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ABSTRACT

This report forms the user’s guide for Version 1.0 of LSSOL, a set of Fortran 77 subroutines for
linearly constrained linear least-squares and convex quadratic programming. The method of LSSOL
1s of the two-phase, active-set type, and is related to the method used in the package SOL/QPSOL
{Gill et al., 1984b). Two main features of LSSOL are its exploitation of convexity and treatment
of singularity.

LSSOL may also be used for linear programming, and to find a fensible point with respect to a
set of linear inequality constraints. LSSOL Lreats ull matrices as dense, and hence is not intended
for large sparse problems.
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1. PURPOSE 1

1. PURPOSE

LSSOL is u collection of Fortran 77 subroutines designed to solve a class of quadratic programming
problems that are assumed to be stated in the following general for:

subject to £ < {t;r} < u, \

{LCLS minimize F'(x)
zcR"

where C' is m; % n (m, may be zero} and F(z) is one of the following objective functions:

FP: None (find a feasible point for the constraints)
LP: elz

QP1: seTAz A symmetric and positive semi-definite,
QP2: Tz +- %a:TAa: A symmetric and positive semi-definite,
yP3: PERY ST A m x n upper-trapezoidal,

QP4: eTr + %rTATA:I: A m x n upper-trapezoidal,

Ls1: b - Az|? Amxm,

Ls2: Tz + 3|lb — Agyf? Amxmn,

L53: g b — Ax)? A % noupper-trapezoidal,

L34: Tz + 1|0 — Ax|? A m x n upper-trapezoidal,

with ¢ an n-vector and b ar m-vector. The specific objective function to be minimized is sclected
using the optional parameter Problem Type (sce Section 4.2). In all that follows, problems of
type “LP”, “QP" and “LS8" will be referred to as linear programming, guadratic prograinming and
constrained least-squares problems respectively.

The constraints involving C will be called the general constraints. Nete that upper and lower
bounds are specified for all the variables and for all the general constraints. An equality constraint
is specified by setting £; — u;. 1f certain bounds are not present, the associated elements of £ or u
can be set to special values that will be treated as —~o0 or -+oc, {See the description of the optional
parameter Infinite Bound in Section 4.2.)

The constant second-derivative matrix of F(z} is defined as H, the Ilessian matrix. In the
LP case, H — 0. In QP cases 1 and 2, H = A; and in QP cases 3 and 4, == ATA. In all LS
cases, I — ATA. Problems of type QP3 or QP4 with A not in trapezoidal forin should be solved
as type LS1 or LS2 with b = ). When considering problems of type LS, we shall refer to A as the
least-squares matrix and to b as the vector of observations.

The user must snpply an initial estimate of the solution. If the Hessian matrix is non-singular,
LSSOL will obtain the unique (global) minimum. If K is singular, the solution may still be a global
minirmum if all active constraints have nonzero Lagrange muitipliers. Otherwise, the solution
obtained will either be a weak minimum (ic., with a unique optimal objective value, but an
infinite set of optimal z), or clse the objective function is unbounded below in the feasible region,
The last case can occur only wher £'(x) contains an explicit linear term (as in problems of type
LP, GP2, QP4, LS2 and LS4).

The LSSOL package contains approximately 6000 lines of ANSI Fortran 77, of which about
50% are comments.
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2. DESCRIPTION OF THE ALGORITHM

Here we bricfly smmumnrize the main features of the method of LSSOL. Where possible, cxplicit
reference is made to the namnes of variables that are parameters of subroutine LSSOL or appear in
the printed output,

The method of LSSOL 13 a two-phase (primnal) quadratic programming method (see Gill e¢ al.,
1084h) with features to exploit the convexity of the ohjective function. (In the full-rank case, the
method 13 related 10 that of Stoer, 1571.) The two phases of the method are: finding an initial
feasible point by ninimiziug the sum of infeasibilities {the feasibility phase), and minimizing the
quadratic ohjective function within the feasible region (the optimality phase). The computations
in both phases are performed by the same subroutines. The two-phase nature of the algorithm is
reflected by changing the function being minimized from the sum of infeasibilities 1o the quadratic
objective function, The feasibility phasc does not perform the standard simplex method (i.e., it
does not necessarily find a vertex), except in the LP case when m, < n. Unce any 1terate is feasible,
all subsequent iterates remsin feasible.

In geperal, an iterative process is required to solve a quadratic program. (For simplicity, we
shall rlways consider a typical iteration and avoid reference to the index of the iteration.) Each
new itcrate & is defined by

I=z+ap, (1)

where the step length v is & non-negative scalar, and p is called the search direction.

At each point z, a working set of constraints is defined to be a lincarly independent snbset
of the constraints that are satisfied “exactly” (to within the tolerance defined by the optional
parameter “Feasibility Tolerance”; see Section 4.2}. The working sct is the current prediction
of the ¢onstraints that hold with equality at a solution of LCLS. The search direction is constructed
s0 that the consiraints in the working set remain unaltered for any velue of the step length, For
a honnd constraint in the working set, this property is achieved by setting the corresponding
component of the search direction to zero. Thus, the associated variable is fixed, and specification
of the working sct induces a partition of z into fixed and free variables. During & given iteration,
the fixed variables are effectively removed from the prohlem: since the relevant components of the
search direction are zero, the columns of C corresponding to fixed variables may be ignored.

Let m,, denote the number of general constraints in the working set and let n,, denote the
number of varinbles fixed at one of their bounds (m,, and n,, are the quantities “Lin" and “Bnd"
in the printed output from LSSOL). Similarly, let nyp (npr = n - n,x) denote the nminber of free
variables. At every iteration, the variables arc re-ordercd so that the last nrx variables are fixed,
with all other relevant vectors and matrices ordered mccordingly. The order of the variables is
indicated by the list of indices X%, a parameter of LS50L.

Let Crp denote the my Xnpy submatrix of general constraints in the working sct corresponding
to the free variables, and tel p., denote the search direction with respect to the free varinbles only.
‘I'he general constraints in the working set will be unaltered by any maove along p if

Crnpﬁn =1 (2)
In order tu compute pepy. the TQ factorization of Cpp is used:
CFRQFR = (0 T)» (3)

where T is a nousingular my X m,, reverse-triangular matrix (i.e,, 2;; =0 ifi+j < my ), and the
non-singular npy X nyp matrix Qg is the prodnct of orthogonal transformations (see Gill et al.,
1984a). If the columns of (., are partitioned so that

QFR:(Z Y)’ (4)
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where YV 315 91, = ™, then the n, (n, = ngq —m,, ) columns of £ forin a basis for the null space
of Cpp. Thus, pey will sutisfy (2) only if

Pra = £P; (5}

for some vector py.

Tet @ denote Lhe » x » malrix

— Ql"ll N
Q= ( Lox ) )

where I, is the identity matrix of order ngy. Let R denote an m x n upper-triangular matrix (the
Cholesky factor) such that
OTHQ = RTR, (7)

and let the atrix of first 2; rows and columas of N be denoted by ;. (Recall that If in (7] will
in gereral have been re-ordered.)

The definition of p, in (§) depends on whether or not the matrix &, is singular at z. In the
non-singular case, p, satisfies the cquations

R;Rzpz - T8z (8)

where ¢, denotes the vectar ZTgN and g denotes the objective gradient. (The norms of g, is
the printed quantity Noxrm C:E,:I When py 10 defined by fS) # . p is the minimiser of the objective
function subfect to the constraints {hounds and general) in the working set treated as eqnalities,
In general, a veetor f, is available such that R2f, = —g,, which allows p, to be computed from
a single back-substitution R,p, = f;. For example, when solving problem LS1, f; comprises the
first n, elements of the (ransformed residual vector

f=P(b- Az), (9)

which is recurred from one iteration to the next, where P is an orthogonal matrix.
In the singular case, p; is defined such that

R,p, =0 and ¢°p, <O (1)

This vector has the property that the objcctive function is linear along p and may be reduced by
any step of the form z - ap, a > 0.

The vector Z7g, . is known as the projected gradient at z. If the projected gradient is zero,
T is a constrained slationary point in the subspace defined by Z. During the feasibility phase, the
projected gradient will usually be zero only et a vertex (althoegh it may be zero at non-vertices in
the presence of constraint dependencics). Dnring the optimality phase, a zero projected gradient
implies that = minimizes the quadratic objective when the constraints in the working set are treated
a3 equalities. At a constrained stationery point, Lagrange multipliecrs A, and Ag for the general
and hound constraints are defined from the equations
Cl’:‘[;l Ao =gy ond A, =g, — C}I‘TKAL" (11)
Given a positive constant & of the order of the machine precision, the Lagrange multiplier A
corresponding to an inequality constreint in the working set is said to be optimal if A; < & when
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the associated constraint is at its upper bound, or if A; > -& when the associated constraint is
at its lower bound. if a multiplier 18 non-optimal. the objective function {cither the true objective
or the sum of infeasibilities) can be redueed by deleting the corresponding constraint {with index
Jdel; sce Scetion §) from the working set.

If optimad inulipliers occur during the feasibility nhase and the snm of infeasibilities is nonzero,
there is no feasible point, and LSSOL will continue until the minimum value of the sumn of infeasi-
bilities has been found. At this puint. the Lagrange multiplier A; corresponding to an inequality
constraint 1 the working sct will be such that (1 4 §) < A; < & when the associated constraint
is at its upper bound, and —6 < A; <1 -+ 4 when the assaciated constraint is at its lower bonnd.
Lagrange multipliers for equality constraints will satisfy ;| < 1+ 4.

The cheice of step length is based on remaining feasibie with respect to the satisficd constraints.
If R; is nonsingular and z + p is feasible. o will be taken as unity. In this case, the projected
gradient at € will be zero, and Lagrange inultipiiers are computed, Qtherwise, w is set to a,,, the
step to the "nearest” constraint (with index Jadd; see Section 5), which is added to the working
set at the next iteration.

If A is not input as a triengular matrix, it is overwritten by a triangular matrix R satisfying
(7) obtained usmg the Cholesky factorization in the QP case. or the QR factorization in the LS case.
Column interchanges nre used in both cases, and an estimale is made of the rank of the triangnlar
factor. Thereafter, the dependent rews of J7 are eliminated from the problem,

Each change in the working set leads to a simple change to C,,: if the status of a general
coustraint chianges, a row of Cpy is altered; if a bound constraint enters or leaves the working set,
a column of Cy, changes. Explicit representatinns are recurred of the matrices T, Q. and R; and
of vectors @7y, Q7c and £, which are related by the formnlae

R T
f—Pb—(B)Qz {h=0 for the QP case),

and
QT - Q% - RYf.

Note that the triangular factor R associated with the Hessian of the original problem is updated
during both the optunality and the feasibility phases.

The treatment of the singnlar case depends eritically on the following feature of the matrix
updating schemes uned in LSSOL: if a given factor R, is non-singular, it can become singular
during subsequent itcrations only when a constraint leaves the workiug set, in which case only its
last diagonal element can becomne zero. Tkhis property implies that a vector satisfying {10) may
be found using the single Lack-substitution R, p, = e,, where R, is the matrix R, with a unit
tast diagonal, and e, is a vertnr of all zeros except in the last position. If H is singular, the
matrix B (and hence R;) may be singular at the start of the optimality phase. However, R, will
be non-singular if enough constraints are included in the initial working set. (‘Ihe null matrix is
positive definite by definition, corresponding to the case when Cyy contains ngy constraints.) The
idea 1s to inrlude as many general constraints as necessary to ensure o non-singular I2;.

At the beginning of each phase, an upper-triangular matrix &, is determired that is the largest
non-singular leading submatrix of R;. The use of interchanges during the factorization of A tends
to maximize the dimension of ;. (The rank of R, is estimated using the optional parameter Rank
Tolerance; sce Scction 4.1.) Let Z; denote the eolumns of Z corresponding to R., and let Z be
partitioned as Z — ( Z; Z, ). A working set for which Z; defines the null space can be obtained
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by including the rows of ZT as “artificial constraints”. Minimization of the objective function then
procecds within the snbspace defined by 7.
The artificially avgmented working set is given by

= (;'I-'F -3

so that pey will satisly Crrpran = 0 and Z;p,-ﬂ = 0. By dcfinition of the TQ facterizntion, Cen
automatirally satisfies the following:

5 Crr Cru -
Cralen = (Zg)qrﬁ (Z;f)(zl Z Y)=(U T),

. {0 T
r=(1 o):
I 0

and hence the T factorization of (12] requires no additional werk.

The niatrix 25 need not be kept fixed, since its role is purely to define an appropriate null space;
the TQ factorization can therefore be npdated in the normal fashion as the iterations proeced.
No work 1s required to “delete” the ariificial constraints associated with Z; when Zlger = 0,
since this simply invnlves repartitioning J,,. When deciding which constraint to delete, the
~artificial” mnltiplier vector associated with the rows of ZZT is equal to Z;‘"g,,p. and the multipliers
correspoiding to the rows of the "true” working set are the mulripliers that would be obtained if
the temporary consitaints were not present.

The number of columus of Z and Z;, the Euclidean norm of Z7gey. and the condition estimator
of £t appear in the printed vutpul as Nz, Nz1, Norm Gz1 and Cond Rzl (sec Section 3).

where

Although the algorithm of LSSOL does not perform simplex steps in general, there is one
exception: # linear program with fower general constraints than variables (ie. m, < n). (Use
of the simplex method in this situation leads to savings in storage.) At the starting point, the
"natural” working set (the set of coustraints exactly or nearly satisfied at the starting point)
15 eugmented with a suitable number of “temporary™ bounds, each ol which lLas the effect of
temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is
treated as o standard constraint until it is deleted from the working set, in which case it is never
added again.

One of the most important features of LSSOL is its control of the conditivning of the working
set, whose nearness to linear dependence is estitnated by the ratio of the largest to sinallest diagonals
of the T'Q) factor T (the printed value Cond T: see Section 5). In constructing the initial working set,
constraints are exciuded that would result in a large value of Cond T. Thercafter, LSSOL allows
constramts to be violated by as much as a user-specified Feasibility Tolerance (see Section
4.2) in order to provide, whenever possible, a choice of constraints to be added to the working set
at a given iteration. Let a,, denote the maximum step at which 2 + ayp docs not violate any
coustraint by more thar its feasibiily tolerance. All constraints at distance o (o < «.,) along p
from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the
working set. In order to ensure that the new iterate satisfies the constraints in the working set as
accurately as possible, the step taker is the exact distance to the newly added constraint. As a
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conseduence, ncegative steps are occasionally permitted, since the current iterate may violate the
constraint to be added by as much as the feasibility tolerance.

L3SOL has been designed to be efficient when used to solve a sequenec of related problems - for
example, within a scquential quadratic programming method for nonlinearly constrained optimiza-
tion (c.g., the NPSOL package of Gill et al., 1986). In particular. the user may specify an initial
working set (the indices of the constraints belicved to be satisfied sxactly at the solution); sce the
discussion of the optional paramecter Warm Start in Section 4.2.
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3. SPECIFICATION OF SUBROUTINE LSSOL
The forinal specification of L3SOL is the following:

SUBROUTINE LSSOL ( M, ¥,

NCLIN, NROWC, NROWA,
¢, BL, BU, CVEC,

ISTATE, KX, X, A, B,
INFORM, ITER, OBJ, CLAMDA,
IN, LENIW, W, LENW )

INTEGER M, N, KCLIN,
NROWG, NHOWA, INFORM, TTER, LENIW, LENW
INTEGER ISTATE(HN+NCLIN), KX{N}, IW(LENIW)
REAL aBJ
REAL C(NROWC,*), BL(N+NCLIN), BU(N+NCLIN},

CVEC(=*), X(N), A(NROWA,»),
B(*), CLAMDA(N+NCLIN), W{(LENW)

Note: Iere ana elsewhere, the specification of a paraneter as REAL should be interpreted as working
precision, which may be DOUBLE in some installations,

3.1. Formal pararneters

M

NCLIN

NROWS

NROWA

BL

(Input) The number of rows in the nrray A. If the problem is speeified as type FP or
LP (see Section 4), M is not referenced and 15 assuined to be zero.

If the probleru is of type QF, M will usually be ¥, the number of variables. However, a
value of M less than N is appropriate for QP3 or QP4 if A is an upper-trapezoidal matrix
with M rews. Stmilarly, ™ may be used to define the cimension of u leading block of
non-zetos 1n the tlessian matrices of QP1 or QP2. in which case the last N - M rows and
columns of & are assumied 1o be zero. In the QP case, M should not be greater than N;
if it is, the jast M — N rows of 4 are ignored.

If the problem is specified as type LS1, LS2, LS3 ur L34, M is alsu the dimension of the
array B. Note that all possibilities (M < N, M = N and M > ¥) are allowed.

{Input) The number of variables, i.c., the dimension of X. (N must be positive.)
(Input) The number of general linear constraints in the problem. (NCLIN may be
Zero.)

{Input) The declared row dimension of €. (NROWC inust be at least 1 and at least
NCLIH.)

(Input) The declared row dimension of the array A, (NROWA must be at least 1 and
at least M.)

(Input) A real array of declared dimiension (NROWC,»), where the second dimension
must be at least . The i-th row of C containy the coeflicients of the i-th general
constraint, 1 = 1 to NCLIN. If NCLIN is zero, € is not accessed; the actual parameter
may then be any convenient array or an array with dimension (1,1).

(Input} A real array of dimension at least ¥+ NCLIX that contains the lower bounds
for all the constraints. in the following order (which is also observed for BU, ISTATE,
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BU

CVEC

ISTATE

and CLAMDA): the first N elements of BL contain the lower bounds on the variables; if
NCLIN > ), the next NCLIN elemicnts of BL contain the lower bonnds for the general
linear constraints. In order for the problem specification to be meaningful, it 1s
required that BL(j) < BU(j) for all j. Te specify a nou-existent lower bound (i.e.,
L; = —o0), the value used must satisfy BL{j) < —BIGBND, where BIGBND is the valuc of
the optional parameter Infinite Bound, whose defanlt value is 100? (ser Section 4.2).
To specify the j-th constraint as an equality, the nser must set BL(j) = BU(j) = 4,
say, where 3| < BIGBND.

(Input) A real array of dimension at least N+ NCLIN that contains the upper bounds
for all the constraints, in the same order described above under BL. To specify a
non-existent upper bound (i.e., u; — o), the value used rust satisfy BU(j) > BIGBND.

(Input) A real array of dimension at least N contaiming the coefficients of the explicit
lincar term of the objective function. If the problem is of type FP, QP1, QP3, L51 o1
LS3, CVEC is not accesscd: CVEC may then be declared to be of dimension (1), or the
actual parameter may be any convenient array.

(Input)} An integer array of dimension at least N -+ NCLIN, ISTATE need nol be
initialized if Cold Start (the default) is specified. For a Warm Start, ISTATE specifies
the desired status of the constraints at the start of the feasibility phase. The ordering
of ISTATE is the same os that described above fur BL, te., the ficst ¥ components of
ISTATE refer to the upper and lower bounds on the variables, and components N + 1
through N -+ NCLIN refer to the upper and lower bounds on Cz. Possible values for
ISTATE arc:

ISTATE{j) Meaning
n The ecorresponding constraint shonld not be in the initial working set.
1 The ranstraint shanld he in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This

value must not be specified unless BL{j) = BU(7}. The values 1, 2 or 3
all have the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if LSSOL has been called
previously with the same values of N and NCLIN, ISTATE already contains satisfactory
information.

(Output) If LSSOL exits with INFORM —= 0, 1 or 3, the values in the array ISTATE in-
dicate the status of the constraints in the active set at the solution. Otherwise, ISTATE
indicates the composition of the working set at the final iterate. The significance of
each possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning

-2 The constraint violates its lower bound by more than the feasibility tol-
erance.

-1 The constraint violates its upper bound by more than the feasibility
tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not
in the working set.
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KX

1 This inequality constraint is included in the working set at its lower
bound.

2 This inequality constraint is included in the working set at its upper
bound.

3 The constreint is inclnded in the working set as an equality. This walue

of ISTATE can occur only when BL(j) = BU(j).

(Input) An integer array of limension at least N. XX must be defized on input for
problems QP3, JP4, LS3 or LS4, i.c., problems in which A is specified as an upper-
trapesoidal matrin, KX must define the ooder of the coluiuns of the malrix & wilh
respect to the erdering of X. Thus, if KX(1) = 5, enluinn 1 of & is the calumn associated
with variable X(5). Fnr problems of type FP, LP. QP1, QP2, LS1 or L52, KX need not
be initialized.

(Output) KX gives the order of the columns of & with respect to the ordering of X,
as described above.

(Input} A real array of ¢imension at least N. X contains the initial estimnate of the
sulution.

(Output) X is the last iterate of LSSOL. If INFORM = 0, 1 or 3, X will be an estimate
of the solution.

(Input) A real array of dimension (NROWA,*), where the second dimension must be
at least N. A defines the data matrix A in LCLS,

If the problem is of type FP or LP, 4 is not accessed and may be dimensioned (1,1).

If the problem is of type QP1 or QP2, the first M rows and columns of 4 must contain
the leading M by M rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper-triangular elements of the leading M rows and columns of A arg
referenced. The remaining elements arc assumed to be zero and need not be assigned.

For problems QP3, QP4. L53 or LS4, the first M rows of A must contain an M by N upper-
trapezoidal factor of either the Hessian matrix ar the least-squares marrix, ordered
according to the KX array (see above). ‘The factor need not he of fuil rank, i.e., some of
the diagonals may be zero. However, as a general milte, the larger the dimension of the
leading non-singular submnatrix of A, the fewer iterations will be required. Elements
outside the upper-triangular part of the first ¥ rows of & are assumed to he zero and
need not be assigned.

I7 a constrained least-squares problem contains a very large number of observations,
storage limitations 1uay prevent sturage of the catire least-squares inabrix, In such
cases, the user should transform the original A into a triangular matrix before the
call to LSSOL and solve the problem as type LS3 or LS4.

(Output) If the problem is of type LS or QP, A contains the upper triangular matrix
R of (7), with columns ordered as indicated by KX (see above). This matrix may
be used to obtain the variance-covariance matrix or to recover the upper-triangular
factor of the original lcast-squares matrix.

(Input) A real array of dimension at least M. If the problem is of type FP, LP or QP,
B is not accessed and may be dimensioned {1). If the problem is of type LS, B must
contain the vector of observations b in problem LCLS.
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{Output) Or exit from a problem of type LS, B contains the transformed residual
vector (9).

{Output) An integee that indicates the result of LSSOL. (If Print Laval > 0, =a
short description of INFCRM is printed.) The possible values of INFORM are;

INFORM Meaning

] X is & strong local minimum. [The projected gradient s negligible, the
Lagrange multipliers are optimal, and £, is non-singular.)

1 X is a weak local minimum. {The projected gradient is negligible, the
Lagrange multiplicrs are optimal, but R, is singular ar there is 2 small
multiplict.) This mcans that the finnl X i3 net nnigue,

2 The solution appeats to be unbounded. This value of INFORK implies
that a step as large as Infinite Bound would have to be taken in order
to continue the algorithmi, This situation can occur only when A is
singular. there is an explicit linear term, and at least one variable has
ne upper or lower bound.

3 No feasible point was found, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance. In this case, the constraint
viclaticus at the final X will reveal a value of the tolerance for which a
feasible point will exizt  for exanmple, if the feasibility tolerance for each
vipiated constraint exceeds its Residual at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using
a Waxrm Start (sce Section 4},

4 The litniting number of iterations (determined by the parameters Feasi-
bility Phase Iterations and Optimality Phase Iterations) was
reached before normal termination occurred.

3 The algorithm could be cycling, since a total of 50 changes were made
to the working set without altering X.

6 An Inputl parameter is invalid,

(Output) An integer that gives the total number of itcrations performed in the
feasibility phase and the optimality phase.

(Output) The value of the objective function at X if X is feasible, or the suri of
infeastbilities at X otherwise. If the problem is of type FP and X is feasible, 0BJ is zeru.

(Output) A real array of dimension at least N + NCLIN that contains the Lagrange
multiplier for every constraint with respect to the current working set. The ordering
of CLAMDA follows the convention given above under BL, i.e., the first N components
contein the multipliers for the bound constraints on the variables, and the remaining
components contain the mnultipliers for the general linear constraints. If ISTATE(j} =0
(i.e., constraint j is not in the working set), CLAMDA(j) is zero. If X is optimal,
CLAMDA(7) skould be non-negative if ISTATE(j) = | and non-positive if ISTATE(}) = 2.

3.2, Workspace parameters

Iv

(Input) An integer array of dimension LENIW that provides integer workspace for
LSSQL.
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LENIW (Input) The dimension of IW. LENIW must be at least N.
W (Input) A real array of dimension LENW thal provides real workspace for LSSOL.
LENW (Input) The dimersion of W. If the problem is of type FP and N < NCLIN, LENW must

be at least 2N? + 6 N + 6 NCLIN. If chie problem is of type FP nnd (0 < NCLIN < N, LENW
must be at least 2(NCLIN+ 1)® - 6N + 6 NCLIN. If NCLIN = 0, LENW must be at least
6 N.

If the problem is of type LP and N < NCLIN, LENW must be at least 282 5 7K + 6 NCLIN.
If the problem is of type LP and N > NCLIN > 0, LENW must be at least 2 {NCLIN |-
1)® + TN+ GNCLIN. If the problem is of type LP and NCLIN = 0, LENW must be at least
TH.

For problems QP%, QP3%, LS1 and LS3, LENW must be at least 2 M2 = ON + 6 NCLIN if
HCLIY > O, and at lcast 9N if NCLIN = 0. For problems QP2, QP4, LS2 and L54, LENW
must be at least 2N% 4 10N + 6 NCLIV if NCLIN > 0, and at least 10N if NCLIN = 0.

If Print Level > 0, the amounts of workspace provided and required are printed. As an alterna-
tive to comput:ng LENIW and LENW from the formulas given above, the user may prefer to obtain
appropriate values from the output of a preliminary run with a positive valne of Print Level and
LENIW and LENW set to 1. (LSSOL will then terminate with INFORM = 6.)
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4. OPTIONAL INPUT PARAMETERS

Scveral optionel parameters 1 LSS0OL define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of LSSOL, these optional parameters
have associated defan]t values (see Scetion 4.2) that are appropriate for most problems. Therefore,
the user need specify only those parameters whose values are to be different from their defaunlt
values. The remainder of this section can be skipped by users who wish to usce the defauit values
for all optional paraincters.

Eeach optional parameter is defired by a single character string of up to 72 characters, con-
taining one or mote items. The items associated with a given option must be separated by spaces
or equal signs {=). Alphabetic characters may be npper or lower case. An example of an optional
parameter is the string

Print level = &

For each option, the string contains the nllowing iteins.
1. The keyword (required for all optionsj.
2. A phrase {one or two words) that qualifies the keyword [only for some options),
J. A number that specifies cither an INTEGER or a REAL value (only for some options).
Suck numbers may be up to 16 contiguous characters in Fortran 77's I. F, Eor D
formats, terininated by a space.
Blank strings and comments are ignored and 1nay be used to improve readability. A commentbegins
with an asterisk {*} and all subsequent characters are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified ontput device (see Section 7.5).

Synonyms are recognized for some of the keywords. and abbreviations may be used.
The following are examples of valid option strings for LSSOL:

NOLIST

wvarm start

COLD START

Problem type = Least Squares

Problem type = LP

Problem Type QP4

Feasibility tolerance 1.CE-8 * for IBM in double precisien
CRASH TOLERANCE = .002

* This string will be completely ignored.
Feasibility phase iteratien limit 100
Optimality phase iteration limit = 10 »

4.1. Specification of the optional parameters

Optional paramecters may be specified in two ways, as follows.

¢ Using subroutine LSFILE and an external flle

The subrontine LSFILE provided with the LSSOL package will read opticns from an external options
file, and should be called before a call to LSSQL. Each line of the options file defines a single optianal
parameter. The file must begin with Begin and end with End. (An options file consisting only of
these two lines corresponds to supplying no options.)

The specification of LSFILE ia

SUBRCUTINE LSFILE( IOPINS, INFORM )
INTEGER IOPTNS, INFORM
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TOPTHNS inust be the unit number of the options file, in the range [0.99]. and is unchanged on exit
from LSFILE. TUFORM need not be set on entry. On return, INFORM will be 0 if the file is o valid
options file and TOPTNS is in the correct range. INFORM will be set to 1 if IOPTNS is out of range,
and wiil be set to 2 if the file does not hegin with Begin cr end with End.

An example of a valid options file is

Begin
Print level = 5
Problem type LF
End

If the options file is on unit number B, it can be read by the call

CALL LSFILE( 5, INFORM )

+ Using subroutine LSOPIN

The second method of setting the uptivnal parameters is through a series of calls to the subroutine
LSOPTN provided with the 1.SSOI, package. The specification of LSOPTH is

SUBROUTINE LSOPTN( STRING )
CHARACTER# {*) STRING

STRING must be a single valid option siring (see above), and will be unchanged on exit. LSOPTN
mus? be called once for every optional parameter to be set. An example of a call to LSOPTN is

CALL LSOPTN{ ’Print level = 5 )

¢ Use of Lhe Folist and Defaults option

In geueral, each uscr-specified uptional paramector 13 printed as it is recad or defined. By using the
special parameter Nolist, the user may suppress this printing for a given call of LSSOL. To take
effect, Nolist mmnst be the first parameter specified in tlhe options file; for example,

Begin

Holist

Problam typa LP
End

Alternatively, the first call to LSOPTN, before or after a call to LSSOL, must be
CALL LSOPTN{ °’Nolist’ ).
All parameters not specified by the user are automatically set to their default values. Any
optional parameters that arc set by the user are not alvered by LSSOL, and hence changes to the

options are cummilative. For example, calling LSOPIN( *Print level = 5’ ) scts the pring level
to 5 for all subsequent calls to LSSOL until it is rcset by the user. The only exception to this
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rule 1s permitied by the special optional parameier Defaults, whose efiect is Lo reset all optional
parameters to their defanlt values. For example, in the following situation

CALL LSsOL ( ... )
C .
CALL LSCPTN{ *Print level 5° )
CALL LSCPTN( ’Iteration limit = 100’ )
CALL LSSOL ( ... )
C

CALL LSOPTN( ’Defaults’ )
CALL LSSOL ( ... )

the first and last runs of LSSOL will occur with the default paraineter settings, but in the seeond
run, the print level and iteration limnit are altered.

4.2, Description of the optional parameiers

The following list {in alphabetical order} gives the valid options. Far each vption, we give the
keyword, any esscutial oprional qualifiers, the default value, and the definition, The minimum
abbreviation of cach keyword is underlined. 1f no characters of an optional qualifier are underlined,
the qualifer may be omitted. The letter ¢ denotes a phrase (character string) that qualifies an
option. The letters 4 and r dencte INTEGER and REAL values 1equired with certain options. The
number € is 4 generie notation for inachine precision.

Cold Start Default — Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a cold start, LSSOL chooses
the initial working set based on the values of the variables and coustraints at the initial point.
3roadly spenking, the initial working set will include equality constraints and buunds or inequality
consiraints that violats ar “nenrly” eatiefy their bounde (to withia Crash Telerance; see below).

Wiih a warm starl, the user must provide a valid definition of every clewent of the array
ISTATE (see Section 3 for the definition of this array). LSSOL will override the user’s specification
of ISTATF if nereseary, co that » panr choice of the warking set will not eavse a fatal error. A warm
start will be advantageous if a good estirnate of the initial working set is available—for example,
when LSSOL is cailed repeatedly to solve related problems.

Crash Tolerance r Defaunlt = .0}

This value is used in conjunction with the optivnal parameter Cold Start (the defanlt value} when
LSSOL seieets an initial working sct. If0 < » < 1, the initiel working sct will include bonnds or
general inequality constraints that lic within r of their bounds. In particular, a constraint of the
form c:fu: > [ will be included in the initial working set if ]f.'_’;-rz < i) lfr<Qorr > 1,
the defanlt value is used.

Feasibility Phase Iteration Limit 1 Default = max(50,5(n + m.))
Optimality Phase Iteration Limit i Default — mox(50,5(n -+ m;})
The scalars 4 and 43 specify the maximem number of iterations allowed in the feasibility and opti-
mality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting
i3 =0 aud Prinw Level > ( jneans that the workspace needed will be computed and printed, but
no iterations will be performed.
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Feasibility Tolerance T Default — /e
I r > 0. r defines the maxinmum acceptable absolute violation in each constraint at a *fcasible”
point: 1.e.. a ronsiraint is cousidered satisfied 2 its violation daes not exceed r. For example, if the
varinbles and the coefficients in the general constrainis are of order unity, and the latter are correct
to about 6 decimal digits, it would be appropriate to specify r as 10 8. If » < 0, the default value
18 nsed.

Infinite Bound Size r Default — 1010

If 7 > 0, = defines the “infinate” bound BIGBND in the definition of the problein constraints. Any
upper hound greater than ot equal to BIGBND will be regarded as plus infinity {and stnmlarly for a
lower bound less than or equal to —BIGBND). If r < 0, the default vaiue is used.

Infinite Step Size r Default — max(BIGBND, 1019)

If »r > 0, » specifies the magnitude of the change in variables that will be considered a step to
an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is
singuiar and the objective contains an explicit inecar term.) If the change in « during an iteration
would exceed the vulue of Infinite Step, the ubjective function is considered to be unbounded
below in the feasible region. If » < 0, the defanlt value is used.

Iteration Limit i Default = max({50,5(n + m,))
Iters

Itns

Sce Feasibility Phase Iteration Limit above.

Optimality Phase Iteration Limit i Default — max(50,5(n + m;))

See Feasibility Phase Iteration Limit above.

Print Lovel 1 Defanlt = 10
The value of  controls the amount of printout producerd by T.880L, as indicated below.
i Output
0 No output.
1 The final sulution valy,
5 One line of output for each iteration (no printout of the final solution).
2 10 The final solution and one line of output for each ileration.
>20 At each iteration, the Lagrange multipliers, the voriables &, the constraint

values Oz and the constraint status.

> 30 At each iteration, the diagonal elements of the mnatrix T associated with the TQ
factorization (3) of the working set, and the diagonal elements of the triangular

matrix K.
Problem Type a Default = LS1

This option specifies the type of objective function to be minimized during the optimality phase.
The following arc the ten optional keywords and the dimensions of the arrays that must be specified
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to define the objective function:

FP A, B and CVEC not accessed;

LP A and B not accessed, CVEC(N);

QP1 A(NROWA,N) symmetric, B and CVEC not referenced;

QP2 A(NROWA,N) symimetric, B not referenced, CYEC(N):

QP3 A(NROWA,N) upper-trapezoidal, XX(N), B and CYEC not referenced;
QP4 A(NROWA,N) upper-trapezoidal, KX(X), B not referenced, CVEC{N];
Ls1 A(NROWA N}, B(M), CVEC not referenced;

Ls2 ACHROWA,N)Y, B(M), CVEC(N):

1S3 ACNROWA,N) upper-trapezoidal, KX{N), B(M), CVEC not referenced;
L54 A(NRGWA,N) upper-trapezoidal, KX(N), B(M), CVEC(N).

The options Least Squares and LSQ are cquivalent to the default vption L31. The options
Linear programand Quadratic programare cquivalent to LP and QP2 respectively. If A =0, i.e.,
the objective function is purely huear, the cfficiency of LSSOL may be increased by specifving a as
LP (or Linear Program).

Rank Tolerance r Default = /¢

If0 <r < I, r enables the user to control the estimation of the rank of 4 and the triangniar factor
Ry (sce Section 2). If p, denotes the function p; — wax{|Ri1|,|R2z2:,...,|Riil}, the rank of R is
defined to be smallest index £ such that |, 1::10 < rlpia. If 7 < D orr > 1, the default value is
usged.

4.3. Optional parameter checklist and default values

For easy reference, the following sample LSOPTN list shows all valid keywords and their defanit

values. The default options Feasibility Tolerance and Rank Tolerance tfepend unon €. the
relative precision nf the machine being used. The values given here correspond to double precision

arithmetic on IBM 360 and 370 systems and their successors (¢ & 2.22 x 107'¢). Similar values
would apply to any machine having about 16 decimal digits of precision.

* List of optional parameters.

Cold Start x

Crash Tolerance .01 *
Feasibility Tolerance 1.1E-8 * JJ€
Infinite Bound 1.0E+10 * Plus infinity
Infinite Step 1.0E+1C *

»*

Feasibility Phase Tteration Limit 50 or 5(n +m,)

Optimality Phase Iteration Limit 50 *or b{n+m,)
Print Level 10 x

Problem Type Least squares x* or 1S1

Rank Tolerance 1.1E-8 x \Je
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5. DESCRIPTION OF THE PRINTED OUTPUT

This seetinn deserihes the intermediate printont produced by LSSOL. Tn aid tuterpretation of the
printed results, we repeat the convention for numbering the constraints: indices 1 throngh ¥ refer to
the bounds on the variables, and indices N+ 1 through N 4+ NCLIN refer to the general constraints.
When the status of a constraint changes, the index of the conslraint is printed, along with the
designation “L" (luwer bound), “U” (upper boundi, “E” (equality). “T” (temnporary bound} or “2”
(urtificial counstraint).

When Print Tevel > 5, the following line of cutput i1s produced at every iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted froin the working set. If Jdel is zero, no
constralnt was deleted,

Jadd 15 the index of the constraint added to the working set. Tf Jadd is zero, no
constraint was added,

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration {i.c., Jadd is positive), Step will be the step to the
neerest coustraint. During the optimality phase, the step can be greater than
one only if the factor R, is singular.

Minf i1s the number of violated constraints (infeasibilities). This number will be zero
during the optimality phase.

Sinf/Objective is the value of the current oblective function. If X is not feasible, Sinf gives
a weighted suni of the magnitudes of voustraint violalions. If X is feasible,
Objective is the value of the objective function nf LCLS. The output line for
tae final iteration of the feasibility phase {i.e., the first iteration for which NINF
is zero) will give the value of Lhe true vbjective al the first feasible point.
Duzing the optimnality phase, the value of the objective function will be non-
increasing. During the feasibility phase. the numher of constraint infeasibilities
will not increase nntil either a feasible point is found, or the optimality of tha
multipliers implies that no feasible point exists, Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the snm of infeast-
bilities will either remain vonslant vr be reduced until the minimum sum of
infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general lincar constraints in the current working sct.
Nz 1s the number of columns of Z (sce Section 2). The value of Nz is Lhe number

of variables minus the number of constraints in the working set; ie., Nz —~
N—{(Bnd+Lin). A zcro value of Nz imnplies that z lies at a vertex of the feasible
region,

Nzi is the number of columns of Z; (sec Section 2). Nzt is the dimension of the
subspace in which the objective function is currently being minimized. Tf Nzl
15 less than Nz, the current R, is singular.

Norm Gf is the Euclidean norm of the gradient of the objective function with respect to
the free vaniables, i.c., veriables not curreatly held at a bound.

Norm Gz1 15 || Z]geg . the Euclidean norn of the projected gradient with respect to Z;.
During the optimality phese, this norm will be approximately zero after a unit
step.
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Cond T
Cond Rzl

is a lower bound on the condition number of the working set.

is a lower bound on the condition namber of the criangnlar factor By {(Lhe fiest
Nzl rows and columns of the factor R;. If the problem is speeified to be of
type LP, or the estimated rank of the data mutrix A is zcro, Cond Rzi is not
printed,

When Print Level = 1 or Print Level > 10, the summary printout at the end of execution
of LSSOL includes a listing of the status of every variable and constraint. Note that defanlt names
are assigned to all variables and constraints.

The following describes the printout for cach variable.

Variable

State

Value

Lower bound
Upper bound

Lagr multiplier

Rasidual

gives the name (VARBL) and index j (§ = I to N) of the variable.

gives the state of the variable (FR if neither bound is in the working set, EQ if
a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value
lies outside the upper or lower bonnds by more than the {easibility tolerance,
State will be “+4" or “-=" respectively,

is tlie value of the vanable at the final iteration.

is the lower bound specified for the variable. (“None” indicates that BL{j} <
—BIGRND.)

is the upper bound specificd for the variable. (“Nons” indicztes that BU(j} >
BIGBND.}

is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if Stateis FR. If X 1s optimal, the mnultiplicr should be non-negative
if State ie LL, and nen-positive if State is UL.

is the difference between the variable “Value” and the nearer of its bounds
BL(7} and BU(j).

The meaning of the printout for general constraints is the same as that given above for vari-
ables, with “variable” replaced by “constraint”, with the following change in the heading:

Linear constr

is the name (LNCON) and index 1 (i = 1 to NCLIN) of the constraint.
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6. ERROR RECOVERY

Termination Recommended Action

Underfiow A single underflow will always ocenr if machine constants are computed antomat-
ienlly {as in the distributed version of LESOL; see Scetion 7). Uther flaating-point
anderflows may oecur veeasivnally, but can usually be ignored,

Overflow If the printed ontput before the overflow error contains a warning about serious
ill-couditioning in the working set when adding the j-th constront, it may be pos.
sible to avoid the dificulty by increasing the magnitude of the optione! parameter
Feasibility Tolerance and rerunning the prograni. If the message recurs even
after this chauge, the offending linearly dependent constraint (with index 3™)
must be removed from the problem. If a warning message did not precede the
fatal averflow, contact the anthors at Stanford University.

INFORM = 3 LSSOL has terminated without tinding u teasible point, which means that no fea-
sible point exists for the given feasibility tolerance. The uscr should check that
there are no constraint redundancies. If the data for the constraints are acenrate
only to the absolute precisinn 7, the user should ensnre that the velue of the op-
tional parameter Feasibility Tolerance is greater than o. For example, if all
clements of € are of order unity and are acenrare only to three decimat places, the
optional perameter Feasibility Tolarance should he at least 1073,

INFORM = 4 The value of the optional parameter Iteration Limit may be too small. If the
method appears tu be making progress {c.g., the objective function is being sat-
isfactorily reduced), increase the iteratinns limit and rerun LSSOL {possibly using
the warm start facility to specify the initial working set). I the iteration limit s
already large, but some of the cunstraints could be nearly linearly dependent, check
the output for a repeated pattern of constratuts entering and leaving the working
set. (Near-dependencies are often indicated by wide variations in size in the dig
agonal clements of the T matrix, which will be printed if Prins Level > 30.) In
this case, the algorithm could be cycling (see the comments for INFORM = 5).

INFORM =5  This value will accur if 50 iterations are performed without changing X. The user
should check the printed ontput for a repeated pattern of constreint deletions and
additions. If a sequence of constraint changes is being repealed, the verates are
prcbably cycling. {LSSOL does not contain a method that is guaranteed to avoid
cycling: such a method would he combinatorial in nature.) Cyeling may oceur in
two circumstances; at a constrained stationary point where there are some small
or zero Lagrange multipliers; or ut a point (usually a vertex) where the constraints
that arc satisficd exactly arc nearly Lincarly dependent. In the latter case, the user
has the option of identifving the offending dependent constraints and removing
them from the problem, or restarting the run with a larger value of the optional
parameter Feasibility Tolerance. If LSSOL terminates with INFORM — 5, but
no suspictous pattern of constraint changes can be observed. it may be worthwhile
to restart with the final X (with or without the warm start option).
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7. IMPLEMENTATLION INFORMATION

7.1. Format of the distribution tape

The source vode amd exanple prograin for LSO are distribnted on a magnetir tape containing 7

files. The tape characteristics are deseribed in a docnment accompanying the tape; normally they

are 0 track. 1600 bpi. unlabeled. ASCIL, 80-character records (card images), 4800-character blucks.
The following is a list of the files and a summary of their contents. For referener purposes we

give 2 name to each dile. However, the names will not be reeorded on unlabeled tapes. The MACH

and LSCADE files are composed of several smaller source files deseribed in Section 7.3,

File©  Name Type Cardst Deseription
1. DP¥ACH FORTRAN 450 Donble-precision source file 1;: MCSUBS
2. DPLSCODE FORTRAN 8250 Double precision source files 2-5: BLAS, ., ., JPSUBS
3. DFLSMAIN FORTRAN 260 Double-precision sonrce file LSMAIN
4, LSMAIN DATA 6 Options file for LSMAIN
5. SPMACH FORTRAN 450 Single-precision source file 1
0. SPLSCCDE FORTRAN 8250 Single-precision source files 2-5
7. SPLSMAIN FORTRAN 260 Single-precision version of file 3

t Approximate figure.

One MACH and one LSCODE file shanld bhe selected for any given installation. DPMACH and
DPLSCODE are intended for machines that generally require donble precision computation. Examples
include IBM Systems 360, 370, 3033, 3081, etc.; Amdahl 470, Facom, Fujitsu. Hitachi, and other
systers analogons to IBM; DEC VAX systems; Data General MV /8000 ICL 2900 series; rccent
PRIME systems: DEC Systemns 10 and 20; Honeywell systems; and the Univac 1100 series,

SPMACH und SPLSCODE are intended for machines for which single precision is suitably accurate
for nmnetical computation. Examples include the Burroughs 6700 and 77C0 series: the CDC 6000
aund 7000 scrics and their Cyber counterparts; and the Cray-1.

7.2. Installation procedure

1. Obtain the appropriate MACH and LSCODE files from the tagpe,

2. If neeessary, cdit the subroeutine MCHPAR according to Section 7.5.

3. Deceide whether or not to split the LSCODE file into files BLAS through OPSUBS as suggested in
Section 7.3.

4. Compile all the routines that were originally in the LSCODE files together with those from MACH,
Run them in conjunetion with the main program LSHAIN from either Pile 3 or File 7 and the

options given in file LSMAIN DATA, Check the outpus against that shown in Section 8.

7.3. Source files
LSSOT has heen written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the

IBM Foriran 77 compiler VS Fortran, Certain unaveidablc machine dependencics are confined to
the rouline MCHPAR.

The source code is divided into 5 logical parts. For ease of handling, these are combined into
the MACH and LSCODE files on the distribution tape, but for subsequent maintenance we recornmend
that & separate files be kept. In the description below we suggest a name for each file and suinmarize
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its purpose. We 1hen list the names of the Fortran subroutines and functions involved. The naning
convention used should minimize the risk of a clash with user-written rontines.

File 1. MCSUBS  Computcs machine-dependent constants.
MCHP.E MCEPS MCENV1 MCENV2 MCSTOR

File 2. BLAS Basic Linear Algebra Subprograms {a subset).

DASUM DAXPY DCOPY DpaT DNERM2 DswaAP DSCAL IDAMAX
These routines are functionally similar to mcmbers of the BLAS package (Lawson et al.,
1679). If possible they should be replaced by authentic BLAS routines. Versions may
exist that have been tuned to your particular machine,

DGEMY DGER1
These routines are functionally similar to members of the Level 2 BLAS packages (Don-

garta et al., 1985).

DCOND DDIV DDSCL DLOAD DHORM D55Q DSWAP IcorY
IDRANK  ILDAD

Thesce are additional utility routines that could be tuned to your machine. DLOAD is used
the most frequently, to load a vector with a constant value,

DROT3 DROT3G  LGEAPQ DGEQR DGEQRP DGRFG
These linear algebra routines are used to compute and update various matrix factoriza-
tians in LSSOT..

File 3, cMSUBS  General utility routines.

CMALF CMALF1 CMCHK CMFEAS CMPRT CHMQMUL CMRSOL CMRSWP
CMRIMD CMTSOL

File 4. LSSUBS  Least-squares routines.

LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH  LSDEL LSDFLT

LSFEAS LSFILE [LSGETP LSGSET LSKEY LSLOC LSMOVE  LSHULS
LSOPTN  LSPAT LSSETX  LSSOL

File 5. OPSUBS Option string handling routines.
OPFILE OPLOOK OPNUM OPSCAN OPTOKN OFUPPR

7.4. Commeon blocks

Certain Foriran CCMMON blocks are used in the LSSOL source code to communicate between sub-
routines. Their names are listed below.
CMDEBG LSDEBG LSPARL LSPAR2 SOLiCM SOL3CM S0L&CH SOLECM
SOLGCM SOLMCH SOL1LS SOL3LS

7.5. Machine-dependent subroutines

The rontine MCHPAR in the MACH file may require modification to suit a particular machine or a
nou-standard application.
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At the beginning of LSSOL, MCHPAR is called to assign the machine-dependent constants and
the standard input and onlput unit numnbers. These pnrameters are stored in the array WHACH(15)
in the lubeled COMMON block SOLMCH, and are defined as follows.

WMACH(1) is NBASE, the base of floating-point arithmetic.
WMACH(2) is NDIGIT, the number of NBASE digits of precision.

WMACH(3) is EPS, the floating-point precision.

WMACH{4) is RTEPS, the square root of EPSMCH.

WMACHIS) is RMIN, the smallest positive floating-point mimber.
WMACH(G) is RTMIN, tire square toot of RMIN.

WMACH(7) is RHAX, the largest positive floating-point nurnber.

WHMACH(8) is RTMAX, the square root of RMAX.
WMACH(10) is NIN, the file number feor the input stream.
WMACH(11) is NOUT, the iile nuinber for the nutput stream.

Within routine MCHPAR, the maclhine constants are set one of lwo ways, depending upon the
vahie of the logical variable HDWIRE, which is set in-line.

TEHDWIRE i» .FALSE. {the valuc sct for the distributed copy of MCHPAR}, the machinc constants
are computed antopatically for the machine being used. If HDWIRE is .TRUE., machine constants
appropriate for the IBM 360 Serics are assigued directly to the elements of WHACH.

Before selecting the method of assigning the rnachine conatants, you shonld note the following,
The computation of the machine constants will always generate o stngle arithmetic underflow, and
hence some appropriate remedial action may need to be taken if your machine traps underflow.

If you wish to inplement the in-line assignment of machine constants for a machine other than
one from the IBMN 360/370 Series, MCHPAR must be modified ns follows.

§. Change the iu-line assignment of HDWIRE from .FALSE. to .TRUE.,

2. Set the values of WMACH apprapriate for the machine and precision being used. The values of
NBASE, ¥DIGIT. EPSMCH, RMIN and RMAX for scveral mechines arc given in the following table,
for both single and denble precision; RTEPS, RIKIN and RTMAX may be computed using Fortran
statvinents. The values NIN and NOUT depend on the mackine installation.

For each precision, we give two values for EPSMCH, RMIN and RMAX. The first value is a For-

tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause

no difficulty ¢xcept in extreme circumstances. The second wvalue is the exact marhematical
represertalion.



7. IMPLEMENTATION INFORMATION

Table of machine-dependent parameters

DEC Vax

IBM 360/370 CDC 600¢,/7000 DEC 10/20 E Univae 1100
Single Single Single i Single Single
NBASE 16 2 2 ' 2 2
NDIGIT 6 48 27 27 24
EPS 9.54E-T T.11E-15% 7.46E-9 1.50E-8 1.20E-7
16~5 2—&7 2-27 2-26 2—23
RMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
16—65 2-975 2—129 2—129 9 128
RMAX 1,0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38 i
1661(1. 16—6) 21070(1 2—48) 2127(1 2--27) 2127(1_2 27) 2]27(1_2--24) i
iBM 360/370 CDC 6000/7000 DEC 19/20 {nivac 1100 DEC Vax
Double Doulile Double Double Double
I ¥BASE 18 2 2 2 2
| NpIGIT 14 96 62 61 56
EFS3 2.22D-18 2.53D-29 2.17D-19 8.68D~19 2.78D-17
16-13 2-95 2—62 2 60 2 14
RMIN 1.0D-79 1.0D-293 1.0D-38 1.0B-308 - 1‘.“61)—38
16--55 2—975 2'129 2-—1025 9-128
RMAX | 1.0D+75 1.0D+322 1.0D+38 | 1.0D+307 °  1.0D+38 |
1653(1_16—14] 21070(1 _2—56} 2127(1 ‘2—62) 21023(1_2-61) ?127“ _?--56)
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8. EXAMPLE PROBLEMS
This scction describes a linear least-squarcs problem and a guadratic program; the sample main
program LSMAIN that calls LSSOL and the outpnt are given in the Appendix.

The first problem is a constrained least-squares problem of type LS4 with nine variables and
three general Gnear constraints. The least-squares malrix and vector of observations are given by

/11 1 L1111 Ly (1

t 2 1 1 1 1 2 0 o0 1

it 1 38 1 1 1 -1 -1 -3 1

1 1 1 4 1 1 1 1 1 1

U T T T SRS U SRS S N
1 1 2 1 1 0 0 0 -1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 0 1 1 1 2 2 3 1

\ 1 0 1 1 1 1 o 2 2) \1/

The least-sqnares matrix has rank 6. Let 7 in LLCLS be partitioned into two sections: the first n
components (denoted by £;), corresponding to the bound constraints; and the last m, components
{denoted by {,), corresponding to the linear constraints. The vector u is partitioned in a similar
fashion. Using this notation, the upper and lower bounds on the variables are given by

L, = (-2, -2, -0, -2, -2, -2, -2, -2, -2)T
ug=( 2, 2, 2 2 2 2 2 2 27T

and the general constraints arc given by

2 1 1 1 1 1 1 1 1 4 o0
ti=|-cc|, C=}l 1 2 3 4 -2 1 1 1| and o, =] -2
—4 1 -1 1 -1 1 1 1 1 1 -2

The starting point z, is
zo = (.1, .5, .3333, .25, .2, .1667, 1428, .125, .1111 )7,
and F{z) ~ 9.4746 (to five figures). The optimal solution {to five figurcs) is
2 = (2.0000, 1.5719, ~1.4454, — 037003, 546685, .17512, —1.6567, —.30477, .31002 )7,

and F(<') = 1.390587. All three general linear constraints arc satisfied exactly at 2% The Lagrange
multiplier associated with the third general constraint is of the order of the machine precision, and
therefore the point # is a weak minimum, i.e., the optimal vbjective funclion s unique, buat is
echieved for infinitely many values of z.
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The second problem is a quadratic programming problem of type QP2 with a semi-definite
Hessian matrix and linear term given by

(

]

0 -4

) (7
0 1
0 -1
0 and e=] -1
0 -1
] -1
0 1
0

\ / \_3/

{Ncte that by setting M == 5, we need not assign the last four rows and coluinns of A to zero.)
The upper and lower bounds on the variables are given by

o= = R == R e
[ T e T e T e B R S O T I X
(=R =~ - L R
S S D S N ke ek el e
o o o o o o D o
o o D o o o o

o o o oD oo o Do

Ly = (-2, -2, -2, -2, -2, -2, -2, -2 -2)7

wo=( 2, 2, 2 2 2 2 2 2 f

and the general constraints are given by

-2 1 1 1 1 1 1 1 1 4 1.5
(L,=\|-21{, C= ( 1 2 3 4 -2 1 1 1 1 and u, = | 1.b
--2 1 -1 1 -1 1 1 1 1 1 4

The starting point z, is the zero vector, at which F{zg) = 0. The optimal solution (to five figures)
is

a = (2.0, --.23333, —.26667, —.3, —.1, 2.0, 2.0, —1.7777, —.45555 )7,
and F(z ) = --8.067778. The first two lincar constraints are satisficd exactly at the solution, as are

the upper bounds on variables «;, z¢ and z;. Note that, although the Hessian matrix is positive
semi-definite, the point # is unique.
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APPENDIX. SAMPLE PROGRAM AND OQUTPUT

DR NF WL AT

x &k X ¥ ¥k Kk Xk ¥

LS RS Rl s el et e e e e L e Y R R e R R LA P Y N
* FILE LSMAIN FORTRAN

*

* Sample program for

INPLICLIT

NROWC
NROWA
MAXN
MAXM
MAXBND
LIKORK
LKHORK

i ouanan

PARAMETER

INTEGER

INTEGER

JCUSLE PRECISION
OOUBLE PRECISIDN
ACLDLE PRTCISION
TCUSLE PRECISION
DOUELE PRICISION

DOUDLE PRECISION
CHARACTERX1Q

INTRINSIC

PARAMETER (
PARAMETER {
PARANMETER {
FARAINETER (

BIGEND
CEGBND

1.0B+15
'1.00115!

Example 1.

1
M
RCLIN

* ok K kK K X K

nnu

M

H
NCLIN
MNB!D

10
9
3

i uan

{NROMWC

N * NCLIN

Version 1.0 Jaruary 1986,
L e T R L N A I A S S R I I S Y

DOUGLE PRECISION(A-H,0-2Z)

Set the declared array dimensions.

the declared rom dimersion of C.
the declared row dimemsion of &,
maximm no. of varisbles allowed for.

maximm . of observations allowmed for.
maxixum no. of variables + linear comstrainis.
the lergth of the integer work array.

the lemgth of the double precision work array.

3y NROMWA
7s MAXM

60, LKCRK

HAXN + KNROWC

MAXN
LIWORK
HAXBID

LI E 1]

oouwonog

18,

900,

]

KX(MAXN), ISTATE(MAXBND)

THORKE LINORK)
CINRONC,MAXH)y BOHMAXM)

BLIMAXEND ), BU(HAXBND),

CVECTHAKN)
AHRONA,MAXNDY XIMAN)
RORK{ LRORK)

BIGBND
CBGSHD

FLOAT

CLAMDA(MAXBND )

POINTI=0.10%0, POINT3=0.30%0, ONEPTS=t_SD+0

ZERO =0.00+0, OME
THREE =3.00+0, FCUR
SIX  =6.0D%0

=1.03+0, THO
=4.00+0, FIYE

H
z2.0D0%0 )
=5.00%0 )

)

4 lincar least-squares probles,
TS C SISy SO ETE R LS rCEESESSTCSTom=T
Sct the actual problem dimersions.

the murber of ohservations (rows of A)
the mmber of variables.

i nueber of general linear constrainis tway be 0).

(may ba 01.
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50

B7 # —emeeae e ma e e e m . —————————— ———————————
Ea # Assign file numbers and problem data.

59 = HOUT = the it mmber for printing.

AD #* IOPTHS = tha mit rember for resding the opliiorns file.
61 * A = the least-squares matrix.

62 # B = the vectar of observations.

63 # c = the goneral constraint matrix.
64 * BL = the lower bounds on X and  Cx,
65 * BU = the upper bouwrkis on X  and C¥x.
66 * X = the initial estimate of the solution.
67 ®#  ecmcmmcmmmmrem e cermcd e mmmmmrr e e m e ce e cm e T e A E A E——
68 IOPTHS = &

&0 HOUT - &

70

71 DO 120 J = 1, N

72 DO IO T =1, M

73 AlTyJd] = ONE

74 B(I) = QUE

75 1190 CONTINUE

76 129 CONTIMNUE

77

70 ACZ 321 = TWO

79 AM10.2) = ZERD

=0

81 A(Z,3) = THREE

az AlE,T, = THO

az AL9,3) = ZERD

€4

85 AlG,%) = FOUR

ES AlB5,4) = THREE

[~ ¥} ALE,S) = ZERQ

8a

69 Al7,5) = ZERD

a0

X Al&,5) = ZERD

92

93 ALZ L7 = THO

% AL ,7) = - OQHE

95 Ate ,71 = ZEROD

95 At? 271 = TR0

97 AlL10,7) = ZERO

28

99 A2 ,8) = ZEROD

100 A(3 ,8) = - ONE

101 AlG ,8) = ZERD

102 A(9 ,8) = TC

103 At1G,8) = THO

104

10% ALZ ,9) = ZERO

106 &(3 ,9) = - THREE

107 Al6 49)F = - OHE

108 A9 ,9) = THREE

109 Al30,9) = THO

tie
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111 DO 140 J = 1, N

12 DO 130 X = 1, NCLIN

113 ClIyJ} = OME

114 120 CONTINUE

1156 140 CONTIMUE

116

117 Cl1,9) = FOUR

113

119 c(z,2) = TWO

120 £(2.3) = THPEF

121 (2,4} = FOUR

122 Cl2,5) = - THD

12

124 C(3,2) = CHE

1eb Cl3s41 = - ONE

176

127 N0 150 J = 1, M

128 BL(J) = - THA

129 BUCIS = TRO

139 150 COMTIMUE

3 BLL 31 = - BIGBND

132

133 = Set the ranges for tha general constraints.
134

125 BL{N*1) = THO

135 EU(N*1) = BIGSND

137 BLIN*ZY = ~ BIGBND

ii8 BUIN*EY = - THED

139 BLIN*3} = - FOUR

149 BU(N+3) = - TH0O

14

1492 DO 170 J = 1, N

143 XtJr = ONE 7/ FLOAT(J]

144 170 COMTIMNUE

145

145

197 % e e ———— emmmm———— cem———— ——— ————
148 * Read the options file.

149 * Add & single cption using a call to LSCPIN.
150 e e e e
151

152 CALL LSFILE( TOPTNS, INFORM )

153 IF FINFORM .NE. 0) THEN

154 WRITE (NOUV, 3C00) INFORM

125 sSTO?

156 EHD IF

157

154 CALL LSCPTH( "Infinite Bound size ='//CBGEND |
159

160 » S e —— ——_—————— e
161 * Sulve the problem.

162 # e st e ——— -———
163

164 CALL L5SOL ( H, N,

145 $ HCLIH, NROWC, NROWA,
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K XX X X X K

210
e

2390

260

270

280

4 A U 1

Cc, BL, RU, CVEC,

ISTATE, KX, X, A, B,
INFCRM, ITER, 0BJ, CLAMDA,
IHCRY, LIKOAK, WORK, LKORK )

Test for an error condition.

IF C(INFORH .5T. 1) GO TO 99%

Set the naw problem dimersions,

H = the nutber of rows (and colums) of & {may be 0).
N % the number of variables.
NCLIN = the nunber of gcneral lirear constrainis {(may be ¢].
CVEC = the lirear part of the objective function.
I -2
M =9
HCLIN = 3%
MBH3 = N + HCLIN
DN 220 J =1, M
DO 210 I = 1, J-1
A{IyJ) = DHE
COHTINUE
LU INUE
Do 230 I =1, M
ATL,I) = TWD
COMTINUE
B0 260 J = L4 Y
BL(J) = - TRO
BU{(J) = THO
CONTIHUE
BLIN¥1) = - TWO
BUINt1) = ONEPTS
BLIN'2Z) = - ThO
BUIN¥2) = ONEPTS
BLIN'T) = -~ THO
BU(N+3) = FOUR
poO 270 J = 1, H
CVEC({J) = - COHNE
CONTINUE
CVEC(1) = - FOUR
CVECIE) = = POINTI
CVZIC(3) = - POINT3

DO 280 J = 1, N
XtJ} = ZERO
CONTINUE
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221
222
223
224
225
226
27
228
229
239
231
232

233

2h6
247
258
249
200
251

252
253
254
b5
255
257
253

999

3000
0N

Assign some new options.,

CALL LEOPTH( rDefaults |

CALL LSOPTH( 'Problem type QP2' )

CALL LSOPTH( 'Rark %olerance = 1.0E-10' )

CALL LSOPTN{ ‘Feasibility tolerance = 1,0E-10' )

CALL L550L ( M: N,
MCLIN, HAQWC, NROMA,
C. BL, BU, CVEC,
ISTATE, KXy X1 Ay By
IKFORH, ITER, OBJ, CLAMDA,
INORK, LIHORK, WORK: LKORK )

BT A AT ]

Teet for an error conditien.

IF C(INFORM .G6T. 1} GO TO 99%
STOP

Error corxdition.

WRITE (NOUT. 3016) INFORM
STOP

FORMAT(/ ' LSFILE terwminated mith INFORM =, I3)
FORMAT(/ ' LSSOL termirated with INFORM =', 13)

Erd of the examsle prowyram for LSSOL.

EMND
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OPTIONS file

BEGIN Options for LSSOL 1.0 Ssmple problews.

Iterstions Limit 3
Problem Type a

Erd
Calls to LSOPTN

Infinite Bound size =1,00+!5

§0L/LSE0L

e EEESCoTSIERET=IICCSEIR

Paramotars

25
Leasi squares

Yersion 1.0 Feb 1586

Problom t¥P#....isersers Ls1
Linear constraints..... 3 Feasibility tolerance.., |.49E-08 COLD start.....co0vennn
Yarjables......ichnhnn L Infinite bound siza.... 1.D0E+1IS Crash ioleramce........ 1.00E-02
Objective metrix ross.. L¥] Infinita step size.,.... 1.00E+15 Rark ilolerance........s  1.495-00
EP5 tmachine precision) 2.22E-14 Feasibility phase itns. 60 Print level ... .. 00vues 10
Optimality phaza Vins. 25
Korkspace provided is IH( 600 M( 9002,
lo solve problem we meed IW( 91y M 261,
Fank of the objective function data matrix = &
Itn Jdel Jadd Step Ninf Sinf/Ubjective Brd Lin Nz Nzt Morm 6f HNorm Gzl Lord T Cond Rzt
Q9 0 1] 0.0£+C0D 2 Q.474603E+00 0 0 9 0 6.86E+00 0.00E*CO !,0E+OD 0.DE*OD
1 iZ 100 1.2E*00Q 4 5.987698E*00 b ] 1 4 U &.86E*00 O0.0CQE*QQ 1.0E¥00 D.DE+D0
2 1Z 11U 4,.1E-01 1 4.990079E+0D 0 2 7 0 3.00E+00 O.00E*00 1.1E+D0 O.DE+DO
5 iz 120 S.7E+00 1] 4. 959041EY01 9 3 .} ¢ 5.60E*01 o, t3E+DY 2.3E+DD 2.2E+D1
4 1] 10 3.02-¢1 0 2.429930E+0| 1 3 5 5 3.89E+01 2.8%EY01 2.4E+00  4.BEt00
5 1] ] 1.0E+0D 0 1.390587E-01 1 3 5 5 6.%5E~01 1.59E~15 2.4E+0D 4&.8Et00
Exit from L5 problem after 5 tterations. INFORN = 1
Variable State Valus Loster bournd Uppar bourwd Lage multipller Residual
VARBL 1 uL 2.000000 =-2.000000 2.0000900 =0.1191932 0.0000E*DD
VARBL 2 FR V1.571959 -2.000000 2.000000 0.0000000E+D0 0.4280
VARBL 3 FR =1.945401% Nena Z.000Q000 0."“1100QE+0Q 3.445
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VARBL 4 FR -0.3700275E-D1 -2 _000000 2.060000 b DODNBACE +OA t.94%
VAEGL B FR 0. 54666058 -2.000000 2.0006000 0.000D0000E+0D 1.453
VARBL 6 FR 0.1751236 -2.000000 2.000000 0,0000000E+00 1.825
VARBL 7 FR ~-1.656704% ~-2.00q000 2.000000 0.0000000E+00 0.3433
vALDL & FR  -0,3947742 -2.000000 2.000000 0.0000000E+0OD 1,605
vinaL ¢ FR  0,2100290 -2,000000 2.000000 ¢.00a09G0E+0D 1.690
Linear cormir Stete Value Lomer bound Upper bound Lagr multiplier Rasfdual
Licon 1 LL €.000000 2.000000 Notwe 0.3973107E~-01 «D . ISE3E~14
Lhco 2 uL ~2.000000 Hore -2.000000 -0.1161932 -0, 4219E=-186
LHCON 3 UL «2.000000 -4,000030 -2.000000 0.2006460E-15 -0.4441E-15
Exit LSS0L - Hesk LS solution.
Final L5 objective value = 0.1390587
Calls ta LSDPTHN
Defaults
Problem type QP2
Rank tolerance = 1,0E-10
Feasibility tolerance = 1.0E~10
SOL/LSSOL === Version 1.0 Feb 1584
S SRR CECCSIEZEIIZISSSSESSTSESSSSEZCICX
Parameters
Problem tvpe....voveune Qp2
Lincar comstroints..... 5 Feasibility tolarance.. 1.00E-10 COLD mtert.ic.ucivaneees
Variublen i vieieaa, 9 Infinite bound size.... 1.00E+10 Crash tolerance........ 1.00E-D2
Chjective matrix rows,, 5 Infinite siep size..... 1.00E+10 Rank tolerance......... *#.00E-10
CPS fmochine preciaionl 2.22E€-14 Feasibllity phase itrae. %] Print level.......ves )]
. Optimality phase ltins. 60
Horkspace provided s INI 60, N 00). "
To solve problom we need IHI( )y M 270).
Rark of the objective function data matrix = 5
Itn Jdel Jadd Step HInf Sinf/objective b LiIn NZ Nzl  HNore 6f Horwm 6x1  Cond T Cond Rzi
0 0 0 0.0E+08 0 0.000000E+00 0 [} 9 5 Q.70E¥00 4.47E*00 2,.4E%00 1.3E*CQ
1 [+] tu 7.5E-0t 0 -4 ,.375000£+00 1 [ 8 4 1.53E*00 5.00E-01 2.4E%00 1,3E+L0
2 +] ] 1.0E*00 0 ~% . 400000E+D0O 1 o 8 & 1.45E+00 3.67E-I7 2.4F%00 1.3F+00
3 Y4 100 3.0c-01 ] ~4,700000E+)0 1 1 7 4 1.45E¥00 B.94E-01 1 _.0GE+DD 1_0Es0O
% 0 0 1.0E+0D 1] -5.10000QF+0D 1 \ 7 A& P ATFIAR 4 BAK_IT7 4 .0ESDO  4.0E400
5 7z t2u  5.4E-01 0 =6.055714E+00 1 4 & 4 2,47EY00 1,73E+00 2.0E4DO0 1,3E+00
6 0 &U  1.1E-02 0 -6.113326E+00 4 4 5 3 2.2°7'00 1.64ED0  2,0£400 1,.7EtO0Q
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7
L)
?
0

1
1
12t

Exit from QP probles aftar

Variable

VARBL
VARBL
vaARaL
YARBL
VARTL
VARBL
VARBL,
VARDBL
VARBL

- N T R

Lircar conatre

LCON L
LHCON 2
LNCON 3

Exit LS50L - Optimal QP solution.

Final QP obhjective value =

o
0
X
4z

0
U

U t.1E-D1 1] ~6.215049E+DD 2 3 % 2 2.03E¥Q0 1.1BE+00
] 1.0E*00 0 =6.530008E400 4 3 4 2 L.I0EYQQ  2.22E-16
0 1.0E*00 [+ =6.567373EY00 2 3 9 3 1.07E*QQ 2.23E-~16
A 1.TEYCRD 0 -8.055612E400 3 3 3 3 3.83e-01 2.B2E-D1
] 1.0E+00 ] -8.067T18E+QD 3 3 3 3 4.38E-01 1.0BE-14
0 1.0E+00 0  ~8.06777BE+CD 3 H 4 4 4.3JE-01 1.0BE-16
12 1terations. INFORM = ©
State Velue Lower bound Upper boud Lagr mulitplier
uL 2.000000 -2.000000 2.000000 -0.8000000
FR =0.233333113 -2.000000 2.000080 0.00DO0QOEDD
FR -0.2666667 ~2.000000 2.000000 0.00000DOC+DY
FR -0.3000000 -2.000900 2.000000 0.0000C00E+D0
FR =0,1000000E+00 =-2.000200 2.000000 D.000BEOYE*DD
UL 2.C00000 ~2.000000 2.000000 ~0.9000000
uL 2.C00000 =-2.000000 2.000000 =2.9000000
FR  =1.777778 -2.000000 Z.090000 0.0000UUVETDD
FR =0.4555554 =2.000000 2.000000 0.0000000E+0D
State Yalue tovar bound Upper bournd Lagr multiplier
UL 1.500090 -2.0480489 1.500000 ~%.6666647E-01
UL 1.500000 ~2.000000 1.500000 =0.3333333E-01
FR 3.933333 ~2.000000 %.000000 0.00000C0E*0OO

-8.067778

ZAEr QD
2.15*090
2. 1E+00
2.1E+00
2.1E+0D
1.2E+00

Resicual

1.5E+00
1.5C*00
2.7E400
3.7E+CO
3.7E+00
5.8E+0D

D.0CQOE*DD

1.767
1.733
1.700
1.900

0.0000E*C0D
0.0020E+00

Q.2222
1.544

Residual

=0.3553E-14
D.2220E-15
D.66EVE-D1
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A (objective data matrix). L.
extunated rauk of, 4. 16, 18.
wderticaily zero, 16 (nlso see Linear program),
A, O (definition).
Algorithm of LSSCL, description, 2-0.
a (step iength). 2, 4
rrinted value, 17,
ap (8tep 1o nearest canstraint), 8.
Anudall 470, 20.
ANSI (1977) Fortran, 1, 20,
Artificial constraint, 4-5 (definition), 17.
Artificial nliplier, 3.

ASCII, 20.

b {vecirr of observations), 1.
B, 9-10 {definition).
Begin (in options file), 12-13.
BIGEKD, 15 (also see Infinive Bound Siza).
BL, 7 8 (definition).
DLAS, 21.
Level 2, 21.
Brd, 2, 17.
BU, 8 (definttioc).
Burroughs 6000 and 7600, 20.

C {general constraint matrix}, 1.
in examples, 24 25.
Crrs 2, 8.
Crx, 3.
. 7 (definition).
CDC 8000 and 7000, 20.
Checklist of optional parnmeters, 18,
Cholesky factor, 3, 4, 9, 15.
printout of diagonals, 13.
CLAMDA, 10 (definition).
Cold Start, 8, 14 (definition).
Column interchanges. 4 (also see Rank).
Comument (in cpticnal parameter specification),

Common blocks, list of, 21.
€ond Rzl, 5, 18,
Cond T, 5, 18,
Condition estimator
for Ry, 5, 18.
for T. 5, 18.
Condition of working set. control of, 5-8.
Constraiued stationary point, 3.
Constraint status indicator {scc IZTATE).
Constraint violations, weighted sum of, 17.
Convexity, 2.
Crash Tolerance, i4 {dchnition).
Cray-1, 20,
CVEC, 8 (definition).
Cyber, 20.
Cycling, 10, 19,

Data General MV /3000, 20.

Data matrix (see A and 4),

DEC Systewss 10 and 20, 20,

DEC VAX, 20.

Default valucs cf optional parameters, checklist
of, 18.

Diagorals
of R, printout, 165,
of T, printout, 15.
Distrit:ution tape, format of, 20,
DOJBLE. 7.
Double preciaion
table of machine constante, 23.
version of code, 20.

E (printel consiraint desiguation), 17,
End (in options file), 12-13.
EP3, 22 (also see ¢).
¢ (machine precision), 14, 22.
EQ (priuted constraint statns), 18, 2%
Equality constraint, 1, 8, 17, 18.
Error correction procedures, 19.
Batimnated 1ank .
of A, 4. 18, 18 (also scv Rank Telerance}.
uf Ry, 16 (alsc sve Rank Tolerance).
Example 1 (a least-squares problem), 24,
Example 2 {(a quadratic progeam), 25.
BExainple problems, 24-25.
Explicit linear term in objective function, 1, 10.
External file, use for option specification, 12 -13.

f (transforined residual), 3, 4.
F {objective function). 1.
Farom, 20.
Feasibility phase, 2, 4, 8, 17, 19.
Feaosibility Phase Iteratlon Limit, 10, 14 (defl-
nition).
Feasibility Tolerance, 2, 5, B, 15 (definition),
19.

adjustment to avoid overfiow, 19,
Feasible point, 15 (definition).
Feasible-point problem, 1 {also see FP).
Finat solution, printout, 15. !
Fixed variables, 2 (also sce EQ},
Formal parameters of LSSOL, 7-10.
Formal specification of LSSOL, 7.
Format of distribution tape, 20.
Fortran

ANSI (1977}, 20.

subroutines. narming convention, 21.
FP (prablem type), 1, 7, 8, 18.
F& |printed conatreint status), 18.
Free variables, 2.
Fusitsu, 20.

Gabor, Zsa Zsa, 10,
General constrainta, 1, 18.
Giobal minimum, 1.

H {Hessian matrix}, 1.

HDWIRE, 22.

Hessian motrix, 1, 4.
semi-defnite example, 25,
upper-triangular factor, 3, 4, 9.

Hitachi, 20.

Honey well, 2G.

IBM
380/370 and 3033/3081, 18, 20, 22,
¥S Fortran, 20.
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1CL 2900, 20.

Iinplementation infurmation, 20-23,

Infeasible probiemn, 3-4, 10, 17, 19,

Jnfeasibilities, weighted sum, 17,

Infinite lower or upper bound, I, 8.

Infinite Bound Size, 8, 10, 15 (definition).

Intinite Step Size, 15 {definition).

INFGRM, 10 (definition).

Initial working sct, §, 6, 8 (also see Cold Btart

and Warm Start),

Inputl parancter, invalid, 10.

Installation procedure, 20.

Invalid input parameter, 10.

I0PTHS (options file number), 12--13.

ISTATE, 8 -¥ (definition), k4, 18,
printout. 15.

ITER. 10 (definition).

Iteration Limit, 15 (definition), 19,

Itera (sec Iteration Limit).

Itn {printicd valuej, 17,

itns (sce lteration Limit}.

1¥, 10 (rdcfmtion).

Jadd (printed value), 4, 17.
Jdel {printed valuc), 4, 17,

Keyword in option specification, 12.
KX, 2, 9 (definition), 18.

£ {lower hound vector), 1, 8 (also see BL).
Ly, 24.
4, 24
L (printed constraint designation), 17 (also see
BL].
Lagr mlzltipliur {printed value), 18.
Lagrange multiplier, 3, 10, 15, 13, 19, 24.
optimal, 3-4, 10, 18.
zero or small, 19.
LCOLS (problein stalememt), 1,
Least Squares {see LS1).
Least-squares matrix, 1, 9 {(also sce 4 and A).
Least-squares problem, 1.
exarnple, 24.
LENTW, L1 (delinition).
LENW, L1 {definition).
Level 2 BLAS, 21.
Lin (printed value), 2, 17,
Linear conatr, 18,
Linear least-squares problem, 1.
Linear objective function, 16,
Lincar prograw, 1, 10,
Linear Program (see LP).
Linear term in objective function, 1, 10,
Lines of code ic LSSOL, 1, 20.
LL {printed constraint status), 18,
LNCON, 18.
Local minimum, 1 {also see Weak minimum).
Lower Bound, 17, 18 (also see BL).
LF {problem type), 1, 7, 8, 16,
L81 (problem type), t, 7, 8, 18, 24,
LS2 (problem type}, 1, 7, 8, 16.
L83 (ptoblem type}, 1, 7, 8, 18.
L54 {problem type), 1, 7, 8, 18.
LSFILE, 12-13.

LSOPTN, 13.
list, sample, 16.

L5y (see L31).

LSSOL
algarithm of, 2 6.
lines of code in, 1, 20.
paraineters of, 7 11.
specification of, T.

m, 1.
my (number of general constiraints), 1, 2. 5, 24,
my (number of general constraints in working
get}, 2.
M, 7 (definition).
Machine constants
computation of, 21,
tables of, 22.
Machine dependencies in code, 21 -23.
Machine precision (see €).
Matrix factorizations, routines for updating, 21.
MCHPAR. 22 (also see Machine constants).
Methad of LSSOL, description, 2 8.
Minimal sum of infeasibilities, 4, 17, 19.
Minimum abbreviation (of optional parameter),
14.

n {number of variables}, 1.
npr (number of free variables), 2.
nyyx (number of fixed variables), 2,
1z, 3, 5, 17.
N, 7 (defnition),
Naming conventicn for Fortran subroutines, 21.
NBASE, 22.
NCLIN, 7 (definition) (also sce ).
NDIGLT, 2Z.
Negative steps. 6 (also see a).
NIN, 22.
Ninf {number of infeasibilities), 17,
No feasibie point, 4, 10, 17, 19,
Nolist option, 13.
Non-existent lower ar upper bound, 8.
Nens {in printout), 18.
Nonlinearly constrained optimization, 6.
Nout, 22
Norm Gf, 3, 17 (also see Projected gradient).
Norm Gz1, 5, 17 (also see Projected gradient),
NPSOL, B.
KROWA, 7 (definition).
KRO¥C, 7 (definition).
Null space, 3.
dimensicn of {see ng).
Number of infeasibilities, 17.
Nz, 3, 8, 17.
Nz1, 5, 17,

081, 10 (definition).
Ubjective, 17,
Objective function {FY, 1.
data matrix (see A and 1).
linear, 186.
Objective matrix (see A and 4),
Observation vector (5}, 1.
Optimal Lagrange muitiplier, 3-4 (definition),
10, 18.
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Optanal solntiun, 10,
Opthnality phase, 2 (also see Method of LSSOL).
Optimality Phage Itaration Limit, 10, 14 (defi-
nition).
Optimadity test, 10.
GOption-handling routines, 21,
Oplional parameters, 12-18,
clhiecklist anid defanlt values, 16.
cunndative chaoges, 13.
deseription. 14 16,
Options file, 12 -13.
Ordering of variatdes, 2 (also see XX).
Orihogonal transfonuation, 2.
Overfoew, 10

p (scarch direction}, 2, 3.
Prs 4
Paramcter vectar (sce ).
Paramcters of LESOL. 7-11.
Phase L {see Feasitility phase).
Thase 2 Jsce Uptinality phase).
Thirase {to mndify optiomal parameter), 12.
Trecision, machine {sce ¢}
Proand methed, 2.
Priune Systems, 20.
Print Level. 1. I1. 15 {definition).
Printed ontput, deacription, 17-18.
Printuut, cuntrol of, 15.
Problem type isre Prablem Typa).
Problem Type, 1. 15 18 (definition}.
Prcjected gradient, 3, 10.

nurin, 17,

Qla

QFlln 2
QP {problem type), 7, 8.

0P1 {problem type). &, 7, 8, 18.
qP2 (problem type), 1, 7, 8, 16, 25.
ur3 (problem type). 1, 7, 8, 16.
QP4 (problem type). 1, 7, 8, 18.

R factorization, 4.
Quardratic program, 1. 16.
example, 25,
Quadratic Program {(problem type} (sce aP2).
Qualifying phrase {in optienal parameter), 12.

R.3, 4.9, 15 (also see Ry}

ordering of eohnuns (see XX).

printeut of diagonals, 15.
Iy, 4, 16.

condition estimate cf, 18 (also sce Cond Rz1).
;. 3. 4,10, 17.

singular, 3, 4, 10, AT,
Rank, 4, 16,

determination, 18,
Rank Telerance, 4, 19 (definition), 18.
REAL, T.
telerences, 26.
Re-ordering of variables, 2 {also see KX).
Reset optional paracters, 13-4,
Residual, 10, 18,
Residual vector. 3, 4, 10,
Reverse-triangnlar matrix, 2 (also see T).
EMAX, 22.

RMIN, 22,

RTEPS, 22.
RTMAY, 22.
RININ, 22.

search Jdirection (p]. 2.
Second-derivative matrix, 1 (also see Hessiuu 1na-
tria}.
Semi-definite Hessian matrix, example, 25.
Sequential quadratic programming method, 8.
Shnpbex method, 2. 5.
Simplex steps, 2, 5,
Sint [weighted sum of infeasibilities), 17,
Single precivion
talile of wachine constanls, 23,
versian of code, 20,
Singnlar Rz, 3, 4, 10, 17,
Small Lagrange nltipiier, 10.
Source Bles, ist, 20.
Specification of L8SOL, 7.
Standard simpiex method, 2.
Btatn, 18 (also see TSTATE).
Stattonary point, 3.
Status indicator for canarraints (sce ISTATE].
Step [printed value), 17 (nduc sce Step length).
Step length {a) 2,4, 17,
choice of, 4, 5,
Strong local minimuam, 1, 1Q.
Sum of infeasibilities, 3 4.
tninimu. 17.
weighted, 17.
synonyms {for optional parameters), 12,

T, 2 3.
condition estimate, L8 [also sce Cond T).
printout of diagenals, 15.
T (printed corstraint designation), 17 {also sce
Temporary boundj,
Tape
characteristics, 20.
format 20,
Temporary bound. 5, 17.
TQ factorizarian, 2, 5, 15.
Transformed residual vector {f), 2, 4, 10,
T‘laprzo}ida] matrix. 1, 9 (also sec Triangular fac-
tor).
Triangular factor, 3, 4, §, 15.
of Heatian as data malrix, 9.
Two-phase primal method, 2.

4 {upper bound vector), 1, 17 [also see BU).
up, 24.
ur, 24,
U {printed constraint designation), 17.
UL (printed constraint statns), 18.
Unbonnded
objective function, 10, 15,
solution, 1, 10.
atep, 15.
Urderflow, 10,
Urnique schition, 1, 10.
Univae 1100, 20.
Unknowns, vector of {sce = and X,
Updating matrix factorizations, routines for, 1.
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Uppsr bound, 18 {also see u and BU),

Upper-trapezoidw matrix, 1, 9 (alse see Triang-
ular fictor).

Upper-triangnlar factor (see Triangalar factor),

Valid option strings, examples of, 132.
Yalue, 18.
VAREL, 18.
Yariable, 18.
Variance-covariance matrix, 9.
Yector
of cbservations (b), 1 (alzo sce B).
of uuknowns (2}, 1 (alsu see X).
Yertex, 2, 3, I7.
Violatinns, constraint (sce Infeasibilities},

¥, 11 (dufinition}.
Warm Start. 6. 8, 14 (definition}, 19.
Weak suinimuaig, 1, 100
example of, 24.
Weak LP solution {sce¢ Weak minimum).
¥Weak LS solution {see Weak minimum).
Weak QP solution (sce Wenh minimum).
Weighted s of infeasibilitien, 4, 17 (alna sce
Infeasible problem).
WMACH, 22 (nlso sce Machine constants),
Working precision, 7 (also see €).
Working set
changes in, 4.
condition estimate, 18 (also see Cond T),
definition. 2.
Workspace parameters of LESQL, 10-L1.

z {vector of unknowns), L
printout. 18,
X. 9 (definition).

Y, 2.

Z (basis for nnll space), 2 (also see Null space).
dimension of (see ny).

2y, 4-5, 17.

ZT9: 4. 5 (also see Projected gradient].

Zy, 4-5.

2 (printed constraint designation), 17.

Zero Lagrauge muitiplivr, 19 (also see Lagrange

multiplier).

-- [printcd constraint status), 13 (also sec Infea-
sible problem).

++ (printed constraint status), 18 {also see Infea-
sible problem}.
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