
LSMR: AN ITERATIVE ALGORITHM FOR SPARSE
LEAST-SQUARES PROBLEMS∗

DAVID CHIN-LUNG FONG† AND MICHAEL SAUNDERS‡

Abstract. An iterative method LSMR is presented for solving linear systems Ax = b and least-
squares problem min ‖Ax− b‖2, with A being sparse or a fast linear operator. LSMR is based on the
Golub-Kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied
to the normal equation ATAx = ATb, so that the quantities ‖ATrk‖ are monotonically decreasing
(where rk = b − Axk is the residual for the current iterate xk). In practice we observe that ‖rk‖
also decreases monotonically. Compared to LSQR, for which only ‖rk‖ is monotonic, it is safer to
terminate LSMR early. Improvements for the new iterative method in the presence of extra available
memory are also explored.

Key words. least-squares problem, sparse matrix, LSQR, MINRES, Krylov subspace method,
Golub-Kahan process, conjugate-gradient method, minimum-residual method, iterative method

AMS subject classifications. 15A06, 65F10, 65F20, 65F22, 65F25, 65F35, 65F50, 93E24

DOI. xxx/xxxxxxxxx

1. Introduction. We present a numerical method called LSMR for computing
a solution x to the following problems:

Unsymmetric equations: solve Ax = b
Linear least squares: minimize ‖Ax− b‖2
Regularized least squares: minimize

∥∥∥∥(AλI
)
x−

(
b
0

)∥∥∥∥
2

where A ∈ Rm×n, b ∈ Rm, and λ ≥ 0. The matrix A is used as an operator for which
products of the form Av and ATu can be computed for various v and u. Thus A is
normally large and sparse and need not be explicitly stored.

LSMR is similar in style to the well known method LSQR [11, 12] in being based
on the Golub-Kahan bidiagonalization of A [4]. LSQR is equivalent to the conjugate-
gradient (CG) method applied to the normal equation (ATA+λ2I)x = ATb. It has the
property of reducing ‖rk‖ monotonically, where rk = b − Axk is the residual for the
approximate solution xk. (For simplicity, we are letting λ = 0.) In contrast, LSMR
is equivalent to MINRES [10] applied to the normal equation, so that the quantities
‖ATrk‖ are monotonically decreasing. In practice we observe that ‖rk‖ also decreases
monotonically, and is never very far behind the corresponding value for LSQR. Hence,
although LSQR and LSMR ultimately converge to similar points, it is safer to use
LSMR in situations where the solver must be terminated early.

Stopping conditions are typically based on backward error : the norm of some per-
turbation to A for which the current iterate xk solves the perturbed problem exactly.
Experiments on many sparse least-squares test problems show that for LSMR, a cer-
tain cheaply computable backward error for each xk is close to the optimal (smallest
possible) backward error. This is an unexpected but highly desirable advantage.

∗Version of May 28, 2010. Technical Report SOL 2010-2
http://www.siam.org/journals/sisc/ for Copper Mountain Special Issue 2010
†iCME, Stanford University (clfong@stanford.edu). Partially supported by a Stanford Graduate

Fellowship.
‡Systems Optimization Laboratory, Department of Management Science and Engineering, Stan-

ford University, CA 94305-4026 (saunders@stanford.edu). Partially supported by Office of Naval
Research grant N00014-08-1-0191 and by the U.S. Army Research Laboratory, through the Army
High Performance Computing Research Center, Cooperative Agreement W911NF-07-0027.

1

2 D. C.-L. FONG AND M. A. SAUNDERS

1.1. Notation. Matrices are denoted by A,B, . . . , vectors by v, w, . . . , and
scalars by α, β, · · · . Two exceptions are c and s, which denote the significant compo-
nents of a plane rotation matrix, with c2 + s2 = 1. For a vector v, ‖v‖ always denotes
the 2-norm of v. For a matrix A, ‖A‖ usually denotes the Frobenius norm, and the
condition number of a matrix A is defined by cond(A) = ‖A‖‖A+‖, where A+ denotes
the pseudoinverse of A.

2. Derivation of LSMR.

2.1. Golub-Kahan process. We begin with the Golub-Kahan process [4].
1. Set β1u1 = b (shorthand for β1 = ‖b‖, u1 = b/β1) and α1v1 = ATu1.
2. For k = 1, 2, . . . , set

βk+1uk+1 = Avk − αkuk and αk+1vk+1 = ATuk+1 − βk+1vk. (2.1)

After k steps, we have

AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1,

where we define

Lk =

α1

β2 α2

.
βk αk

 , Bk =

α1

β2 α2

.
βk αk

βk+1

 =
(

Lk

βk+1e
T
k

)
.

Now consider

ATAVk = ATUk+1Bk = (Vk+1L
T
k+1)Bk

= Vk+1

(
LT

k βk+1ek

0 αk+1

)(
Lk

βk+1e
T
k

)
= Vk+1

(
LT

k Lk + β2
k+1eke

T
k

αk+1βk+1e
T
k

)
= Vk+1

(
BT

kBk

αk+1βk+1e
T
k

)
.

This is equivalent to what would be generated by the symmetric Lanczos process with
matrix ATA and starting vector ATb.

2.2. Using Golub-Kahan to solve the normal equation. Krylov subspace
methods for solving linear equations form solution estimates xk = Vkyk for some yk,
where (as above) the columns of Vk are an expanding set of theoretically orthonormal
vectors.

For the equation ATAx = ATb, any solution x has the property of minimizing ‖r‖,
where r = b − Ax is the corresponding residual vector. Thus, in the development of
LSQR it was natural to choose yk to minimize ‖rk‖ at each stage. Since

rk = b−AVkyk = β1u1 − Uk+1Bkyk = Uk+1(β1e1 −Bkyk),

where Uk+1 is theoretically orthonormal, the subproblem minyk
‖β1e1 −Bkyk‖ easily

arose. In contrast, for LSMR we wish to minimize ‖ATrk‖. Let β̄k = αkβk for all k.

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 3

Since

ATrk = ATb−ATAxk = β1A
Tu1 −ATAxk

= β1α1v1 −ATAVkyk

= β̄1v1 − Vk+1

(
BT

kBk

αk+1βk+1e
T
k

)
yk

= Vk+1

(
β̄1e1 −

(
BT

kBk

β̄k+1e
T
k

)
yk

)
,

we are led to the subproblem

min
yk

‖AT rk‖ = min
yk

∥∥∥∥β̄1e1 −
(
BT

kBk

β̄k+1e
T
k

)
yk

∥∥∥∥ . (2.2)

Efficient solution of this least-squares subproblem is the heart of algorithm LSMR.

2.3. Two QR factorizations. As in LSQR, we form the QR factorization

Qk+1Bk =
(
Rk

0

)
, Rk =

ρ1 θ2

ρ2
. . .
. . . θk

ρk

 . (2.3)

If we define tk = Rkyk and solve RT
kqk = β̄k+1ek, we have qk = (β̄k+1/ρk)ek = ϕkek

with ρk = (Rk)kk and ϕk = β̄k+1/ρk. Then we perform a second QR factorization

Q̄k+1

(
RT

k β̄1e1
ϕke

T
k 0

)
=
(
R̄k zk

0 ζ̄k+1

)
, R̄k =

ρ̄1 θ̄2

ρ̄2
. . .
. . . θ̄k

ρ̄k

 . (2.4)

Combining what we have gives

min
yk

∥∥∥∥β̄1e1 −
(
BT

kBk

β̄k+1e
T
k

)
yk

∥∥∥∥ = min
yk

∥∥∥∥β̄1e1 −
(
RT

kRk

qT
k Rk

)
yk

∥∥∥∥
= min

tk

∥∥∥∥β̄1e1 −
(
RT

k

ϕke
T
k

)
tk

∥∥∥∥
= min

tk

∥∥∥∥(zk

ζ̄k+1

)
−
(
R̄k

0

)
tk

∥∥∥∥ . (2.5)

The subproblem is solved by choosing tk from R̄ktk = zk.

2.4. Recurrence for xk. Let Wk and W̄k be computed by forward substitution
from RT

kW
T
k = V T

k and R̄T
k W̄

T
k = WT

k . Then from xk = Vkyk, Rkyk = tk, and
R̄ktk = zk, we have

xk = WkRkyk = Wktk = W̄kR̄ktk = W̄kzk = xk−1 + ζkw̄k.

4 D. C.-L. FONG AND M. A. SAUNDERS

2.5. Recurrence for Wk and W̄k. If we write

Vk =
(
v1 v2 · · · vk

)
, Wk =

(
w1 w2 · · · wk

)
,

W̄k =
(
w̄1 w̄2 · · · w̄k

)
zk =

(
ζ1 ζ2 · · · ζk

)T
,

an important fact is that when k increases to k + 1, all quantities remain the same
except for one additional term.

The first QR factorization proceeds as follows. At iteration k, we write

Ql,l+1 =

Il−1

cl sl

−sl cl
Ik−l−1

 .

Now if Qk+1 = Qk,k+1 . . . Q3,2Q1,2, we have

Qk+1Bk+1 = Qk

(
Bk αk+1ek+1

βk+2

)
=

Rk θk+1ek

0 ᾱk+1

βk+2

Qk+2Bk+1 = Qk+1,k+2

Rk θk+1ek

0 ᾱk+1

βk+2

 =

Rk θk+1ek

0 ρk+1

0 0

and we see that θk+1 = skαk+1 = (βk+1/ρk)αk+1 = β̄k+1/ρk = ϕk. Therefore we can
now write θk+1 instead of ϕk.

For the second QR factorization, if Q̄k+1 = Q̄k,k+1 . . . Q̄3,2Q̄1,2, we know that

Q̄k+1

(
RT

k

θk+1e
T
k

)
=
(
R̄k

0

)
.

Therefore we would have

Q̄k+2

(
RT

k+1

θk+2e
T
k+1

)
= Q̄k+1,k+2

R̄k θ̄k+1ek

c̄kρk+1

θk+2

 =

R̄k θ̄k+1ek

ρ̄k+1

0

 .

By considering the last row of the matrix equation RT
k+1W

T
k+1 = V T

k+1 we obtain

θk+1w
T
k + ρk+1w

T
k+1 = vT

k+1,

and from the last row of the matrix equation R̄T
k+1W̄

T
k+1 = WT

k+1 we obtain

θ̄k+1w̄
T
k + ρ̄k+1w̄

T
k+1 = wT

k+1.

These equations serve to define wk+1 and w̄k+1.

2.6. The two rotations. To summarize, the rotations Qk,k+1 and Q̄k,k+1 have
the following effects on our computation:(

ck sk

−sk ck

)(
ᾱk

βk+1 αk+1

)
=
(
ρk θk+1

0 ᾱk+1

)
(

c̄k s̄k

−s̄k c̄k

)(
c̄k−1ρk ζ̄k
θk+1 ρk+1

)
=
(
ρ̄k θ̄k+1 ζk
0 c̄kρk+1 ζ̄k+1

)
.

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 5

2.7. Speeding up forward substitution. The forward substitutions for com-
puting w and w̄ can be made more efficient if we define hk = ρkwk and h̄k = ρkρ̄kw̄k.
We then obtain the updates described in part 6 of the pseudo-codes below.

3. Algorithm LSMR. The following summarizes the main steps of algorithm
LSMR for solving Ax ≈ b, excluding the norm estimates and stopping rules developed
later.

1. (Initialize)

β1u1 = b α1v1 = ATu1 ᾱ1 = α1 ζ̄1 = α1β1

ρ0 = 1 ρ̄0 = 1 c̄0 = 1 s̄0 = 0

h1 = v1 h̄0 = ~0 x0 = ~0

2. For k = 1, 2, 3 . . . , repeat steps 3–6.
3. (Continue the bidiagonalization)

βk+1uk+1 = Avk − αkuk

αk+1vk+1 = ATuk+1 − βk+1vk

4. (Construct and apply rotation Qk,k+1)

ρk =
(
ᾱ2

k + β2
k+1

) 1
2 (3.1)

ck = ᾱk/ρk sk = βk+1/ρk (3.2)
θk+1 = skαk+1 ᾱk+1 = ckαk+1 (3.3)

5. (Construct and apply rotation Q̄k,k+1)

θ̄k = s̄k−1ρk ρ̄k =
(
(c̄k−1ρk)2 + θ2k+1

) 1
2 (3.4)

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k (3.5)
ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k (3.6)

6. (Update h, h̄ x)

h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζk/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

4. Estimation of norms. Here we derive estimates of the quantities ‖rk‖,
‖AT rk‖, ‖xk‖, ‖A‖ for use within stopping rules.

4.1. Estimate of ‖ATrk‖. One can see from (2.2) and (2.5) that ‖ATrk‖ =
|ζ̄k+1|, which can be computed at no additional cost and is monotonically decreasing.

4.2. Estimate of ‖rk‖. Here we transform R̄T to upper-bidiagonal form using
a third QR factorization: R̃k = Q̃kR̄

T
k . This amounts to one additional rotation per

iteration. Now let

t̃k = Q̃ktk, b̃k =
(
Q̃k

1

)
Qk+1e1β1.

6 D. C.-L. FONG AND M. A. SAUNDERS

Then we have

rk = b−Axk

= β1u1 −AVkyk

= Uk+1e1β1 − Uk+1Bkyk

= Uk+1

(
e1β1 −QT

k+1

(
Rk

0

)
yk

)
= Uk+1

(
e1β1 −QT

k+1

(
tk
0

))
= Uk+1

(
QT

k+1

(
Q̃T

k

1

)
b̃k −QT

k+1

(
Q̃T

k t̃k
0

))
= Uk+1Q

T
k+1

(
Q̃T

k

1

)(
b̃k −

(
t̃k
0

))
.

Therefore, assuming orthogonality of Uk+1, we have

‖rk‖ =
∥∥∥∥b̃k − (t̃k0

)∥∥∥∥ . (4.1)

The vectors b̃k and t̃k can be written in the form

b̃k =
(
β̃1 · · · β̃k−1 β̇k β̈k+1

)T
t̃k =

(
τ̃1 · · · τ̃k−1 τ̇k

)T
. (4.2)

The vector t̃k can be computed by forward substitution from R̃T
k t̃k = zk.

4.2.1. Effects of the rotations. If we write

R̃k =

ρ̃1 θ̃2

.
ρ̃k−1 θ̃k

ρ̇k

 ,

the effects of the rotations Qk,k+1 and Q̃k−1,k can be summarized as(
ck sk

−sk ck

)(
β̈k

0

)
=
(
β̂k

β̈k+1

)
,(

c̃k s̃k

−s̃k c̃k

)(
ρ̇k−1 β̇k−1

θ̄k ρ̄k β̂k

)
=
(
ρ̃k−1 θ̃k β̃k−1

0 ρ̇k β̇k

)
,

where β̈1 = β1, ρ̇1 = ρ̄1, β̇1 = β̂1 and ck, sk are defined in section 2.6.

4.2.2. Relationship between t̃k and b̃k. We define s(k) = s1 · · · sk and s̄(k) =
s̄1 · · · s̄k. Then from

R̃T
k t̃k = zk

=
(
Ik 0

)
Q̄k+1ek+1β̄1 from (2.4)

=

c̄1
−s̄1c̄2
s̄1s̄2c̄3

...
(−1)k+1s̄(k−1)c̄k

 β̄1,

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 7

we see that

τ̃1 = ρ̃−1
1 c̄1β̄1 (4.3)

τ̃k−1 = ρ̃−1
k−1((−1)ks̄(k−2)c̄k−1β̄1 − θ̃k−1τ̃k−2) (4.4)

τ̇k = ρ̇−1
k ((−1)k+1s̄(k−1)c̄kβ̄1 − θ̃k τ̃k−1). (4.5)

Also, from

β̂1

...
β̂k

β̈k+1

 = Qk+1ek+1b1 =

c1
−s1c2

...
(−1)k+1s(k−1)ck

(−1)k+2s(k)

β1,

β̃1

...
β̃k−1

β̇k

 = Q̃k

β̂1

...
β̂k

we see that

β̇1 = β̂1 = c1β1 (4.6)

β̇k = −s̃k−1β̇k−1 + c̃k−1(−1)k−1s(k−1)ckβ1 (4.7)

β̃k = c̃kβ̇k + s̃k(−1)ks(k)ck+1β1. (4.8)

We want to show by induction that τ̃i = β̃i for all i. When i = 1,

β̃1 = c̃1c1β1 − s̃1s1c2β1

= ρ̃−1
1 β1(c1ρ̄1 − θ̄2s1c2)

= ρ̃−1
1 β1(c1ρ̄1 − θ̄2s1

c1α2

ρ2
)

= ρ̃−1
1 β1c1(ρ̄1 − θ̄2s1

α2

ρ2
)

= ρ̃−1
1 β1α1ρ

−1
1 (ρ̄1 −

1
ρ2
θ̄2(s1α2))

= ρ̃−1
1 β̄1ρ

−1
1 (ρ̄1 −

1
ρ2

(s̄1ρ2)θ2)

= ρ̃−1
1 β̄1ρ

−1
1 (ρ̄1 −

θ2
ρ̄1
θ2)

= ρ̃−1
1 β̄1(ρ1ρ̄1)−1(ρ̄2

1 − θ22)

= ρ̃−1
1 β̄1(ρ1ρ̄1)−1(ρ2

1 + θ22 − θ22)

= ρ̃−1
1 β̄1

ρ1

ρ̄1

= ρ̃−1
1 β̄1c̄1

= τ̃1.

8 D. C.-L. FONG AND M. A. SAUNDERS

Suppose τ̃k = β̃k. We consider the expression

s(k)ck+1ρ̄
−1
k+1c̄

2
kρ

2
k+1β1 =

c̄kρk+1

ρ̄k+1
(s(k)ck+1)c̄kρk+1β1

= c̄k+1
θ2 · · · θk+1α1

ρ1 · · · ρk+1

ρ1 · · · ρk

ρ̄1 · · · ρ̄k
ρk+1β1

= c̄k+1
θ2
ρ̄1
· · · θk+1

ρ̄k
β̄1

= c̄k+1s̄1 · · · s̄kβ̄1

= c̄k+1s̄
(k)β̄1. (4.9)

Then we would have

τ̃k+1 = ρ̃−1
k+1

(
(−1)k+2s̄(k)c̄k+1β̄1 − θ̃k+1τ̃k

)
= ρ̃−1

k+1

(
(−1)k+2s̄(k)c̄k+1β̄1 − θ̃k+1

(
c̃kβ̇k + s̃k(−1)ks(k)ck+1β1

))
,

with the last equality obtained by the induction hypothesis. Then we continue by
rearranging terms and using (4.9) in the second equality below:

τ̃k+1 = ρ̃−1
k+1θ̃k+1c̃kβ̇k + (−1)k+2ρ̃−1

k+1

(
s̄(k)c̄k+1β̄1 − θ̃k+1s̃ks

(k)ck+1β1

)
= ρ̃−1

k+1(ρ̄k+1s̃k)c̃kβ̇k + (−1)k+2ρ̃−1
k+1

(
s(k)ck+1ρ̄

−1
k+1c̄

2
kρ

2
k+1β1 − (s̃kρ̄k+1)s̃ks

(k)ck+1β1

)
=
c̃kρ̄k+1

ρ̃k+1
s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)ck+1β1ρ̄

−1
k+1

(
c̄2kρ

2
k+1 − s̃2kρ̄2

k+1

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)ck+1β1ρ̄

−1
k+1

((
ρ̄2

k+1 − θ2k+2

)
− s̃2kρ̄2

k+1

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)ck+1β1ρ̄

−1
k+1

(
ρ̄2

k+1(1− s̃2k)− θ2k+2

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)ck+1β1ρ̄

−1
k+1

(
ρ̄2

k+1c̃
2
k − θ2k+2

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)β1

(
ρ̄k+1c̃

2
kck+1 −

θk+2

ρ̄k+1
θk+2ck+1

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)β1

(
ρ̇k+1c̃kck+1 −

θk+2ρk+2

ρ̄k+1
sk+1αk+2

ck+1

ρk+2

)
= c̃k+1s̃kβ̇k + (−1)k+2ρ̃−1

k+1s
(k)β1

(
ρ̇k+1c̃kck+1 − θ̄k+2sk+1ck+2

)
= c̃k+1s̃kβ̇k + (−1)k+2s(k)β1 (c̃k+1c̃kck+1 − s̃k+1sk+1ck+2)

= c̃k+1

(
−s̃kβ̇k + c̃k(−1)k+2s(k)ck+1β1

)
+ s̃k+1(−1)k+2s(k+1)ck+2β1

= c̃k+1β̇k+1 + s̃k+1(−1)k+2s(k+1)ck+2β1

= β̃k+1.

Therefore by induction, we know that τ̃i = β̃i for i = 1, 2, From (4.2), we see that
at iteration k, the first k − 1 elements of b̃k and t̃k are equal. Hence from (4.1), we
can estimate ‖rk‖ from just the last two elements of b̃k and the last element of t̃k, as
shown in step 6 below.

4.2.3. Pseudo-code for estimating ‖rk‖. The following shows how ‖rk‖ may
be estimated from quantities arising from the first and third QR factorizations.

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 9

1. (Initialize)

β̈1 = β1 β̇0 = 0 ρ̇0 = 1

τ̃−1 = 0 θ̃0 = 0 ζ0 = 0

2. (For the kth iteration, repeat steps 3–6)
3. (Apply rotation Qk,k+1)

β̂k = ckβ̈k β̈k+1 = −skβ̈k (4.10)

4. (If k ≥ 2, construct and apply rotation Q̃k−1,k)

ρ̃k−1 =
(
ρ̇2

k−1 + θ̄2k
) 1

2 (4.11)
c̃k−1 = ρ̇k−1/ρ̃k−1 s̃k−1 = θ̄k/ρ̃k−1 (4.12)

θ̃k = s̃k−1ρ̄k ρ̇k = c̃k−1ρ̄k (4.13)

β̃k−1 = c̃k−1β̇k−1 + s̃k−1β̂k β̇k = −s̃k−1β̇k−1 + c̃k−1β̂k (4.14)

5. (Update t̃k by forward substitution)

τ̃k−1 = (ζk−1 − θ̃k−1τ̃k−2)/ρ̃k−1

τ̇k = (ζk − θ̃k τ̃k−1)/ρ̇k

6. (Estimate ‖rk‖)

‖rk‖ =
(

(β̇k − τ̇k)2 + β̈2
k+1

) 1
2

4.3. Estimate of ‖A‖ and cond(A). It is known that the singular values of
Bk are interlaced by those of A and are bounded above and below by the largest
and smallest nonzero singular values of A [11]. Therefore we can estimate ‖A‖ and
cond(A) by ‖Bk‖ and cond(Bk) respectively. Considering the Frobenius norm of Bk,
we have the recurrence relation

‖Bk+1‖2F = ‖Bk‖2F + α2
k + β2

k+1.

From (2.3)–(2.4), we know that the minimum and maximum singular values of Q̄kR
T
k

and Bk are approximately the same respectively [17]. Since R̄k is upper triangular
with positive diagonals,

σmax(Bk) ≈ max (max
1≤j≤k−1

(ρ̄j), c̄k−1ρk),

σmin(Bk) ≈ min (min
1≤j≤k−1

(ρ̄j), c̄k−1ρk).

This gives us the approximation cond(A) ≈ σmax(Bk)/σmin(Bk), which can be ob-
tained in constant time per iteration.

4.4. Estimate of ‖xk‖. From the definition in section 2.4, we have the relation
xk = VkR

−1
k R̄−1

k zk. From the third QR factorization Q̃kR̄
T = R̃k in section 4.2 and

a fourth QR factorization Q̂k(Q̃kRk)T = R̂k we can write

xk = VkR
−1
k R̄−1

k zk

= VkR
−1
k R̄−1

k R̄kQ̃
T
k z̃k

= VkR
−1
k Q̃T

k Q̃kRkQ̂
T
k ẑk

= VkQ̂
T
k ẑk,

10 D. C.-L. FONG AND M. A. SAUNDERS

where z̃k and ẑk are defined by forward substitutions R̃T
k z̃k = zk and R̂kẑk = z̃k.

Then assuming orthogonality of Vk, we arrive at the estimate ‖xk‖ = ‖ẑk‖. Note
that since only the lower-rightmost entries in Rk and R̄k change each iteration, this
estimate of ‖xk‖ requires only a constant number of multiplications per iteration. The
pseudo-code, omitted here, can be derived as in section 4.2.3.

5. Stopping criteria. With exact arithmetic, the Golub-Kahan process termi-
nates when either αk+1 = 0 or βk+1 = 0. For certain data b, this could happen in
practice when k is small (but is unlikely later). We show that LSMR will have solved
the problem at that point and should therefore terminate.

When αk+1 = 0, we have

‖AT rk‖ = ζ̄k+1 (from sec. 4.1)
= −s̄k ζ̄k (from (3.6))

= −θk+1ρ̄
−1
k ζ̄k (from (3.5))

= −skαk+1ρ̄
−1
k ζ̄k (from (3.3))

= 0.

Thus, a least-squares solution has been obtained.
When βk+1 = 0, we have

sk = βk+1ρ
−1
k (from (3.2))

= 0. (5.1)

β̈k+1 = −skβ̈k (from (4.10))
= 0. (from (5.1)) (5.2)

τ̇k = ρ̇−1
k ρ̃k τ̃k (from (4.4), (4.5)) (5.3)

β̇k = c̃−1
k

(
β̃k − s̃k(−1)ks(k)ck+1β1

)
(from (4.8))

= c̃−1
k β̃k (from (5.1))

= ρ̇−1
k ρ̃kβ̃k (from (4.12))

= ρ̇−1
k ρ̃k τ̃k (from sec. 4.2.2)

= τ̇k. (from (5.3)) (5.4)

Therefore, by equation (5.2) and (5.4), we conclude that

‖rk‖ =
(

(β̇k − τ̇k)2 + β̈2
k+1

) 1
2

= 0.

It follows that the system is compatible and we have solved Ax = b.

5.1. Practical stopping criteria. In practice, the stopping rules in LSQR [11]
are used for LSMR. Three dimensionless quantities are needed: ATOL, BTOL, CON-
LIM. The first stopping rule applies to compatible systems, the second rule applies to
incompatible systems, and the third rule applies to both.

S1: Stop if ‖rk‖ ≤ BTOL‖b‖+ ATOL‖A‖‖xk‖
S2: Stop if ‖A

T rk‖
‖A‖‖rk‖ ≤ ATOL

S3: Stop if cond(A) ≥ CONLIM

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 11

6. Characteristics of solution on singular systems. The least-squares prob-
lem min ‖Ax− b‖ has a unique solution when A has full column rank. If A does not
have full column rank, there are many distinct x that give the same minimum value
of ‖Ax − b‖. In particular, the corresponding normal equation ATAx = ATb is a
singular system. Here we show that both LSQR and LSMR give the minimum-norm
least-squares solution at convergence. That is, both LSQR and LMSR solve the op-
timization problem

min
x
‖x‖2 such that ATAx = ATb.

Let N(A) and R(A) denote the nullspace and range of a matrix A.
Lemma 6.1. If A ∈ Rm×n and p ∈ Rn satisfy ATAp = 0, then p ∈ N(A).
Proof. ATAp = 0⇒ pTATAp = 0⇒ (Ap)TAp = 0⇒ Ap = 0.
Theorem 6.2. The converged solution returned by LSQR on a least-squares

system is the minimum-norm solution.
Proof. Let xLSQR

k be the solution returned by LSQR on min ‖Ax− b‖ at conver-
gence; i.e., xLSQR

k satisfies

ATAxLSQR
k = ATb. (6.1)

Since the solution lies in the Krylov subspace, we also have

xLSQR
k = Vky

LSQR
k (6.2)

for some yLSQR
k . Consider any other solution to the least-squares system; i.e., x̂

satisfying

ATAx̂ = ATb. (6.3)

Let p = x̂ − xLSQR
k . The difference between (6.3) and (6.1) gives ATAp = 0, so

that Ap = 0 by Lemma 6.1. From the Golub-Kahan process, α1v1 = ATu1 and
αk+1vk+1 = ATuk+1 − βk+1vk, we know that v1, . . . , vk ∈ R(AT). With Ap = 0, this
implies

pTVk = 0. (6.4)

Now we consider

‖x̂‖22 − ‖x
LSQR
k ‖22 = ‖xLSQR

k + p‖22 − ‖x
LSQR
k ‖22

= pTp+ 2pTxLSQR
k

= pTp+ 2pTVky
LSQR
k by (6.2)

= pTp by (6.4)
≥ 0,

which shows that xLSQR
k has minimum norm among all possible solutions.

Corollary 6.3. The converged solution returned by LSMR on a least-squares
system is the minimum-norm solution.

Proof. At convergence, αk+1 = 0 or βk+1 = 0. Thus β̄k+1 = αk+1βk+1 = 0, which
means equation (2.5) becomes

min
yk

∥∥β̄1e1 −BT
kBkyk

∥∥ = 0 ⇒ BT
kBkyk = β̄1e1,

12 D. C.-L. FONG AND M. A. SAUNDERS

since Bk has full rank. This is the normal equation for minyk
‖Bkyk − β1e1‖, the

same least-squares subproblem solved by LSQR. We conclude that at convergence,
yk = yLSQR

k and thus xk = Vkyk = Vky
LSQR
k = xLSQR

k . By Theorem 6.2, LSMR
converges to the minimum-norm solution.

7. Complexity. We compare the storage requirement and computational com-
plexity for LSMR and LSQR on Ax ≈ b and MINRES on the normal equation
ATAx = ATb. In Table 7.1, we list the vectors needed during each iteration (ex-
cluding storage for A and b). Recall that A is m× n and for least-squares systems m
may be considerably larger than n. Av denote the working storage for matrix-vector
products. Work represents the number of floating-point multiplications required at
each iteration.

Table 7.1
Storage and computational requirements for various least-squares methods

Storage Work
m n m n

LSMR Av, u x, v, h, h̄ 3 6
LSQR Av, u x, v, w 3 5
MINRES on ATAx = ATb Av1 x, v1, v2, w1, w2, w3 8

8. Regularized least squares. In this section, we extend LSMR to the regu-
larized least-squares problem:

min
∥∥∥∥(AλI

)
x−

(
b
0

)∥∥∥∥
2

. (8.1)

If Ā =
(
A
λI

)
and r̄k =

(
b
0

)
− Āxk, then

ĀT r̄k = AT rk − λ2xk

= Vk+1

(
β̄1e1 −

(
BT

kBk

β̄k+1e
T
k

)
yk − λ2

(
yk

0

))
= Vk+1

(
β̄1e1 −

(
BT

kBk + λ2I

β̄k+1e
T
k

)
yk

)
= Vk+1

(
β̄1e1 −

(
RT

kRk

β̄k+1e
T
k

)
yk

)
and the rest of the main algorithm follows the same as in the unregularized case. In
the last equality, Rk is defined by the QR factorization

Q2k+1

(
Bk

λI

)
=
(
Rk

0

)
,

where Q2k+1 has the form Q2k+1 = Qk,k+1Q̂k,2k+1 · · ·Q2,3Q̂2,k+3Q1,2Q̂1,k+2. The
effects of Q̂1,k+2 and Q1,2 are illustrated here:

Q̂1,k+2

α1

β2 α2

β3

λ
λ

 =

α̂1

β2 α2

β3

0
λ

 , Q1,2

α̂1

β2 α2

β3

λ

 =

ρ1 θ2

ᾱ2

β3

λ

 .

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 13

8.1. Effects on estimation of ‖r̄k‖. The introduction of regularization changes
the estimate of ‖r̄k‖ as follows:

r̄k =
(
b
0

)
−
(
A
λI

)
xk

=
(
u1

0

)
β1 −

(
AVk

λVk

)
yk

=
(
u1

0

)
β1 −

(
Uk+1Bk

λVk

)
yk

=
(
Uk+1

Vk

)(
e1β1 −

(
Bk

λI

)
yk

)
=
(
Uk+1

Vk

)(
e1β1 −QT

2k+1

(
Rk

0

)
yk

)
=
(
Uk+1

Vk

)(
e1β1 −QT

2k+1

(
tk
0

))
=
(
Uk+1

Vk

)
QT

2k+1

(
Q̃T

k

1

)(
b̃k −

(
t̃k
0

))

with b̃k =
(
Q̃k

1

)
Q2k+1e1β1, where we adopt the notation

b̃k =
(
β̃1 · · · β̃k−1 β̇k β̈k+1 β̌1 · · · β̌k

)T
.

Then we conclude

‖rk‖ = β̌2
1 + · · ·+ β̌2

k + (β̇k − τk)2 + β̈2
k+1.

The effect of regularization on the rotations is summarized as(
ĉk ŝk

−ŝk ĉk

)(
ᾱk β̈k

λ

)
=
(
α̂k β́k

β̌k

)
(
ck sk

−sk ck

)(
α̂k β́k

βk+1 αk+1

)
=
(
ρk θk+1 β̂k

ᾱk+1 β̈k+1

)
.

8.2. Pseudo-code for regularized LSMR. The following summarizes algo-
rithm LSMR for solving the regularized problem (8.1) with given λ. Our Matlab
implementation is based on these steps.

1. (Initialize)

β1u1 = b α1v1 = ATu1 ᾱ1 = α1 ζ̄1 = α1β1

ρ0 = 1 ρ̄0 = 1 c̄0 = 1 s̄0 = 0

β̈1 = β1 β̇0 = 0 ρ̇0 = 1 τ̃−1 = 0

θ̃0 = 0 ζ0 = 0 d0 = 0

h1 = v1 h̄0 = ~0 x0 = ~0

2. For k = 1, 2, 3, . . . repeat steps 3–12.

14 D. C.-L. FONG AND M. A. SAUNDERS

3. (Continue the bidiagonalization)

βk+1uk+1 = Avk − αkuk

αk+1vk+1 = ATuk+1 − βk+1vk

4. (Construct rotation Q̂k,2k+1)

α̂k =
(
ᾱ2

k + λ2
) 1

2

ck = ᾱk/α̂k sk = λ/α̂k

5. (Construct and apply rotation Qk,k+1)

ρk =
(
α̂2

k + β2
k+1

) 1
2

ck = α̂k/ρk sk = βk+1/ρk

θk+1 = skαk+1 ᾱk+1 = ckαk+1

6. (Construct and apply rotation Q̄k,k+1)

θ̄k = s̄k−1ρk ρ̄k =
(
(c̄k−1ρk)2 + θ2k+1

) 1
2

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k

ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k

7. (Update h, h̄, d, x)

h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζk/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

8. (Apply rotation Q̂k,2k+1, Qk,k+1)

β́k = ĉkβ̈k β̌k = −ŝkβ̈k

β̂k = ckβ́k β̈k+1 = −skβ́k

9. (If k ≥ 2, construct and apply rotation Q̃k−1,k)

ρ̃k−1 =
(
ρ̇2

k−1 + θ̄2k
) 1

2

c̃k−1 = ρ̇k−1/ρ̃k−1 s̃k−1 = θ̄k/ρ̃k−1

θ̃k = s̃k−1ρ̄k ρ̇k = c̃k−1ρ̄k

β̃k−1 = c̃k−1β̇k−1 + s̃k−1β̂k β̇k = −s̃k−1β̇k−1 + c̃k−1β̂k

10. (Update t̃k by forward substitution)

τ̃k−1 = (ζk−1 − θ̃k−1τ̃k−2)/ρ̃k−1

τ̇k = (ζk − θ̃k τ̃k−1)/ρ̇k

11. (Estimate ‖rk‖)

dk = dk−1 + β̌2
k

‖rk‖ =
(
dk + (β̇k − τ̇k)2 + β̈2

k+1

) 1
2

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 15

12. (Estimate ‖ATrk‖, ‖xk‖, ‖A‖, cond(A) and test for termination)

‖ATrk‖ = |ζ̄k+1| (section 4.1)

‖xk‖2 = ‖xk−1‖2 + ζ̂2
k (section 4.4)

Estimate σmax(Bk), σmin(Bk) and hence ‖A‖, cond(A) (section 4.3)
Terminate if any of the stopping criteria are satisfied (section 5.1)

9. Backward errors. For inconsistent LS problems, the optimal backward error
norm

µ(x) ≡ min
E
‖E‖ s.t. (A+ E)T (A+ E)x = (A+ E)T b

is known to be the smallest singular value of a certain m × (n + m) matrix C; see
Waldén et al. [18] and Higham [7, pp. 392–393]:

µ(x) = σmin(C), C ≡
[
A ‖r‖

‖x‖

(
I − rrT

‖r‖2

)]
.

This is generally considered too expensive to evaluate.

9.1. Approximate backward errors E1 and E2. In 1975, Stewart [15] dis-
cussed a particular backward error estimate that we will call E1. Let x̂ and r̂ = b−Ax̂
be the exact least-squares solution and residual. Stewart showed that any approxi-
mate solution x with residual r = b − Ax is the exact least-squares solution of the
perturbed problem min ‖b− (A+ E1)x‖, where E1 is the rank-one matrix

E1 =
exT

‖x‖2
, ‖E1‖ =

‖e‖
‖x‖

,

with e ≡ r̂ − r and ‖r‖2 = ‖r̂‖2 + ‖e‖2.
Soon after, Stewart [16] gave a further important result that can be used within

any least-squares solver. The approximate x and a vector r̃ are the exact least-squares
solution and residual of the perturbed problem min ‖b− (A+ E2)x‖, where

E2 = −rr
TA

‖r‖2
, ‖E2‖ =

‖ATr‖
‖r‖

, r̃ = b− (A+ E2)x.

This estimate is used in LSQR for each approximation xk and residual rk = b−Axk

because the current ‖rk‖ and ‖ATrk‖ can be accurately estimated at essentially no
cost. An added feature is that the associated r̃ = b − (A + E2)xk = rk because
E2xk = 0 in LSQR (assuming orthogonality of Vk). We can show the same for
LSMR, that (xk, rk) are theoretically exact for the perturbed problem (A+E2)x ≈ b.

We now show that ‖E2‖ is smaller for LSMR than for LSQR. As Figure 10.2
illustrates, this property gives LSMR a vital practical advantage for stopping early.

Theorem 9.1. ‖ELSMR
2 ‖ ≤ ‖ELSQR

2 ‖.
Proof. This follows directly from ‖ATrk‖LSMR ≤ ‖ATrk‖LSQR and ‖rk‖LSMR ≥

‖rk‖LSQR.

9.2. Approximate optimal backward error µ̃(x). Various authors have de-
rived expressions for µ̃(x), a quantity that has proved to be a very accurate approxi-
mation to µ(x), the optimal backward error for Ax ≈ b, when x is at least moderately

16 D. C.-L. FONG AND M. A. SAUNDERS

close to the exact least-squares solution. Grcar, Saunders, and Su [5] show that the
full-rank least-squares problem

K =

[
A
‖r‖
‖x‖I

]
, v =

[
r

0

]
, min

y
‖Ky − v‖ (9.1)

has a solution y such that

µ̃(x) = ‖Ky‖/‖x‖, (9.2)

and give the following Matlab script for computing c ≡ Ky and thence µ̃(x) using
sparse QR factors of K:

[m,n] = size(A); r = b - A*x;
normx = norm(x); eta = norm(r)/normx;
p = colamd(A);
K = [A(:,p); eta*speye(n)];
v = [r ; zeros(n,1)];
[c,R] = qr(K,v,0); mutilde = norm(c)/normx;

In our experiments we use this script to estimate the optimal backward error for each
approximate x generated by LSQR and LSMR.

10. Numerical results. For test examples, we have drawn from the University
of Florida Sparse Matrix Collection (Davis [3]). The LPnetlib group provides data
for 138 linear programming problems of widely varying origin, structure, and size.
The constraint matrix and objective function may be used to define a sparse least-
squares problem min ‖Ax − b‖. Each example was downloaded in Matlab format,
and a sparse matrix A and dense vector b were extracted from the data structure via
A = (Problem.A)’ and b = Problem.c.

Five examples had b = 0, and a further six gave ATb = 0. The remaining 127
problems had up to 243000 rows, 10000 columns, and 1.4M nonzeros in A. LSQR and
LSMR were run on each of those 127, generating sequences of approximate solutions
{xLSQR

k } and {xLSMR
k }. The iteration indices k are omitted below. The associated

residual vectors are denoted by r without ambiguity. x∗ is the solution to the least-
squares problem, or the minimum-norm solution to the least-squares problem if the
system is singular.

10.1. Observations.
1. ‖r‖LSQR is monotonic by design. ‖r‖LSMR seems to be monotonic (no counter-

examples were found) and nearly as small as ‖r‖LSQR for all iterations on
almost all problems. Figure 10.1 illustrates a typical example and a rare
case.

2. (Theorem) If ‖r‖ is monotonic, then ‖E1‖ is monotonic.

3. ‖ELSQR
1 ‖ is monotonic because ‖r‖ is montonic.

‖ELSMR
1 ‖ seems to be monotonic because ‖r‖ seems to be montonic.

4. ‖ELSQR
2 ‖ is not monotonic.

‖ELSMR
2 ‖ seems to be monotonic almost always. Figure 10.2 shows a typical

case. The sole exception for this observation is also shown.

5. ‖ELSQR
1 ‖ ≤ ‖ELSQR

2 ‖ often. Not so for LSMR. Some examples are shown
on Figure 10.3, along with µ̃(xk), the accurate estimate (9.1)–(9.2) of the
optimal backward error for each point xk.

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 17

0 50 100 150 200 250 300
600

700

800

900

1000

1100

1200

1300

1400

iteration count

||r
||

Name:lp greenbeb, Dim:5598x2392, nnz:31070, id=100

lsqr
minres
lsmr

0 10 20 30 40 50 60 70 80 90
1.975

1.98

1.985

1.99

1.995

2

iteration count

||r
||

Name:lp woodw, Dim:8418x1098, nnz:37487, id=104

lsqr
minres
lsmr

Fig. 10.1. For most iterations, ‖rLSMR‖ appears to be monotonic and nearly as small as

‖rLSQR‖. Left: A typical case (problem lp greenbeb). Right: A rare case (problem lp woodw).
LSMR’s residual norm is significantly larger than LSQR’s during early iterations.

0 200 400 600 800 1000 1200 1400 1600 1800
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

E
2)

Name:lp pilot ja, Dim:2267x940, nnz:14977, id=88

E2 LSQR
E2 LSMR

0 20 40 60 80 100 120
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

E
2)

Name:lp sc205, Dim:317x205, nnz:665, id=17

E2 LSQR
E2 LSMR

Fig. 10.2. For most iterations, ‖ELSMR
2 ‖ appears to be monotonic (but ‖ELSQR

2 ‖ is not).
Left: A typical case (problem lp pilot ja). Right: Sole exception (problem lp sc205) at iterations
54–67. The exception remains even if Uk and/or Vk are reorthogonalized.

6. ‖ELSMR
2 ‖ ≈ µ̃(xLSMR) almost always. Figure 10.4 shows a typical example

and a rare case. In all such “rare” cases, ‖ELSMR
1 ‖ ≈ µ̃(xLSMR) instead!

7. µ̃(xLSQR) is not always monotonic. µ̃(xLSMR) does seem to be monotonic.
See Figure 10.5 for examples.

8. µ̃(xLSMR) ≤ µ̃(xLSQR) almost always. See Figure 10.6 for examples.

9. The errors ‖xLSQR−x∗‖ and ‖xLSMR−x∗‖ are both monotonically decreasing.
‖xLSQR − x∗‖ ≤ ‖xLSMR − x∗‖. xLSQR and xLSMR both converge to the
minimum-norm solution for singular systems. See Figure 10.7 for examples.

10.2. Comparison with MINRES on the normal equation. Benbow [2]
gave numerical results comparing a generalized form of LSQR with application of
MINRES to the corresponding normal equation. The curves in Figure 3 of [2] are a
preview of the comparisons shown above (where LSMR serves as our more reliable
implementation of MINRES).

18 D. C.-L. FONG AND M. A. SAUNDERS

0 200 400 600 800 1000 1200 1400 1600 1800
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)

Name:lp cre a, Dim:7248x3516, nnz:18168, id=93

E1 LSQR
E2 LSQR
Optimal LSQR

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)

Name:lp pilot, Dim:4860x1441, nnz:44375, id=107

E1 LSQR
E2 LSQR
Optimal LSQR

0 200 400 600 800 1000 1200 1400 1600 1800
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)

Name:lp cre a, Dim:7248x3516, nnz:18168, id=93

E1 LSMR
E2 LSMR
Optimal LSMR

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)
Name:lp pilot, Dim:4860x1441, nnz:44375, id=107

E1 LSMR
E2 LSMR
Optimal LSMR

Fig. 10.3. ‖E1‖, ‖E2‖, and eµ(xk) for LSQR (top figures) and LSMR (bottom figures). Top

left: A typical case (problem lp cre a). ‖ELSQR
1 ‖ is close to the optimal backward error, but the

computable ‖ELSQR
2 ‖ is not. Top right: A rare case (problem lp pilot) in which ‖ELSQR

2 ‖ is close

to optimal. Bottom left: (problem lp cre a). ‖ELSMR
1 ‖ and ‖ELSMR

2 ‖ are often both close to the

optimal backward error. Bottom right: (problem lp pilot). ‖ELSMR
1 ‖ is far from optimal, but the

computable ‖ELSMR
2 ‖ is almost always close (too close to distinguish in the plot!).

0 50 100 150 200 250
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)

Name:lp ken 11, Dim:21349x14694, nnz:49058, id=108

E1 LSMR
E2 LSMR
Optimal LSMR

0 10 20 30 40 50 60 70 80 90
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

B
ac

kw
ar

d
E

rr
or

)

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=91

E1 LSMR
E2 LSMR
Optimal LSMR

Fig. 10.4. Again, ‖ELSMR
2 ‖ ≈ eµ(xLSMR) almost always (the computable backward error

estimate is essentially optimal). Left: A typical case (problem lp ken11). Right: A rare case

(problem lp ship12l). Here, ‖ELSMR
1 ‖ ≈ eµ(xLSMR)!

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 19

0 1000 2000 3000 4000 5000 6000 7000
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

||A
T
r|

|/|
|r

||)

Name:lp maros, Dim:1966x846, nnz:10137, id=81

Optimal LSQR
Optimal LSMR

0 200 400 600 800 1000 1200 1400 1600
−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

||A
T
r|

|/|
|r

||)

Name:lp cre c, Dim:6411x3068, nnz:15977, id=90

Optimal LSQR
Optimal LSMR

Fig. 10.5. eµ(xLSMR) seems to be always monotonic, but eµ(xLSQR) is usually not. Left: A
typical case for both LSQR and LSMR (problem lp maros). Right: A rare case for LSQR, typical
for LSMR (problem lp cre c).

0 100 200 300 400 500 600
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

||A
T
r|

|/|
|r

||)

Name:lp pilot, Dim:4860x1441, nnz:44375, id=107

Optimal LSQR
Optimal LSMR

0 20 40 60 80 100 120 140
−9

−8

−7

−6

−5

−4

−3

−2

−1

iteration count

lo
g(

||A
T
r|

|/|
|r

||)

Name:lp standgub, Dim:1383x361, nnz:3338, id=50

Optimal LSQR
Optimal LSMR

Fig. 10.6. eµ(xLSMR) ≤ eµ(xLSQR) almost always. Left: A typical case (problem lp pilot).
Right: A rare case (problem lp standgub).

10.3. Reorthogonalization. It is well known that in practice, certain Krylov-
subspace methods can take arbitrarily many iterations on some data because of loss of
orthogonality of the vectors involved. For the Golub-Kahan bidiagonalization, both
sets of vectors—that is, matrices Uk and Vk—may lose orthogonality as k increases.

As an experiment, we implemented the following options in LSMR:
1. No reorthogonalization.
2. Reorthogonalize Vk (that is, reorthogonalize vk with respect to Vk−1).
3. Reorthogonalize Uk (that is, reorthogonalize uk with respect to Uk−1).
4. Both 2 and 3.

Figure 10.8 shows an “easy” case in which all options converge equally well (con-
vergence before significant loss of orthogonality), and an extreme case in which re-
orthogonalization makes a large difference. Unexpectedly, options 2, 3, and 4 are
indistinguishable in the extreme case (and the same was observed for all cases).

We can explain this effect by noting that for both LSQR and LSMR, the relations
xk = Vkyk, rk = Uk+1pk+1, and ATrk = Vk+1qk+1 hold accurately in practice for
various vectors yk, pk+1, qk+1. Thus, on compatible or incompatible systems, both

20 D. C.-L. FONG AND M. A. SAUNDERS

0 10 20 30 40 50 60 70 80 90
−3

−2

−1

0

1

2

3

4

5

6

iteration count

lo
g|

|x
k −

 x
* |

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=91

lsqr
lsmr

0 10 20 30 40 50 60 70
−2

−1

0

1

2

3

4

5

6

7

iteration count

lo
g|

|x
k −

 x
* |

Name:lp pds 02, Dim:7716x2953, nnz:16571, id=92

lsqr
lsmr

Fig. 10.7. Both ‖xLSQR − x∗‖ and ‖xLSMR − x∗‖ are monotonically decreasing. ‖xLSQR −
x∗‖ ≤ ‖xLSMR − x∗‖. Left: A nonsingular least-squares system (problem lp ship12l). Right:

xLSQR and xLSMR both converge to the minimum-norm least-squares solution of a singular system
(problem lp pds).

0 10 20 30 40 50 60 70 80 90
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

E
2)

Name:lp ship12l, Dim:5533x1151, nnz:16276, id=91

NoOrtho
OrthoU
OrthoV
OrthoUV

0 2000 4000 6000 8000 10000 12000
−7

−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

E
2)

Name:lpi gran, Dim:2525x2658, nnz:20111, id=94

NoOrtho
OrthoU
OrthoV
OrthoUV

Fig. 10.8. LSMR with and without reorthogonalization of Vk and/or Uk. Left: An easy case
(problem lp ship12l). Right: A helpful case (problem lp gran).

methods must converge in a finite number of iterations if Vk and/or Uk are essentially
orthogonal.

The argument is nontrivial for incompatible systems when Uk is reorthogonalized
but not Vk. If the maximum of m iterations occurred, the next iteration would give
βm+1 ≈ 0 and hence rm+1 ≈ 0. If the true r is nonzero, this is a contradiction. Thus,
iterations must terminate earlier with some αk+1 ≈ 0, in which case ‖ATrk‖ ≈ 0 and
the problem has been solved (section 5).

Other authors have presented numerical results on this effect. For example,
on some randomly generated least-squares problems of increasing condition num-
ber, Hayami et al. [6] compare their BA-GMRES method with an implementation
of CGLS (equivalent to LSQR [11]) in which Vk is reorthogonalized, and find that
the methods require essentially the same number of iterations. The preconditioner
chosen for BA-GMRES made that method equivalent to GMRES on ATAx = ATb.
Thus, GMRES without reorthogonalization was seen to converge essentially as well

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 21

as CGLS or LSQR with reorthogonalization of Vk (option 2 above).
This coincides with the analysis by Paige et al. [9], who conclude that MGS-

GMRES does not need reorthogonalization of the Arnoldi vectors Vk.

10.4. Singular vectors. In [1], Barlow et al. describe a reliable procedure for
obtaining the factorization X = UBV T of a dense matrix X ∈ Rm×n, where B is
upper bidiagonal and U and V have orthonormal columns. The aim is to estimate
the singular values of X accurately from those of B. Supposing m > n, our results in
this section suggest that an effective alternative would be to apply the Golub-Kahan
process to X with a random starting vector b, reorthogonalizing the columns of Vk

and saving Uk without reorthogonalization. After n steps, the process will terminate
with XVn = Un+1Bn, with Vn orthonormal to machine precision ε and the columns
of Un+1 orthonormal to O(

√
ε). An SVD Bn = Ū S̄V̄ T gives

X = Un+1BnV
T
n = (Un+1Ū)S̄(VnV̄)T .

We anticipate that the left-most columns of Un+1Ū would provide accurate left sin-
gular vectors associated with the largest singular values of X.

10.5. Modifications to reorthogonalization. With full reorthogonalization,
the storage requirement grows linearly and the computational cost grows quadratically
with respect to the iteration number. To utilize (possibly limited) storage for speeding
up LSMR, we consider some of the standard variations. In view of the preceding
results, we focus on reorthogonalizing Vk but not Uk.

10.5.1. Restarting. A simple approach is to restart the algorithm every l steps,
as proposed for GMRES in [14]. To be precise, we set

rl = b−Axl, min ‖A∆x− rl‖, xl ← xl + ∆x

and repeat the same process until convergence. Our numerical test in Figure 10.9
shows that restarting LSMR even with full reorthogonalization (of Vk) may lead to
stagnation. In this example, convergence with restarting is much slower than LSMR
without reorthogonalization. Restarting does not seem a useful approach to lowering
computational and storage cost.

10.5.2. Local reorthogonalization. Here we reorthogonalize each new vk with
respect to the previous l vectors, where l is a specified parameter. An example is shown
in Figure 10.10.

With l = 5, 10, and 50 we see that partial speedup can be achieved with local
reorthogonalization of vk. This allows full utilization of available memory to obtain
faster convergence. It should be emphasized that the potential speedup achieved by
reorthogonalizing Vk depends strongly on the computational cost ofAv andATu. If the
matrix-vector products are expensive, reorthogonalization is preferable. Otherwise,
LSMR without reorthogonalization may converge faster in terms of total CPU time.

10.5.3. Partial reorthogonalization. Larsen [13] uses partial reorthogonaliza-
tion of both Vk and Uk within his PROPACK software for computing a set of singular
values and vectors for a sparse rectangular matrix A. Similar techniques could be
included within LSMR to reduce the iteration count at the expense of storage for a
limited number of earlier vectors uk and vk.

22 D. C.-L. FONG AND M. A. SAUNDERS

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−7

−6

−5

−4

−3

−2

−1

0

iteration count

B
ac

kw
ar

d
E

rr
or

Name:lp maros, Dim:1966x846, nnz:10137, id=81

NoOrtho
Restart5
Restart10
Restart50
NoRestart

0 2000 4000 6000 8000 10000 12000 14000 16000
−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

B
ac

kw
ar

d
E

rr
or

Name:lp cre c, Dim:6411x3068, nnz:15977, id=90

NoOrtho
Restart5
Restart10
Restart50
NoRestart

Fig. 10.9. LSMR with reorthogonalized Vk and restarting. NoOrtho represents LSMR with-
out reorthogonalization. Restart5, Restart10, and Restart50 represents reorthogonalized LSMR with
restarting every 5, 10 or 50 iterations. NoRestart represents reorthogonalized LSMR without restart-
ing. Left: Problem lp ship12l. Right: Problem lp gran.

0 50 100 150 200 250 300 350 400 450
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

iteration count

B
ac

kw
ar

d
E

rr
or

Name:lp fit1p, Dim:1677x627, nnz:9868, id=80

NoOrtho
Local5
Local10
Local50
NoLocal

0 200 400 600 800 1000 1200 1400
−6

−5

−4

−3

−2

−1

0

1

2

iteration count

B
ac

kw
ar

d
E

rr
or

Name:lp bnl2, Dim:4486x2324, nnz:14996, id=89

NoOrtho
Local5
Local10
Local50
NoLocal

Fig. 10.10. LSMR with local reorthogonalization of Vk. NoOrtho represents LSMR without
reorthogonalization. Local5, Local10, and Local50 represent LSMR with local reorthogonalization of
each vk with respect to the previous 5, 10, or 50 vectors. NoLocal represents LSMR with reorthogo-
nalized Vk without restarting. Left: Problem lp ship12l. Right: Problem lp gran.

11. Summary. We have presented LSMR, an iterative algorithm for least-squares
systems, along with details of its implementation and experimental results to suggest
that it improves noticeably upon the widely adopted LSQR algorithm.

As in LSQR, theoretical and practical stopping criteria are provided for solving
the problems Ax = b, min ‖Ax− b‖, and least-squares with Tikhonov regularization,
using estimates of ‖rk‖ and ‖ATrk‖ that are cheaply computable. For least-squares
problems, the Stewart backward error estimate ‖E2‖ (section 9.1) seems experimen-
tally to be very close to the optimal backward error at each iterate xLSMR

k . This is
likely to terminate LSMR significantly sooner than the same stopping rule in LSQR.

In experiments with reorthogonalization, we found that the Golub-Kahan process
retains high accuracy if the columns of either Vk or Uk are reorthogonalized. There is
no need to reorthogonalize both. In addition to speeding up reorthogonalized LSMR,
this discovery could be used to design more reliable algorithms for computing singular
values and vectors.

LSMR: AN ITERATIVE ALGORITHM FOR LEAST-SQUARES 23

To conclude, we make the following recommendations:
1. For least-squares problems, current users of LSQR are recommended to try

LSMR because it provides faster and smoother convergence of ‖ATrk‖ (since
it is equivalent to MINRES on the normal equation).

2. For least-squares problems that need to be stopped early (e.g., if only limited
computational time is available), LSMR is preferable to LSQR because the
backward error estimate at each iteration is always smaller (sometimes by
two orders of magnitude).

3. Should extra memory be available, LSMR with reorthogonalized Vk could be
used to reduce the number of iterations and possibly the computational time.

A Matlab implementation of LSMR is available from [8].

Acknowledgement. We are grateful to Chris Paige for his helpful comments on
reorthogonalization and other aspects of this work.

REFERENCES

[1] J. Barlow, N. Bosner, and Z. Drmac, A new stable bidiagonal reduction algorithm, Linear
Alg. Applics., 397 (2005), pp. 35–84.

[2] S. J. Benbow, Solving generalized least-squares problems with LSQR, SIAM J. Matrix Anal.
Appl., 21 (1999), pp. 166–177.

[3] T. A. Davis, University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/

research/sparse/matrices.
[4] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,

J. of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2
(1965), pp. 205–224.

[5] J. F. Grcar, M. A. Saunders, and Z. Su, Estimates of optimal backward perturbations for
linear least squares problems, Report SOL 2007-1, Department of Management Science and
Engineering, Stanford University, Stanford, CA, 2007. 21 pp.

[6] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J.
Matrix Anal. Appl., n (to appear), pp. n–n.

[7] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, sec-
ond ed., 2002.

[8] LSMR software for linear systems and least squares. http://www.stanford.edu/group/SOL/

software.html.
[9] C. C. Paige, M. Rozloznik, and Z. Strakos, Modified Gram-Schmidt (MGS), least squares,

and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 264–
284.

[10] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. on Numerical Analysis, 12 (1975), pp. 617–629.

[11] , LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans.
Math. Softw., 8 (1982), pp. 43–71.

[12] , Algorithm 583; LSQR: Sparse linear equations and least-squares problems, ACM Trans.
Math. Softw., 8 (1982), pp. 195–209.

[13] PROPACK software for SVD of sparse matrices. http://soi.stanford.edu/~rmunk/PROPACK/.
[14] Y. Saad and M. H. Schultz, GMRES: a generalized minimum residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. and Statist. Comput., 7 (1986), pp. 856–869.
[15] G. W. Stewart, An inverse perturbation theorem for the linear least squares problem,

SIGNUM Newsletter, 10 (1975), pp. 39–40.
[16] , Research, development and LINPACK, in Mathematical Software III, J. R. Rice, ed.,

Academic Press, New York, 1977, pp. 1–14.
[17] , The QLP approximation to the singular value decomposition, SIAM J. Sci. Comput.,

20 (1999), pp. 1336–1348.
[18] B. Waldén, R. Karlson, and J.-G. Sun, Optimal backward perturbation bounds for the linear

least squares problem, Numerical Linear Algebra with Applications, 2 (1995), pp. 271–286.

