5.26E-02 9.27E-02 1.53E+00 1.02E+01 -5.0E+01 4.4E+00 2.2E+02 6.9E-02 7 -2.278857494E+01 3.353135997E+01 3.64E-02 6.75E-02 1.55E+00 1.39E+01 3.5E+01 5.9E+00 2.1E+02 4.9E-02 8 -2.003892020E+01 2.294165156E+01 2.49E-02 4.85E-02 1.56E+00 1.89E+01 -2.4E+01 8.1E+00 2.0E+02 3.5E-02 9 -1.698519447E+01 1.540241771E+01 1.67E-02 3.43E-02 1.57E+00 2.59E+01 1.7E+01 1.1E+01 1.9E+02 2.4E-02 10 -1.377297980E+01 1.009643339E+01 1.10E-02 2.37E-02 1.57E+00 3.61E+01 -1.2E+01 1.6E+01 1.9E+02 1.6E-02 20 -2.135485253E+00 1.316785647E+00 1.43E-03 1.81E-02 2.20E+00 2.48E+02 -5.4E-02 6.9E+00 3.8E-01 2.6E-03 30 2.333332119E+00 1.640337892E-01 1.78E-04 8.87E-03 2.85E+00 1.59E+03 -2.7E-01 4.1E+02 1.1E+02 4.0E-04 40 2.828610750E+00 6.446670910E-02 7.01E-05 2.01E-03 3.21E+00 3.54E+03 -9.6E-04 3.3E+01 3.2E-02 1.8E-04 50 2.779678925E+00 2.037157348E-02 2.21E-05 1.43E-02 3.56E+00 1.20E+04 -5.8E-03 1.4E+03 8.2E+00 5.8E-05 60 2.521428790E+00 6.491961554E-03 7.06E-06 2.16E-05 3.88E+00 2.24E+04 -2.6E-06 4.2E+00 1.1E-05 2.5E-05 70 1.953108098E+00 1.381093408E-03 1.50E-06 6.29E-04 4.29E+00 7.15E+04 -2.9E-04 7.1E+02 2.1E-01 6.7E-06 80 1.953012744E+00 1.380519390E-03 1.50E-06 2.76E-05 4.56E+00 7.60E+04 -7.5E-07 3.2E+01 2.4E-05 6.7E-06 90 1.289137021E+00 1.859765758E-04 2.02E-07 9.48E-04 4.82E+00 2.98E+05 -1.2E-06 5.2E+01 6.0E-05 1.3E-06 100 1.288486088E+00 1.819049060E-04 1.98E-07 4.25E-05 5.08E+00 3.15E+05 -7.9E-08 6.7E+00 5.3E-07 1.3E-06 110 1.279702638E+00 1.805925995E-04 1.96E-07 3.66E-05 5.32E+00 3.93E+05 -6.0E-07 1.1E+03 6.7E-04 1.2E-06 120 6.742196216E-01 9.924853647E-06 1.08E-08 1.97E-02 5.54E+00 1.89E+06 -1.0E-04 1.9E+05 2.0E+01 1.3E-07 130 6.741940742E-01 9.856894475E-06 1.07E-08 2.02E-03 5.81E+00 1.98E+06 -2.5E-07 8.2E+02 2.0E-04 1.3E-07 140 6.741839476E-01 9.833232602E-06 1.07E-08 2.01E-04 6.00E+00 2.05E+06 -2.3E-08 8.2E+01 1.9E-06 1.3E-07 150 6.740995582E-01 9.832151580E-06 1.07E-08 2.01E-06 6.23E+00 2.15E+06 -3.6E-09 1.4E+03 5.1E-06 1.2E-07 160 6.740877328E-01 9.832013855E-06 1.07E-08 7.06E-06 6.39E+00 2.21E+06 -1.2E-09 4.8E+02 5.9E-07 1.2E-07 170 2.606950461E-01 1.852007786E-06 2.01E-09 1.03E-02 6.61E+00 2.49E+07 -2.0E-07 7.7E+04 1.5E-02 1.6E-08 180 2.459261463E-01 3.145282207E-07 3.42E-10 1.95E-05 6.81E+00 2.61E+07 -9.6E-10 3.7E+02 3.6E-07 6.7E-09 190 2.457539734E-01 2.400929019E-07 2.61E-10 6.59E-03 7.01E+00 2.68E+07 -1.9E-07 7.4E+04 1.4E-02 5.9E-09 200 2.455274566E-01 5.658812554E-08 6.15E-11 2.89E-04 7.15E+00 2.74E+07 -2.2E-09 8.7E+02 1.9E-06 2.8E-09 210 2.455274534E-01 5.658167114E-08 6.15E-11 8.66E-08 7.36E+00 2.82E+07 -2.9E-13 1.3E+02 3.7E-11 2.8E-09 220 2.455274535E-01 5.658167058E-08 6.15E-11 1.27E-06 7.52E+00 2.88E+07 -6.0E-12 3.1E+03 1.9E-08 2.8E-09 230 2.455274539E-01 5.658166953E-08 6.15E-11 4.82E-07 7.74E+00 2.96E+07 -1.7E-12 9.8E+02 1.6E-09 2.8E-09 240 2.455274870E-01 5.658157855E-08 6.15E-11 2.08E-08 7.89E+00 3.02E+07 -8.5E-14 1.7E+02 1.4E-11 2.8E-09 250 2.455274855E-01 5.658157837E-08 6.15E-11 3.03E-07 8.03E+00 3.07E+07 -3.2E-12 1.4E+04 4.3E-08 2.8E-09 260 2.455273446E-01 5.658156219E-08 6.15E-11 9.21E-06 8.17E+00 3.13E+07 -1.2E-11 5.3E+04 6.5E-07 2.8E-09 270 2.455273017E-01 5.658155726E-08 6.15E-11 3.84E-07 8.37E+00 3.21E+07 -1.5E-12 6.7E+03 1.0E-08 2.8E-09 280 1.841722070E-01 4.900771300E-08 5.33E-11 1.58E-04 8.52E+00 1.04E+09 -2.1E-09 9.2E+06 2.0E-02 4.7E-10 290 7.157441428E-02 3.056353245E-08 3.32E-11 5.73E-06 8.66E+00 1.78E+09 -2.3E-11 1.0E+05 2.3E-06 2.9E-10 300 7.156795403E-02 3.056215693E-08 3.32E-11 7.37E-06 8.79E+00 1.81E+09 -2.2E-11 9.6E+04 2.1E-06 2.9E-10 310 6.574478283E-02 2.929612014E-08 3.18E-11 5.94E-05 8.95E+00 1.87E+09 -3.2E-11 1.4E+05 4.3E-06 2.8E-10 320 6.512618603E-02 2.915840211E-08 3.17E-11 1.10E-04 9.11E+00 1.91E+09 -4.6E-11 2.0E+05 8.9E-06 2.8E-10 330 1.053068980E-04 2.040316790E-09 2.22E-12 4.82E-04 9.25E+00 2.26E+09 -3.7E-11 1.6E+05 6.0E-06 6.8E-11 340 4.196879779E-05 1.827222627E-09 1.99E-12 5.26E-06 9.39E+00 2.29E+09 -2.1E-12 9.2E+03 2.0E-08 6.4E-11 350 4.193745175E-05 1.827111128E-09 1.99E-12 2.72E-08 9.55E+00 2.33E+09 -2.8E-15 1.2E+01 3.4E-14 6.4E-11 360 4.193745168E-05 1.827111128E-09 1.99E-12 2.13E-09 9.67E+00 2.36E+09 -8.1E-16 2.0E+01 1.6E-14 6.4E-11 370 4.193745207E-05 1.827111124E-09 1.99E-12 2.10E-10 9.79E+00 2.39E+09 -1.4E-17 4.5E+00 6.3E-17 6.4E-11 380 4.193744101E-05 1.827111124E-09 1.99E-12 1.70E-10 9.91E+00 2.42E+09 -3.1E-16 6.6E+02 2.1E-13 6.4E-11 390 4.193744101E-05 1.827111124E-09 1.99E-12 5.66E-11 1.00E+01 2.45E+09 -3.5E-18 7.8E+00 2.7E-17 6.4E-11 400 4.193744125E-05 1.827111124E-09 1.99E-12 3.84E-10 1.02E+01 2.49E+09 -3.9E-17 5.8E+02 2.3E-14 6.4E-11 410 4.193744162E-05 1.827111124E-09 1.99E-12 9.15E-10 1.03E+01 2.52E+09 -2.8E-17 4.2E+02 1.2E-14 6.4E-11 420 4.193744180E-05 1.827111124E-09 1.99E-12 1.60E-10 1.04E+01 2.55E+09 -8.0E-17 1.2E+03 9.5E-14 6.4E-11 430 4.194778690E-05 1.827111106E-09 1.99E-12 2.89E-10 1.06E+01 2.58E+09 -6.8E-17 1.0E+03 6.9E-14 6.4E-11 440 4.194778694E-05 1.827111106E-09 1.99E-12 1.43E-09 1.07E+01 2.62E+09 -1.0E-16 1.6E+03 1.6E-13 6.4E-11 450 4.194779324E-05 1.827111106E-09 1.99E-12 3.28E-12 1.08E+01 2.64E+09 -7.1E-19 1.1E+01 7.9E-18 6.4E-11 460 4.194779324E-05 1.827111106E-09 1.99E-12 1.62E-13 1.09E+01 2.67E+09 -1.9E-20 3.0E+01 5.7E-19 6.4E-11 470 4.194779324E-05 1.827111106E-09 1.99E-12 5.68E-13 1.10E+01 2.70E+09 -2.5E-19 5.4E+02 1.3E-16 6.4E-11 472 4.194779324E-05 1.827111106E-09 1.99E-12 2.42E-15 1.11E+01 2.71E+09 -5.9E-21 1.3E+01 7.6E-20 6.4E-11 474 4.194779324E-05 1.827111106E-09 1.99E-12 1.84E-15 1.11E+01 2.72E+09 -2.5E-22 5.7E+00 1.4E-21 6.4E-11 480 4.194779324E-05 1.827111106E-09 1.99E-12 4.81E-13 1.11E+01 2.72E+09 -1.9E-20 6.6E+02 1.3E-17 6.4E-11 490 4.194779324E-05 1.827111106E-09 1.99E-12 1.78E-12 1.13E+01 2.76E+09 -2.4E-19 8.7E+03 2.1E-15 6.4E-11 500 4.194779326E-05 1.827111106E-09 1.99E-12 4.63E-14 1.14E+01 2.78E+09 -6.6E-21 2.5E+02 1.6E-18 6.4E-11 508 4.194779326E-05 1.827111106E-09 1.99E-12 2.32E-15 1.15E+01 2.81E+09 -4.0E-20 1.5E+03 6.0E-17 6.4E-11 510 4.194779326E-05 1.827111106E-09 1.99E-12 1.03E-14 1.15E+01 2.81E+09 -6.0E-22 2.6E+01 1.5E-20 6.4E-11 512 4.194779326E-05 1.827111106E-09 1.99E-12 6.73E-18 1.15E+01 2.82E+09 -1.2E-21 5.3E+01 6.5E-20 6.4E-11 Exit LSQR. istop = 3 itn = 512 Exit LSQR. anorm = 1.15326E+01 acond = 2.81628E+09 Exit LSQR. bnorm = 9.19970E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-09 arnorm = 1.41815E-25 Exit LSQR. max dx = 9.1E+02 occurred at itn 1 Exit LSQR. = 5.0E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-12 norm(x) = 1.827E+03 norm(r) = 8.24226726E-13 = rho1 norm(A'r) = 5.927E-13 = sigma1 norm(s) = 8.242E-01 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711129E-09 = rho2 norm(Abar'rbar) = 5.927E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 3.748E-17 (Ax = b) test2 = 6.235E-02 (least-squares) test3 = 2.813E-05 (damped least-squares) Solution x: 1 0.419478E-04 2 0.100048 3 0.200058 4 0.300071 5 0.400089 6 0.500111 7 0.600137 8 0.700166 LSQR appears to be successful. Relative error in x = 2.25E-09 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 7 1.00E-13 ) Condition no. = 6.1035E+09 Residual function = 8.430939221E-16 -------------------------------------------------------------------- Enter acheck. Test of aprod for LSQR and CRAIG aprod seems OK. Relative error = 7.1E-17 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-13 wantse = F atol = 3.18E-16 conlim = 6.10E+12 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar phi dknorm dxk alfa_opt 0 0.000000000E+00 8.798048753E+02 1.00E+00 9.47E-04 1 -1.700356276E+01 3.778204977E+02 4.29E-01 6.05E-01 9.23E-01 1.00E+00 7.9E+02 1.1E+00 8.6E+02 6.4E-01 2 -2.375095537E+01 2.166607925E+02 2.46E-01 3.45E-01 1.18E+00 2.20E+00 -3.1E+02 1.5E+00 4.7E+02 3.3E-01 3 -2.680778713E+01 1.375730438E+02 1.56E-01 2.27E-01 1.32E+00 3.69E+00 1.7E+02 2.1E+00 3.5E+02 2.0E-01 4 -2.790545888E+01 9.099234087E+01 1.03E-01 1.56E-01 1.40E+00 5.56E+00 -1.0E+02 2.8E+00 2.9E+02 1.3E-01 5 -2.769789733E+01 6.094925399E+01 6.93E-02 1.10E-01 1.44E+00 7.99E+00 6.8E+01 3.9E+00 2.6E+02 8.9E-02 6 -2.649845769E+01 4.070971620E+01 4.63E-02 7.67E-02 1.47E+00 1.13E+01 -4.5E+01 5.4E+00 2.4E+02 6.0E-02 7 -2.450619289E+01 2.685449180E+01 3.05E-02 5.30E-02 1.48E+00 1.60E+01 3.1E+01 7.6E+00 2.3E+02 4.0E-02 8 -2.188969497E+01 1.737868266E+01 1.98E-02 3.61E-02 1.48E+00 2.29E+01 -2.0E+01 1.1E+01 2.2E+02 2.7E-02 9 -1.881797962E+01 1.097464397E+01 1.25E-02 2.40E-02 1.49E+00 3.32E+01 1.3E+01 1.6E+01 2.2E+02 1.7E-02 10 -1.553346711E+01 6.816215309E+00 7.75E-03 1.07E-01 1.49E+00 4.91E+01 -8.6E+00 2.4E+01 2.1E+02 1.1E-02 20 -2.794108319E+00 6.342842859E-01 7.21E-04 3.70E-03 2.31E+00 5.05E+02 -9.5E-01 1.6E+02 1.5E+02 1.3E-03 30 1.150029064E+00 1.352776762E-01 1.54E-04 2.87E-03 2.73E+00 2.01E+03 -1.8E-03 1.4E+01 2.6E-02 3.2E-04 40 2.444248675E+00 4.536980001E-02 5.16E-05 5.91E-03 3.19E+00 7.27E+03 -2.9E-02 1.6E+03 4.7E+01 1.1E-04 50 2.817206405E+00 1.911950381E-02 2.17E-05 6.35E-03 3.63E+00 1.21E+04 -1.3E-03 5.4E+02 7.2E-01 5.6E-05 60 2.879171018E+00 5.714945139E-03 6.50E-06 1.09E-04 3.92E+00 3.19E+04 -5.5E-05 2.1E+02 1.2E-02 2.0E-05 70 2.553741665E+00 1.350911372E-03 1.54E-06 2.54E-05 4.19E+00 9.78E+04 -7.4E-05 2.9E+02 2.2E-02 5.6E-06 80 2.553761373E+00 1.350162670E-03 1.53E-06 4.61E-05 4.55E+00 1.06E+05 -1.2E-05 7.0E+02 8.5E-03 5.6E-06 90 1.976097957E+00 2.273250637E-04 2.58E-07 7.97E-03 4.78E+00 3.90E+05 -4.4E-05 2.6E+03 1.1E-01 1.2E-06 100 1.976053941E+00 2.270096485E-04 2.58E-07 6.11E-07 5.06E+00 4.13E+05 -4.8E-09 3.8E+00 1.8E-08 1.2E-06 110 1.975699829E+00 2.269567250E-04 2.58E-07 1.09E-05 5.27E+00 4.32E+05 -2.3E-07 3.7E+02 8.5E-05 1.2E-06 120 1.298680439E+00 2.228119891E-05 2.53E-08 5.88E-05 5.56E+00 2.12E+06 -7.9E-07 1.3E+03 1.0E-03 1.8E-07 130 1.298593335E+00 2.215857473E-05 2.52E-08 2.29E-04 5.75E+00 2.19E+06 -6.4E-07 3.1E+03 2.0E-03 1.8E-07 140 1.298592886E+00 2.215831564E-05 2.52E-08 5.34E-06 5.94E+00 2.26E+06 -9.1E-09 1.1E+03 1.0E-05 1.8E-07 150 1.285014912E+00 2.191552102E-05 2.49E-08 4.03E-04 6.20E+00 3.48E+06 -2.6E-06 3.3E+05 8.6E-01 1.5E-07 160 1.090286846E+00 1.808177461E-05 2.06E-08 1.46E-05 6.40E+00 1.06E+07 -2.3E-08 2.9E+03 6.6E-05 7.7E-08 170 6.761870208E-01 8.179071783E-07 9.30E-10 2.33E-04 6.57E+00 1.85E+07 -1.8E-07 2.2E+04 3.9E-03 1.3E-08 180 6.761308199E-01 7.902218943E-07 8.98E-10 1.15E-05 6.81E+00 1.92E+07 -3.5E-10 4.5E+01 1.6E-08 1.2E-08 190 6.761308141E-01 7.902197424E-07 8.98E-10 8.71E-08 6.96E+00 1.96E+07 -4.1E-12 1.1E+01 4.6E-11 1.2E-08 200 6.761309767E-01 7.901941660E-07 8.98E-10 1.39E-07 7.12E+00 2.00E+07 -1.4E-12 8.4E+01 1.2E-10 1.2E-08 210 6.761309732E-01 7.901941631E-07 8.98E-10 5.87E-08 7.28E+00 2.05E+07 -3.7E-13 2.2E+01 8.0E-12 1.2E-08 220 6.761303645E-01 7.901936074E-07 8.98E-10 1.53E-06 7.48E+00 2.11E+07 -1.8E-10 1.1E+04 1.9E-06 1.2E-08 230 5.602324972E-01 6.756274728E-07 7.68E-10 1.37E-02 7.66E+00 1.91E+08 -4.1E-07 2.5E+07 1.0E+01 3.9E-09 240 4.921013443E-01 5.981236822E-07 6.80E-10 3.21E-05 7.80E+00 2.44E+08 -1.7E-09 1.0E+05 1.7E-04 3.2E-09 250 4.547297850E-01 5.509266961E-07 6.26E-10 4.50E-04 7.99E+00 2.74E+08 -7.5E-08 4.5E+06 3.4E-01 3.0E-09 260 2.458678815E-01 2.087922275E-08 2.37E-11 2.47E-05 8.13E+00 3.88E+08 -3.6E-08 2.2E+06 7.7E-02 4.9E-10 270 2.456290882E-01 9.469530748E-09 1.08E-11 2.27E-02 8.26E+00 3.95E+08 -3.2E-09 1.9E+05 6.2E-04 3.3E-10 280 2.455711718E-01 2.371287527E-09 2.70E-12 2.21E-04 8.47E+00 4.05E+08 -1.1E-11 6.4E+02 6.9E-09 1.6E-10 290 2.455711716E-01 2.371215980E-09 2.70E-12 8.90E-07 8.61E+00 4.11E+08 -3.0E-13 6.9E+01 2.1E-11 1.6E-10 300 2.455721099E-01 2.316010547E-09 2.63E-12 1.76E-05 8.73E+00 4.17E+08 -1.6E-12 8.7E+02 1.4E-09 1.6E-10 310 2.455728762E-01 2.269876768E-09 2.58E-12 6.12E-07 8.90E+00 4.25E+08 -7.8E-14 4.4E+01 3.5E-12 1.6E-10 320 2.455728762E-01 2.269876748E-09 2.58E-12 4.49E-06 9.03E+00 4.31E+08 -2.4E-13 1.1E+03 2.6E-10 1.6E-10 330 2.455728762E-01 2.269876680E-09 2.58E-12 1.37E-06 9.16E+00 4.38E+08 -1.9E-13 1.4E+03 2.6E-10 1.6E-10 340 2.455728761E-01 2.269874903E-09 2.58E-12 1.17E-07 9.29E+00 4.44E+08 -3.5E-15 3.0E+01 1.1E-13 1.6E-10 350 2.455728761E-01 2.269874897E-09 2.58E-12 4.38E-11 9.46E+00 4.52E+08 -6.6E-18 1.6E+01 1.1E-16 1.6E-10 360 2.455728482E-01 2.269874766E-09 2.58E-12 9.87E-09 9.59E+00 4.58E+08 -5.2E-15 1.4E+04 7.3E-11 1.6E-10 370 2.455728447E-01 2.269874749E-09 2.58E-12 3.05E-06 9.69E+00 4.64E+08 -1.6E-13 4.4E+05 7.3E-08 1.6E-10 380 2.455555723E-01 2.269793153E-09 2.58E-12 8.87E-07 9.85E+00 6.95E+08 -1.1E-13 2.9E+05 3.2E-08 1.3E-10 390 2.455553433E-01 2.269792072E-09 2.58E-12 1.69E-07 9.96E+00 7.05E+08 -5.2E-15 1.4E+04 7.4E-11 1.3E-10 400 2.455553414E-01 2.269792063E-09 2.58E-12 4.53E-09 1.01E+01 7.15E+08 -3.2E-15 8.7E+03 2.8E-11 1.3E-10 410 2.455553413E-01 2.269792063E-09 2.58E-12 5.95E-07 1.02E+01 7.23E+08 -1.5E-14 4.0E+04 5.9E-10 1.3E-10 420 2.455552591E-01 2.269791675E-09 2.58E-12 2.01E-09 1.04E+01 7.34E+08 -1.2E-15 3.2E+03 3.7E-12 1.3E-10 430 2.455552499E-01 2.269791633E-09 2.58E-12 5.42E-06 1.05E+01 7.42E+08 -4.4E-13 1.2E+06 5.1E-07 1.3E-10 440 1.583024643E-01 1.825613633E-09 2.08E-12 4.08E-03 1.06E+01 3.85E+10 -7.9E-11 2.1E+08 1.7E-02 1.7E-11 450 4.363636050E-02 9.706951303E-10 1.10E-12 1.37E-04 1.07E+01 5.93E+10 -1.1E-09 3.1E+09 3.5E+00 9.8E-12 460 1.765687145E-03 2.632646651E-10 2.99E-13 2.36E-04 1.08E+01 6.58E+10 -1.1E-12 3.0E+06 3.4E-06 4.9E-12 470 2.366288367E-04 1.934676180E-10 2.20E-13 2.71E-05 1.09E+01 6.67E+10 -1.1E-11 3.1E+07 3.6E-04 4.2E-12 480 1.425178805E-04 1.883285822E-10 2.14E-13 7.34E-04 1.11E+01 6.76E+10 -4.0E-11 1.1E+08 4.4E-03 4.1E-12 490 1.187559012E-04 1.870087118E-10 2.13E-13 8.09E-05 1.12E+01 6.82E+10 -1.9E-11 5.1E+07 9.5E-04 4.1E-12 500 1.175581346E-04 1.869420292E-10 2.12E-13 2.27E-03 1.13E+01 6.88E+10 -4.9E-12 1.3E+07 6.4E-05 4.1E-12 510 4.248549028E-05 1.827143356E-10 2.08E-13 3.69E-06 1.14E+01 6.96E+10 -5.2E-12 1.4E+07 7.4E-05 4.0E-12 520 4.248397656E-05 1.827142493E-10 2.08E-13 3.22E-08 1.15E+01 7.02E+10 -9.6E-15 2.6E+04 2.5E-10 4.0E-12 530 4.248396267E-05 1.827142486E-10 2.08E-13 1.87E-11 1.16E+01 7.09E+10 -5.0E-19 2.0E+00 9.9E-19 4.0E-12 540 4.248396267E-05 1.827142486E-10 2.08E-13 4.36E-10 1.17E+01 7.15E+10 -9.4E-19 4.2E+01 3.9E-17 4.0E-12 550 4.248383733E-05 1.827142479E-10 2.08E-13 2.44E-08 1.18E+01 7.23E+10 -1.4E-16 6.4E+03 9.2E-13 4.0E-12 560 4.248372147E-05 1.827142473E-10 2.08E-13 5.63E-09 1.19E+01 7.28E+10 -2.1E-16 9.1E+03 1.9E-12 4.0E-12 570 4.248372119E-05 1.827142473E-10 2.08E-13 2.90E-08 1.21E+01 7.36E+10 -2.8E-16 1.3E+04 3.5E-12 4.0E-12 580 4.246369204E-05 1.827141402E-10 2.08E-13 3.08E-06 1.22E+01 7.42E+10 -3.4E-14 1.5E+06 5.0E-08 4.0E-12 590 4.242114647E-05 1.827139129E-10 2.08E-13 1.30E-05 1.22E+01 7.47E+10 -2.8E-13 1.3E+07 3.6E-06 4.0E-12 600 4.242003862E-05 1.827139070E-10 2.08E-13 2.09E-07 1.24E+01 7.55E+10 -5.6E-16 2.5E+04 1.4E-11 4.0E-12 610 4.191445204E-05 1.827112045E-10 2.08E-13 7.72E-06 1.25E+01 7.62E+10 -1.4E-13 6.1E+06 8.4E-07 4.0E-12 620 4.189688981E-05 1.827111107E-10 2.08E-13 7.78E-08 1.26E+01 7.67E+10 -1.4E-15 6.4E+04 9.2E-11 4.0E-12 630 4.189687653E-05 1.827111106E-10 2.08E-13 3.26E-12 1.27E+01 7.74E+10 -1.2E-20 4.4E+01 5.2E-19 4.0E-12 640 4.189687653E-05 1.827111106E-10 2.08E-13 3.34E-12 1.28E+01 7.80E+10 -1.3E-19 4.8E+02 6.2E-17 4.0E-12 650 4.189687653E-05 1.827111106E-10 2.08E-13 1.24E-12 1.29E+01 7.85E+10 -7.7E-21 3.9E+01 3.0E-19 4.0E-12 660 4.189687617E-05 1.827111106E-10 2.08E-13 4.38E-12 1.30E+01 7.93E+10 -3.9E-20 2.0E+02 7.9E-18 4.0E-12 670 4.189687617E-05 1.827111106E-10 2.08E-13 6.52E-12 1.31E+01 7.98E+10 -3.9E-20 2.2E+02 8.8E-18 4.0E-12 680 4.189687617E-05 1.827111106E-10 2.08E-13 7.95E-11 1.32E+01 8.03E+10 -1.2E-18 6.9E+03 8.4E-15 4.0E-12 690 4.189687640E-05 1.827111106E-10 2.08E-13 4.76E-10 1.33E+01 8.09E+10 -1.8E-18 1.0E+04 1.8E-14 4.0E-12 700 4.189687659E-05 1.827111106E-10 2.08E-13 1.66E-11 1.34E+01 8.16E+10 -9.0E-20 5.1E+02 4.6E-17 4.0E-12 710 4.189687659E-05 1.827111106E-10 2.08E-13 2.57E-13 1.35E+01 8.21E+10 -4.4E-21 7.1E+01 3.1E-19 4.0E-12 720 4.189687659E-05 1.827111106E-10 2.08E-13 3.68E-12 1.35E+01 8.26E+10 -1.2E-18 2.0E+04 2.5E-14 4.0E-12 730 4.189687659E-05 1.827111106E-10 2.08E-13 4.78E-14 1.36E+01 8.32E+10 -1.3E-22 3.4E+00 4.5E-22 4.0E-12 740 4.189687659E-05 1.827111106E-10 2.08E-13 1.51E-14 1.37E+01 8.38E+10 -8.6E-22 8.4E+01 7.3E-20 4.0E-12 750 4.189687659E-05 1.827111106E-10 2.08E-13 3.87E-15 1.38E+01 8.43E+10 -3.2E-22 3.3E+01 1.1E-20 4.0E-12 756 4.189687659E-05 1.827111106E-10 2.08E-13 4.25E-16 1.39E+01 8.47E+10 -6.9E-22 1.0E+02 7.0E-20 4.0E-12 757 4.189687659E-05 1.827111106E-10 2.08E-13 3.25E-16 1.39E+01 8.48E+10 3.4E-24 3.1E+00 1.1E-23 4.0E-12 758 4.189687659E-05 1.827111106E-10 2.08E-13 1.74E-16 1.39E+01 8.48E+10 -8.9E-24 1.4E+01 1.2E-22 4.0E-12 Exit LSQR. istop = 3 itn = 758 Exit LSQR. anorm = 1.38884E+01 acond = 8.47732E+10 Exit LSQR. bnorm = 8.79805E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-10 arnorm = 4.41016E-25 Exit LSQR. max dx = 8.6E+02 occurred at itn 1 Exit LSQR. = 4.7E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-13 norm(x) = 1.827E+03 norm(r) = 8.03955988E-13 = rho1 norm(A'r) = 5.970E-13 = sigma1 norm(s) = 8.040E+00 norm(x,s) = 1.827E+03 norm(rbar) = 1.82712879E-10 = rho2 norm(Abar'rbar) = 5.970E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 3.062E-17 (Ax = b) test2 = 5.346E-02 (least-squares) test3 = 2.353E-04 (damped least-squares) Solution x: 1 0.418969E-04 2 0.100049 3 0.200058 4 0.300071 5 0.400091 6 0.500111 7 0.600140 8 0.700166 LSQR appears to be successful. Relative error in x = 2.67E-08