
STABILIZED OPTIMIZATION VIA AN NCL ALGORITHM∗1

DING MA† , KENNETH JUDD‡ , DOMINIQUE ORBAN§ , AND MICHAEL SAUNDERS†2

Abstract. For optimization problems involving many nonlinear inequality constraints, we extend3
the bound-constrained (BCL) and linearly-constrained (LCL) augmented-Lagrangian approaches of4
LANCELOT and MINOS to an algorithm that solves a sequence of about 10 nonlinearly constrained5
augmented Lagrangian subproblems whose nonlinear constraints satisfy the LICQ everywhere. The6
NCL algorithm is implemented in AMPL and tested on large instances of a tax policy model that7
cannot be solved directly by the state-of-the-art solvers that we tested, because of singularity in the8
Jacobian of the active constraints. Algorithm NCL with IPOPT as subproblem solver proves to be9
effective, with IPOPT using second derivatives and successfully warm-starting each subproblem.10

1. Introduction. We consider constrained optimization problems of the form11

NCO minimize
x∈Rn

φ(x)

subject to c(x) ≥ 0, Ax ≥ b, ` ≤ x ≤ u,
12

where φ(x) is a smooth nonlinear function, c(x) ∈ Rm is a vector of smooth nonlinear13

functions, and Ax ≥ b is a placeholder for a set of linear inequality or equality14

constraints, with x lying between lower and upper bounds ` and u.15

In some applications where m� n, there may be more than n constraints that are16

essentially active at a solution. The constraints do not satisfy the linear independence17

constraint qualification (LICQ), and general-purpose solvers are likely to have difficulty18

converging. Some form of regularization is required. The stabilized SQP method19

of Gill et al. [9, 10] has been developed specifically for such problems. We achieve20

reliability more simply by adapting the augmented Lagrangian algorithm of the general-21

purpose optimization solver LANCELOT [4, 5, 15] to derive a sequence of regularized22

subproblems denoted in the next section by NCk.23

2. BCL, LCL, and NCL methods. The theory for the large-scale solver24

LANCELOT is best described in terms of the general optimization problem25

NECB minimize
x∈Rn

φ(x)

subject to c(x) = 0, ` ≤ x ≤ u
26

with nonlinear equality constraints and bounds. We let x∗ denote a local solution of27

NECB and (y∗, z∗) denote associated multipliers. LANCELOT treats NECB by solving28

a sequence of bound-constrained subproblems of the form29

BCk minimize
x

L(x, yk, ρk) = φ(x)− yTkc(x) + 1
2ρk‖c(x)‖2

subject to ` ≤ x ≤ u,
30

where yk is an estimate of the Lagrange multipliers y∗ for the equality constraints.31

This was called a bound-constrained Lagrangian (BCL) method by Friedlander and32

∗Version of January 23, 2018.
†Management Science and Engineering, Stanford University, Stanford, CA 94305-4026, USA

({dingma,saunders}@stanford.edu). Partially supported by NIH grant U01GM102098.
‡Hoover Institution, Stanford University, Stanford, CA 94305-6010, USA (judd@

hoover.stanford.edu)
§GERAD and Dept of Mathematics and Industrial Engineering, École Polytechnique, Montréal,

QC, Canada (dominique.orban@gerad.ca). Partially supported by an NSERC Discovery Grant.

1

This manuscript is for review purposes only.

2 AN NCL ALGORITHM

Saunders [8], in contrast to the LCL (linearly constrained Lagrangian) methods of33

Robinson [18] and MINOS [16], whose subproblems LCk contain bounds as in BCk34

and also linearizations of the equality constraints at the current point xk (including35

linear constraints).36

In order to treat NCO with a sequence of BCk subproblems, we convert the37

nonlinear inequality constraints to equalities to obtain38

NCO′ minimize
x, s

φ(x)

subject to c(x)− s = 0, Ax ≥ b, ` ≤ x ≤ u, s ≥ 0
39

with corresponding subproblems (including linear constraints)40

BCk
′ minimize

x, s
L(x, yk, ρk) = φ(x)− yTk(c(x)− s) + 1

2ρk‖c(x)− s‖2

subject to Ax ≥ b, ` ≤ x ≤ u, s ≥ 0.
41

We now introduce variables r = −(c(x) − s) into BCk
′ to obtain the nonlinearly42

constrained Lagrangian (NCL) subproblem43

NCk minimize
x, r

φ(x) + yTkr + 1
2ρk‖r‖

2

subject to c(x) + r ≥ 0, Ax ≥ b, ` ≤ x ≤ u,
44

in which r serves to make the nonlinear constraints independent. Assuming existence45

of finite multipliers and feasibility, for ρk > 0 and larger than a certain finite value,46

the NCL subproblems should cause yk to approach y∗ and most of the solution47

(x∗k, r
∗
k, y
∗
k, z
∗
k) of NCk to approach (x∗, y∗, z∗), with r∗k approaching zero.48

Problem NCk is analogous to Friedlander and Orban’s formulation for convex49

quadratic programs [7, Eq. (3.2)]. See also Arreckx and Orban [2], where the motivation50

is the same as here, achieving reliability when the nonlinear constraints don’t satisfy51

LICQ.52

Note that for general problems NECB, the BCL and LCL subproblems contain53

linear constraints (bounds only, or linearized constraints and bounds). Our NCL54

formulation retains nonlinear constraints in the NCk subproblems, but simplifies them55

by ensuring that they satisfy LICQ. On large problems, the additional variables r ∈ Rm56

in NCk may be detrimental to active-set solvers like MINOS or SNOPT [11] because57

they increase the number of degrees of freedom (superbasic variables). Fortunately58

they are easily accommodated by interior methods, as our numerical results show for59

IPOPT [19, 12]. We trust that the same will be true for KNITRO [3, 14]. These60

solvers are most effective when second derivatives are available, as they are for our61

AMPL model.62

2.1. The BCL algorithm. The LANCELOT BCL method is summarized in Al-63

gorithm BCL. Each subproblem BCk is solved with a specified optimality tolerance ωk,64

generating an iterate x∗k and the associated Lagrangian gradient z∗k ≡ ∇L(x∗k, yk, ρk).65

If ‖c(x∗k)‖ is sufficiently small, the iteration is regarded as “successful” and an update66

to yk is computed from x∗k. Otherwise, yk is not altered but ρk is increased.67

Key properties are that the subproblems are solved inexactly, the penalty parameter68

is increased only finitely often, and the multiplier estimates yk need not be assumed69

bounded. Under certain conditions, all iterations are eventually successful, the ρk’s70

remain constant, the iterates converge superlinearly, and the algorithm terminates in71

a finite number of iterations.72

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 3

Algorithm 1 BCL (Bound-Constrained Lagrangian Method for NECB)

1: procedure BCL(x0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k, z

∗
k) that solves BCk to within ωk.

9: if ‖c(x∗k)‖ ≤ max(η∗, ηk) then
10: y∗k ← yk − ρkc(x∗k)
11: xk ← x∗k, yk ← y∗k, zk ← z∗k update solution estimates
12: if (xk, yk, zk) solves NECB to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk
14: ηk+1 ← ηk/(1 + ρβk+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ραk+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk, y∗ ← yk, z∗ ← zk
21: end procedure

Algorithm 2 NCL (Nonlinearly Constrained Lagrangian Method for NCO)

1: procedure NCL(x0, r0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k, r

∗
k, y
∗
k, z
∗
k) that solves NCk to within ωk.

9: if ‖r∗k‖ ≤ max(η∗, ηk) then
10: y∗k ← yk + ρkr

∗
k

11: xk ← x∗k, rk ← r∗k, yk ← y∗k, zk ← z∗k update solution estimates
12: if (xk, yk, zk) solves NCO to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk
14: ηk+1 ← ηk/(1 + ρβk+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ραk+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk, r∗ ← rk, y∗ ← yk, z∗ ← zk
21: end procedure

Note that at step 8 of Algorithm BCL, the inexact minimization would typically73

use the initial guess (x∗k, z
∗
k). However, other initial points are possible. At step 12,74

we say that (xk, yk, zk) solves NECB to within ω∗ if the largest dual infeasibility is75

smaller than ω∗.76

This manuscript is for review purposes only.

4 AN NCL ALGORITHM

2.2. The NCL algorithm. To derive a stabilized algorithm for problem NCO,77

we modify Algorithm BCL by introducing r and replacing the subproblems BCk by78

NCk. The resulting method is summarized in Algorithm NCL. The update to yk79

becomes y∗k ← yk − ρk(c(x∗k)− s∗k) = yk + ρkr
∗
k, the value satisfied by an optimal y∗k80

for subproblem NCk. Step 8 of Algorithm NCL would typically use (x∗k, r
∗
k, y
∗
k, z
∗
k) as81

initial guess, and that is what we use in our implementation below.82

3. An application: optimal tax policy. Some challenging test cases arise83

from the tax policy models described in [13]. With x = (c, y), they take the form84

TAX maximize
c, y

∑
i λiU

i(ci, yi)

subject to U i(ci, yi)− U i(cj , yj) ≥ 0 for all i, j
λT (y − c) ≥ 0

c, y ≥ 0,

85

where ci and yi are the consumption and income of taxpayer i, and λ is a vector of86

positive weights. The utility functions U i(ci, yi) are each of the form87

U(c, y) =
(c− α)1−1/γ

1− 1/γ
− ψ (y/w)1/η+1

1/η + 1
,88

where w is the wage rate and α, γ, ψ and η are taxpayer heterogeneities. More89

precisely, the utility functions are of the form90

U i,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) =
(cp,q,r,s,t − αk)1−1/γh

1− 1/γh
− ψg

(yp,q,r,s,t/wi)
1/ηj+1

1/ηj + 1
,91

92

where (i, j, k, g, h) and (p, q, r, s, t) run over na wage types, nb elasticities of labor93

supply, nc basic need types, nd levels of distaste for work, and ne elasticities of demand94

for consumption, with na, nb, nc, nd, ne determining the size of the problem, namely95

m = T (T−1) nonlinear constraints, n = 2T variables, with T := na×nb×nc×nd×ne.96

Table 1 summarizes results for a 4D example (ne = 1 and γ1 = 1). The first term97

of U(c, y) becomes log(c− α), the limit as γ → 1. Problem NCO and Algorithm NCL98

were formulated in the AMPL modeling language [6]. The solvers SNOPT [11] and99

IPOPT [19] were unable to solve NCO itself, but Algorithm NCL was successful with100

IPOPT solving the subproblems NCk. We use a default configuration of IPOPT with101

MUMPS [1] as symmetric indefinite solver to compute search directions. We set the102

optimality tolerance for IPOPT to ωk = 10−6 throughout, and specified warm starts103

for k ≥ 2 using options warm start init point=yes and mu init=1e-4. These options104

greatly improved the performance of IPOPT on each subproblem compared to cold105

starts, for which mu init=0.1. It is helpful that only the objective function of NCk106

changes with k.107

For this example, problem NCO has m = 39006 nonlinear inequality constraints108

and one linear constraint in n = 395 variables x = (c, y), and nonnegativity bounds.109

Subproblem NCk has 39007 constraints and 39402 variables when r is included.110

Fortunately r does not affect the complexity of each IPOPT iteration, but greatly111

improves stability. In contrast, active-set methods like MINOS and SNOPT are very112

inefficient on the NCk subproblems because the large number of inequality constraints113

leads to thousands of minor iterations, and the presence of r (with no bounds) leads to114

thousands of superbasic variables. About 3.2n constraints were within 10−6 of being115

active.116

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 5

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time

1 102 10−2 3.1e-03 -2.1478532e+01 125 42.8
2 102 10−3 1.3e-03 -2.1277587e+01 18 6.5
3 103 10−3 6.6e-04 -2.1177152e+01 27 9.1
4 103 10−4 5.5e-04 -2.1110210e+01 31 10.8
5 104 10−4 2.9e-04 -2.1066664e+01 57 24.3
6 105 10−4 6.5e-05 -2.1027152e+01 75 26.8
7 105 10−5 5.2e-05 -2.1018896e+01 130 60.9
8 106 10−5 9.3e-06 -2.1015295e+01 159 81.8
9 106 10−6 2.0e-06 -2.1014808e+01 139 70.0
10 107 10−6 2.1e-07 -2.1014800e+01 177 97.6

Table 1
NCL results on a 4D example with na, nb, nc, nd = 11, 3, 3, 2, giving m = 39006, n = 395. Itns

refers to IPOPT’s primal-dual interior point method, and Time is seconds on an Apple iMac with
2.93 GHz Intel Core i7.

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time

1 102 10−2 7.0e-03 -4.2038075e+02 95 41.1
2 102 10−3 4.1e-03 -4.2002898e+02 17 7.2
3 103 10−3 1.3e-03 -4.1986069e+02 20 8.1
4 104 10−3 4.4e-04 -4.1972958e+02 48 25.0
5 104 10−4 2.2e-04 -4.1968646e+02 43 20.5
6 105 10−4 9.8e-05 -4.1967560e+02 64 32.9
7 105 10−5 6.6e-05 -4.1967177e+02 57 26.8
8 106 10−5 4.2e-06 -4.1967150e+02 87 46.2
9 106 10−6 9.4e-07 -4.1967138e+02 96 53.6

Table 2
NCL results on a 5D example with na, nb, nc, nd, ne = 5, 3, 3, 2, 2, giving m = 32220, n = 360.

Table 2 summarizes results for a 5D example. The NCk subproblems have117

m = 32220 nonlinear constraints and n = 360 variables, leading to 32581 variables118

including r. Again the options warm start init point=yes and mu init=1e-4 for k ≥ 2119

led to good performance by IPOPT on each subproblem. About 3n constraints were120

within 10−6 of being active.121

For much larger problems of this type, we found that it was helpful to reduce122

mu init more often, as illustrated in Table 3. The NCk subproblems here have123

m = 570780 nonlinear constraints and n = 1512 variables, leading to 572292 variables124

including r. Note that the number of NCL iterations is stable (k ≤ 10), and IPOPT125

performs well on each subproblem with decreasing mu init. This time about 6.6n126

constraints were within 10−6 of being active.127

Note that the LANCELOT approach allows early subproblems to be solved less128

accurately. It may save time to set ωk = ηk (say) rather than ωk = ω∗ throughout.129

k ρk ηk ‖r∗k‖∞ φ(x∗k) mu init Itns Time

1 102 10−2 5.1e-03 -1.7656816e+03 10−1 825 7763.3
2 102 10−3 2.4e-03 -1.7648480e+03 10−4 66 472.8
3 103 10−3 1.3e-03 -1.7644006e+03 10−4 106 771.3
4 104 10−3 3.8e-04 -1.7639491e+03 10−5 132 1347.0
5 104 10−4 3.2e-04 -1.7637742e+03 10−5 229 2450.9
6 105 10−4 8.6e-05 -1.7636804e+03 10−6 104 1096.9
7 105 10−5 4.9e-05 -1.7636469e+03 10−6 143 1633.4
8 106 10−5 1.5e-05 -1.7636252e+03 10−7 71 786.1
9 107 10−5 2.8e-06 -1.7636196e+03 10−7 67 725.7
10 107 10−6 5.1e-07 -1.7636187e+03 10−8 18 171.0

Table 3
NCL results on a 5D example with na, nb, nc, ne, ne = 21, 3, 3, 2, 2, giving m = 570780, n = 1512.

This manuscript is for review purposes only.

6 AN NCL ALGORITHM

4. AMPL models, data, and scripts. Algorithm NCL has been implemented130

in the AMPL modeling language [6] and tested on problem TAX. The following sections131

list each relevant file. The files are available from [17].132

4.1. Tax model. File pTax5Dncl.mod codes subproblem NCk for problem TAX133

with five parameters w, η, α, ψ, γ, using µ := 1/η. Note that for U(c, y) in the134

objective and constraint functions, the first term (c− α)1−1/γ/(1− 1/γ) is replaced135

by a piecewise-smooth function that is defined for all values of c and α (see [13]).136

Primal regularization 1
2δ‖(c, y)‖2 with δ = 10−8 is added to the objective function137

to promote uniqueness of the minimizer. The vector r is called R to avoid a clash with138

subscript r.139

pTax5Dncl.mod140
An NLP to solve a taxation problem with 5-dimensional types of tax payers.141
#142
29 Mar 2005: Original AMPL coding for 2-dimensional types by K. Judd and C.-L. Su.143
20 Sep 2016: Revised by D. Ma and M. A. Saunders.144
08 Nov 2016: 3D version created.145
08 Dec 2016: 4D version created.146
10 Mar 2017: Piece-wise smooth utility function created.147
12 Nov 2017: pTax5Dncl.mod derived from pTax5D.mod.148
08 Dec 2017: pTax5Dncl files added to multiscale website.149

150
Define parameters for agents (taxpayers)151
param na; # number of types in wage152
param nb; # number of types in eta153
param nc; # number of types in alpha154
param nd; # number of types in psi155
param ne; # number of types in gamma156
set A := 1..na; # set of wages157
set B := 1..nb; # set of eta158
set C := 1..nc; # set of alpha159
set D := 1..nd; # set of psi160
set E := 1..ne; # set of gamma161
set T = {A,B,C,D,E}; # set of agents162

163
Define wages for agents (taxpayers)164
param wmin; # minimum wage level165
param wmax; # maximum wage level166
param w {A}; # i, wage vector167
param mu{B}; # j, mu = 1/eta# mu vector168
param mu1{B}; # mu1[j] = mu[j] + 1169
param alpha{C}; # k, ak vector for utility170
param psi{D}; # g171
param gamma{E}; # h172
param lambda{A,B,C,D,E}; # distribution density173
param epsilon;174
param primreg default 1e-8; # Small primal regularization175

176
var c{(i,j,k,g,h) in T} >= 0.1; # consumption for tax payer (i,j,k,g,h)177
var y{(i,j,k,g,h) in T} >= 0.1; # income for tax payer (i,j,k,g,h)178
var R{(i,j,k,g,h) in T, (p,q,r,s,t) in T:179

!(i=p and j=q and k=r and g=s and h=t)} >= -1e+20, <= 1e+20;180
181

param kmax default 20; # limit on NCL itns182
param rhok default 1e+2; # augmented Lagrangian penalty parameter183
param rhofac default 10.0; # increase factor184
param rhomax default 1e+8; # biggest rhok185
param etak default 1e-2; # opttol for augmented Lagrangian loop186
param etafac default 0.1; # reduction factor for opttol187
param etamin default 1e-8; # smallest etak188

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 7

param rmax default 0; # max r (for printing)189
param rmin default 0; # min r (for printing)190
param rnorm default 0; # ||r||_inf191
param rtol default 1e-6; # quit if biggest |r_i| <= rtol192

193
param nT default 1; # nT = na*nb*nc*nd*ne194
param m default 1; # nT*(nT-1) = no. of nonlinear constraints195
param n default 1; # 2*nT = no. of nonlinear variables196

197
param ck{(i,j,k,g,h) in T} default 0; # current variable c198
param yk{(i,j,k,g,h) in T} default 0; # current variable y199
param rk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current variable r = - (c(x) - s)200

!(i=p and j=q and k=r and g=s and h=t)} default 0;201
param dk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current dual variables (y_k)202

!(i=p and j=q and k=r and g=s and h=t)} default 0;203
204

minimize f:205
sum{(i,j,k,g,h) in T}206
(207

(if c[i,j,k,g,h] - alpha[k] >= epsilon then208
- lambda[i,j,k,g,h] *209

((c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])210
- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])211

else212
- lambda[i,j,k,g,h] *213

(- 0.5/gamma[h] * epsilon^(-1/gamma[h]-1) * (c[i,j,k,g,h] - alpha[k])^2214
+ (1+1/gamma[h])* epsilon^(-1/gamma[h]) * (c[i,j,k,g,h] - alpha[k])215
+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h]) * epsilon^(1-1/gamma[h])216

- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])217
)218

+ 0.5 * primreg * (c[i,j,k,g,h]^2 + y[i,j,k,g,h]^2)219
)220

+ sum{(i,j,k,g,h) in T, (p,q,r,s,t) in T: !(i=p and j=q and k=r and g=s and h=t)}221
(dk[i,j,k,g,h,p,q,r,s,t] * R[i,j,k,g,h,p,q,r,s,t]222

+ 0.5 * rhok * R[i,j,k,g,h,p,q,r,s,t]^2);223
224

subject to225
226

Incentive{(i,j,k,g,h) in T, (p,q,r,s,t) in T:227
!(i=p and j=q and k=r and g=s and h=t)}:228

(if c[i,j,k,g,h] - alpha[k] >= epsilon then229
(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])230
- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]231

else232
- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])^2233
+ (1+1/gamma[h])*epsilon^(-1/gamma[h])*(c[i,j,k,g,h] - alpha[k])234
+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])235
- psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]236

)237
- (if c[p,q,r,s,t] - alpha[k] >= epsilon then238

(c[p,q,r,s,t] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])239
- psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]240

else241
- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[p,q,r,s,t] - alpha[k])^2242
+ (1+1/gamma[h])*epsilon^(-1/gamma[h])*(c[p,q,r,s,t] - alpha[k])243
+ (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])244
- psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]245

)246
+ R[i,j,k,g,h,p,q,r,s,t] >= 0;247

248
Technology:249

sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;250

This manuscript is for review purposes only.

8 AN NCL ALGORITHM

4.2. Tax model data. File pTax5Dncl.dat provides data for a specific problem.251

pTax5Dncl.dat252
08 Dec 2017: pTax5Dncl files added to multiscale website.253

254
data;255

256
let na := 5;257
let nb := 3;258
let nc := 3;259
let nd := 2;260
let ne := 2;261

262
Set up wage dimension intervals263
let wmin := 2;264
let wmax := 4;265
let {i in A} w[i] := wmin + ((wmax-wmin)/(na-1))*(i-1);266

267
data;268

269
param mu :=270

1 0.5271
2 1272
3 2 ;273

274
Define mu1275
let {j in B} mu1[j] := mu[j] + 1;276

277
data;278

279
param alpha :=280

1 0281
2 1282
3 1.5;283

284
param psi :=285

1 1286
2 1.5;287

288
param gamma :=289

1 2290
2 3;291

292
Set up 5 dimensional distribution293
let {(i,j,k,g,h) in T} lambda[i,j,k,g,h] := 1;294

295
Choose a reasonable epsilon296
let epsilon := 0.1;297

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 9

4.3. Initial values. File pTax5Dinitial.run solves a simplified model to com-298

pute starting values for Algorithm NCL. The nonlinear inequality constraints are299

removed, and y = c is enforced. This model solves easily with MINOS or SNOPT on300

all cases tried. Solution values are output to file p5Dinitial.dat.301

pTax5Dinitial.run302
08 Dec 2017: pTax5Dncl files added to multiscale website.303

304
Define parameters for agents (taxpayers)305
param na := 5; # number of types in wage306
param nb := 3; # number of types in eta307
param nc := 3; # number of types in alpha308
param nd := 2; # number of types in psi309
param ne := 2; # number of types in gamma310
set A := 1..na; # set of wages311
set B := 1..nb; # set of eta312
set C := 1..nc; # set of alpha313
set D := 1..nd; # set of psi314
set E := 1..ne; # set of gamma315
set T = {A,B,C,D,E}; # set of agents316

317
Define wages for agents (taxpayers)318
param wmin := 2; # minimum wage level319
param wmax := 4; # maximum wage level320
param w {i in A} := wmin + ((wmax-wmin)/(na-1))*(i-1); # wage vector321

322
Choose a reasonable epsilon323
param epsilon := 0.1;324

325
mu vector326
param mu {B}; # mu = 1/eta327
param mu1{B}; # mu1[j] = mu[j] + 1328
param alpha {C};329
param gamma {E};330
param psi {D};331

332
var c {(i,j,k,g,h) in T} >= 0.1;333
var y {(i,j,k,g,h) in T} >= 0.1;334

335
maximize f: sum{(i,j,k,g,h) in T}336

if c[i,j,k,g,h] - alpha[k] >= epsilon then337
(c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h]) / (1-1/gamma[h])338
- psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]339

else340
- 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)*(c[i,j,k,g,h] - alpha[k])^2341
+ (1+1/gamma[h])*epsilon^(-1/gamma[h]) *(c[i,j,k,g,h] - alpha[k])342
+ (1/(1-1/gamma[h]) -1 - 0.5/gamma[h])*epsilon^(1-1/gamma[h])343
- psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j];344

345
subject to346

Budget {(i,j,k,g,h) in T}: y[i,j,k,g,h] - c[i,j,k,g,h] = 0;347
348

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := i+1;349
let {(i,j,k,g,h) in T} c[i,j,k,g,h] := i+1;350

351
data;352

353
param mu :=354

1 0.5355
2 1356
3 2 ;357

358

This manuscript is for review purposes only.

10 AN NCL ALGORITHM

Define mu1359
let {j in B} mu1[j] := mu[j] + 1;360

361
data;362

363
param alpha :=364

1 0365
2 1366
3 1.5;367

368
param psi :=369

1 1370
2 1.5;371

372
param gamma :=373

1 2374
2 3;375

376
option solver minos;377
option solver snopt;378
option show_stats 1;379

380
option minos_options ’ \381

summary_file=6 \382
print_file=9 \383
scale=no \384
print_level=0 \385

*minor_iterations=200 \386
major_iterations=2000\387
iterations=50000 \388
optimality_tol=1e-7 \389

*penalty=100.0 \390
completion=full \391

*major_damp=0.1 \392
superbasics_limit=3000\393
solution=yes \394

*verify_level=3 \395
’;396

397
option snopt_options ’ \398

summary_file=6 \399
print_file=9 \400
scale=no \401
print_level=0 \402
major_iterations=2000\403
iterations=50000 \404
optimality_tol=1e-7 \405

*penalty=100.0 \406
superbasics_limit=3000\407
solution=yes \408

*verify_level=3 \409
’;410

411
412

display na,nb,nc,nd,ne;413
solve;414
display na,nb,nc,nd,ne;415
display y,c >p5Dinitial.dat;416
close p5Dinitial.dat;417

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 11

4.4. NCL implementation. File pTax5Dnclipopt.run uses files418

pTax5Dinitial.run

pTax5Dncl.mod

pTax5Dncl.dat

pTax5Dinitial.dat

419

to implement Algorithm NCL. Subproblems NCk are solved in a loop until ‖r∗k‖∞ ≤420

rtol = 1e-6, or ηk has been reduced to parameter etamin = 1e-8, or ρk has been421

increased to parameter rhomax = 1e+8. The loop variable k is called K to avoid a422

clash with subscript k in the model file.423

Optimality tolerance ωk = 10−6 is used throughout to ensure that the solution of424

the final subproblem NCk will be close to a solution of the original problem if ‖r∗k‖∞425

is small enough for the final k (‖r∗k‖∞ ≤ rtol = 1e-6).426

IPOPT is used to solve each subproblem NCk, with runtime options set to427

implement increasingly warm starts.428

pTax5Dnclipopt.run429
08 Dec 2017: pTax5Dncl files added to multiscale website.430

431
reset; model pTax5Dinitial.run;432
reset; model pTax5Dncl.mod;433
data pTax5Dncl.dat;434
data; var include p5Dinitial.dat;435

436
model;437
option solver ipopt;438
option show_stats 1;439

440
option ipopt_options ’\441

dual_inf_tol=1e-6 \442
max_iter=5000 \443

’;444
option opt2 $ipopt_options ’ warm_start_init_point=yes’;445

446
NCL method.447
kmax, rhok, rhofac, rhomax, etak, etafac, etamin, rtol448
are defined in the .mod file.449

450
printf "NCLipopt log for pTax5D\n" > 5DNCLipopt.log;451
display na, nb, nc, nd, ne, primreg > 5DNCLipopt.log;452
printf " k rhok etak rnorm Obj\n" > 5DNCLipopt.log;453

454
for {K in 1..kmax}455
{ display na, nb, nc, nd, ne, primreg, K, kmax, rhok, etak;456

if K == 2 then {option ipopt_options $opt2 ’ mu_init=1e-4’};457
if K == 4 then {option ipopt_options $opt2 ’ mu_init=1e-5’};458
if K == 6 then {option ipopt_options $opt2 ’ mu_init=1e-6’};459
if K == 8 then {option ipopt_options $opt2 ’ mu_init=1e-7’};460
if K ==10 then {option ipopt_options $opt2 ’ mu_init=1e-8’};461
display $ipopt_options;462
solve;463

464
let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:465

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);466
let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t) in T:467

!(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);468
display na, nb, nc, nd, ne, primreg, K, rhok, etak, kmax;469
display K, kmax, rmax, rmin;470
let rnorm := max(abs(rmax), abs(rmin)); # ||r||_inf471

472

This manuscript is for review purposes only.

12 AN NCL ALGORITHM

printf "%4i %9.1e %9.1e %9.1e %15.7e\n", K, rhok, etak, rnorm, f >> 5DNCLipopt.log;473
close 5DNCLipopt.log;474

475
if rnorm <= rtol then476
{ printf "Stopping: rnorm is small\n"; display K, rnorm; break; }477

478
if rnorm <= etak then # update dual estimate dk; save new solution479
{let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:480

!(i=p and j=q and k=r and g=s and h=t)}481
dk[i,j,k,g,h,p,q,r,s,t] :=482
dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];483

let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];484
let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];485
display K, etak;486
if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }487
let etak := max(etak*etafac, etamin);488
display etak;489

}490
else # keep previous solution; increase rhok491
{ let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];492

let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];493
display K, rhok;494
if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }495
let rhok := min(rhok*rhofac, rhomax);496
display rhok;497

}498
}499

500
display c,y; display na, nb, nc, nd, ne, primreg, rhok, etak, rnorm;501

502
Count how many constraint are close to being active.503
data;504
let nT := na*nb*nc*nd*ne; let m := nT*(nT-1); let n := 2*nT;505
let etak := 1.0001e-10;506
printf "\n m = %8i\n n = %8i\n", m, n >> 5DNCLipopt.log;507
printf "\n Constraints within tol of being active\n\n" >> 5DNCLipopt.log;508
printf " tol count count/n\n" >> 5DNCLipopt.log;509

510
for {K in 1..10}511
{ let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:512

!(i=p and j=q and k=r and g=s and h=t)513
and Incentive[i,j,k,g,h,p,q,r,s,t].slack <= etak};514

printf "%9.1e %8i %8.1f\n", etak, kmax, kmax/n >> 5DNCLipopt.log;515
let etak := etak*10;516

}517
printf "Created 5DNCLipopt.log\n";518

5. Conclusions. This work has been illuminating in several ways as we sought519

to improve our ability to solve examples of problem TAX.520

• Small examples of the tax model solve efficiently with MINOS and SNOPT,521

but eventually fail to converge as the problem size increases.522

• IPOPT also solves small examples efficiently, but eventually starts requesting523

additional memory for the MUMPS sparse linear solver. The solver may freeze,524

or the iterations may diverge.525

• The NCk subproblems are not suitable for MINOS or SNOPT because of526

the large number of variables (x, r) and the resulting number of superbasic527

variables (although warm-starts are natural).528

• It is often said that interior methods cannot be warm-started. Nevertheless,529

IPOPT has several runtime options that have proved to be extremely helpful530

This manuscript is for review purposes only.

D. MA, K. L. JUDD, D. ORBAN, AND M. A. SAUNDERS 13

for implementing Algorithm NCL. For the results obtained here, it has been531

sufficient to say that warm starts are wanted for k > 1, and that the IPOPT532

barrier parameter should be initialized at decreasing values for later k (where533

only the objective of subproblem NCk changes with k).534

• The numerical examples of section 3 had 3n, 3n and 6.6n constraints essentially535

active at the solution, yet were solved successfully. They suggest that the536

NCL approach with an interior method as subproblem solver can overcome537

LICQ difficulties on problems that could not be solved directly.538

Acknowledgments. We are extremely grateful to the developers of AMPL and539

IPOPT for making the development and evaluation of Algorithm NCL possible. We540

are especially grateful to Mehiddin Al-Baali and other organizers of the NAO-IV541

conference Numerical Analysis and Optimization at Sultan Qaboos University, Muscat,542

Oman, which brought the authors and AMPL developers together in January 2017.543

REFERENCES544

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous545
multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis546
and Applications, 23 (2001), pp. 15–41, doi:10.1137/S0895479899358194.547

[2] S. Arreckx and D. Orban, A regularized factorization-free method for equality-constrained548
optimization, Technical Report GERAD G-2016-65, GERAD, Montréal, QC, Canada, 2016,549
doi:10.13140/RG.2.2.20368.00007.550

[3] R. H. Byrd, J. Nocedal, and R. A. Waltz, Knitro: An integrated package for nonlinear551
optimization, in Large-Scale Nonlinear Optimization, G. Di Pillo and M. Roma, eds.,552
Springer US, Boston, MA, 2006, pp. 35–59, doi:10.1007/0-387-30065-1 4.553

[4] A. R. Conn, N. I. M. Gould, and P. Toint, A globally convergent augmented Lagrangian554
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.555
Anal., 28 (1991), pp. 545–572, doi:10.1137/0728030.556

[5] A. R. Conn, N. I. M. Gould, and P. Toint, LANCELOT: A Fortran Package for Large-557
scale Nonlinear Optimization (Release A), Lecture Notes in Computation Mathematics 17,558
Springer Verlag, Berlin, Heidelberg, New York, London, Paris and Tokyo, 1992.559

[6] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical560
Programming, Brooks/Cole, Pacific Grove, second ed., 2002.561

[7] M. P. Friedlander and D. Orban, A primal–dual regularized interior-point method for convex562
quadratic programs, Math. Prog. Comp., 4 (2012), pp. 71–107, doi:10.1007/s12532-012-0035-563
2.564

[8] M. P. Friedlander and M. A. Saunders, A globally convergent linearly constrained La-565
grangian method for nonlinear optimization, SIAM J. Optim., 15 (2005), pp. 863–897,566
doi:10.1137/S1052623402419789.567

[9] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized SQP method: global convergence,568
IMA J. Numer. Anal., 37 (2017), pp. 407–443.569

[10] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized SQP method: superlinear570
convergence, Math. Program., Ser. A, 163 (2017), pp. 369–410.571

[11] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale con-572
strained optimization, SIAM Review, 47 (2005), pp. 99–131, doi:10.1137/S0036144504446096.573
SIGEST article.574

[12] IPOPT open source NLP solver. https://projects.coin-or.org/Ipopt.575
[13] K. L. Judd, D. Ma, M. A. Saunders, and C.-L. Su, Optimal income taxation with mul-576

tidimensional taxpayer types. Working paper, Hoover Institution, Stanford University,577
2017.578

[14] KNITRO optimization software. https://www.artelys.com/tools/knitro doc/2 userGuide.html.579
[15] LANCELOT optimization software. http://www.numerical.rl.ac.uk/lancelot/blurb.html.580
[16] B. A. Murtagh and M. A. Saunders, A projected Lagrangian algorithm and its implementation581

for sparse nonlinear constraints, Math. Program. Study, 16 (1982), pp. 84–117.582
[17] NCL. http://stanford.edu/group/SOL/multiscale/models/NCL/.583
[18] S. M. Robinson, A quadratically-convergent algorithm for general nonlinear programming584

problems, Math. Program., 3 (1972), pp. 145–156, doi:10.1007/BF01584986.585
[19] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior point filter586

line search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006),587
doi:10.1007/s10107-004-0559-y.588

This manuscript is for review purposes only.

http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.13140/RG.2.2.20368.00007
http://dx.doi.org/10.1007/0-387-30065-1_4
http://dx.doi.org/10.1137/0728030
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1137/S1052623402419789
http://dx.doi.org/10.1137/S0036144504446096
https://projects.coin-or.org/Ipopt
https://www.artelys.com/tools/knitro_doc/2_userGuide.html
http://www.numerical.rl.ac.uk/lancelot/blurb.html
http://stanford.edu/group/SOL/multiscale/models/NCL/
http://dx.doi.org/10.1007/BF01584986
http://dx.doi.org/10.1007/s10107-004-0559-y

	Introduction
	BCL, LCL, and NCL methods
	The BCL algorithm
	The NCL algorithm

	An application: optimal tax policy
	AMPL models, data, and scripts
	Tax model
	Tax model data
	Initial values
	NCL implementation

	Conclusions
	References

