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Abstract
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Doctor of Philosophy
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2005

An adaptive rule-based algorithm, SpaseLoc, is described to solve localization problems

for ad hoc wireless sensor networks. A large problem is solved as a sequence of very

small subproblems, each of which is solved by semidefinite programming relaxation of

a geometric optimization model. The subproblems are generated according to a set of

sensor/anchor selection rules and a priority list. Computational results compared with

existing approaches show that the SpaseLoc algorithm scales well and provides excellent

positioning accuracy.

A dynamic version of the SpaseLoc method is developed for estimating moving sensors

locations in a real-time environment. The method uses dynamic distance measurement

updates among sensors, and utilizes SpaseLoc for static sensor localization. Further

computational results are presented, along with an application to bus transit systems.

Ways to deploy sensor localization algorithms in clustered distributed environments

are also studied, permitting application to arbitrarily large networks. In addition, we

extend the algorithm to solving sensor localizations in 3D space. A preprocessor is

developed to enable SpaseLoc for localization of networks without absolute position in-

formation.

Joint research conducted in the Dept of Management Science and Engineering, Stanford University.
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Chapter 1

Introduction

Ad hoc wireless sensor networks may contain hundreds or even tens of thousands of in-

expensive devices (sensors) that can communicate with their neighbors within a limited

radio range. By relaying information to each other, they can transmit signals to a com-

mand post anywhere within the network. They have many practical uses in areas such

as military applications [27], environment or industrial control and monitoring [11, 13],

wildlife monitoring [45], and security monitoring [27]. For example, Southern Califor-

nia Edison’s Nuclear Generating Station in San Onofre, California has deployed wireless

mesh networked sensors from Dust Networks to obtain real-time trend data [13]. These

data are used to predict which motors are about to fail, so they could be preemptively

rebuilt or replaced during scheduled maintenance periods. The use of a wireless sensor

network saves the station money and avoids potential machine shutdown. Implementa-

tion of a sensor localization algorithm would provide a service that eliminates the need

to record every sensor’s location and its associated ID number in the network.

Wireless sensor networks are potentially important enablers for many other advanced

applications. A huge variety of applications lie ahead. By 2008, there could be 100 million

wireless sensors in use, up from about 200,000 in 2005, according to the market-research

company Harbor Research. The worldwide market for wireless sensors, it says, will grow

from $100 million in 2005 to more than $1 billion by 2009 [36]. This is motivating great

effort in academia and industry to explore effective ways to build sensor networks with

feature-rich services [19].

One of the important inputs these services build upon is the exact locations of all

sensors in the network. The need for sensor localization arises because accurate positions

are known for only some of the sensors (which are called anchors). If the networks are

to achieve their purpose, the positions of the remaining sensors must be determined.

One approach to localizing these sensors with unknown positions is to use known anchor

1



Chapter 1. Introduction 2

locations and distance measurements that neighboring sensors and anchors obtain among

themselves. The mathematical problem is to estimate sensor positions using a sparse data

matrix of noisy distance measurements. This leads to a large, non-convex, constrained

optimization problem. Large networks may contain many thousands of sensors, whose

locations should be determined accurately and quickly.

One way to localize a sensor is to rely on the satellite-based global positioning system

(GPS) [9]. This may be important for at least some of the sensors in a network. (They

would be anchors.) However, GPS suffers the following main drawbacks:

• GPS based system is typically more expensive to deploy because devices using it

are more costly.

• GPS can be less accurate. Without the use of specialized equipment, normal GPS

can pin point subject locations with 5 to 10 meter accuracy in outdoor environment.

• GPS is not applicable for indoor localization since GPS requires line of sight.

• Because of satellite communication delay, use of GPS might not be an effective

method for real-time tracking of moving sensors.

Existing non-GPS-based localization methods have been applicable for only moderate-

sized networks. The primary aim of this thesis is to develop non-GPS-based localization

algorithms that are effective for the large-scale networks that are likely to be deployed

in the coming decades, and to achieve the efficiency needed for real-time environments.

In this chapter we first describe the sensor localization problem and introduce relevant

notation. A review of related research work follows. Our new solution techniques are

summarized next, and finally the thesis outline is given.

1.1 Problem Definition

Sensor localization in ad hoc wireless sensor network aims to find the locations of all

sensors in the network, given pair-wise distance measurements among some of the sensors,

and known locations of some of the sensors. The sensors with known locations are called

anchors. From now on, sensor generally means unpositioned sensor, excluding anchors.

A node is any sensor or anchor in the network.

We use a constrained optimization approach to estimate the sensors’ locations. The

following input, output, and objectives are considered.
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1 ≤ i < j ≤ s|s+1 ≤ k ≤ n

︸ ︷︷ ︸|︸ ︷︷ ︸
s sensors m anchors

Figure 1.1: Indexing of sensors and anchors.

Input

Total points : n, the total number of nodes in the network.

Unknown points : s sensors, whose locations xi ∈ R2, i = 1, . . . , s are to be determined.

(We assume the points are on a plane here, but the approach is extended to three

dimensions in Chapter 6.)

Known points : m anchors, whose locations ak ∈ R2, k = s+1, . . . , n are known. (Note

that we put anchors at the end of the total points’ list without loss of generality,

and that n = s + m. Index k is specific for indexing anchors. Refer to Figure 1.1

for nodes indexing.)

Known distance measurements : The readings of certain ranging devices for estimating

the distance between two points. d̂ij is the distance measurement between two

sensors xi and xj (i < j ≤ s), and d̂ik is the distance measurement between some

sensor xi and anchor ak (i ≤ s < k). The distance measurements are constant data

and generally have errors.

Output

Locations : Estimated locations xi for s sensors.

Objectives

Accuracy : Minimal errors in the estimated sensor positions.

Speed : Fast enough for real-time applications (e.g., networks with moving sensors).

Scalability : Suitable for large-scale deployment (with tens of thousands of nodes).

1.2 Notation

The Euclidean distance between two vectors v and w is defined to be ‖v−w‖, where ‖ · ‖
always means the 2-norm. Nodes are said to be connected if the associated measurements
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d̂ij or d̂ik exist. The remaining elements of d̂ are zero. If a measurement does exist between

node i and j but it is zero (i and j are at the same spot), we do not set d̂ij to zero: we

set it to machine precision ε instead to distinguish from the case of d̂ij = 0 when two

nodes’ distance is beyond the sensor device’s measuring range.

1.3 Related Research Work

Sensor localization in ad hoc wireless network has been a booming research area recently.

Hightower and Boriello [19] give an extensive review of the area and available methods.

There are many ways to solve the localization problem [2, 7, 12, 15, 20, 33, 37, 38, 39, 40],

with two main ones based on triangulation and optimization.

Triangulation methods estimate node positions based on distance measurements be-

tween neighboring nodes, and some algorithms use iterative steps to localize all sensors.

Early work using optimization techniques is reported by Doherty et al. [12]. Ideally

the Euclidean distance between neighboring nodes should be fitted in some near-equality

sense to the distance measurements:

‖xi − xj‖ ≈ d̂ij and ‖xi − ak‖ ≈ d̂ik. (1.1)

Doherty et al. formulate a convex optimization model by treating the constraints as

‖xi − xj‖ ≤ d̂ij and ‖xi − ak‖ ≤ d̂ik, and by including certain other convex constraints.

This formulation takes advantage of available optimization algorithms, including those

for convex optimization. However, the method needs sufficient anchors to be positioned

on the boundary of the localization area for it to work effectively.

Biswas and Ye [4] work with the near-equality constraints (1.1), and most importantly

they introduced a semidefinite programming (SDP) relaxation method in order to retain

the benefits of convex optimization. They report that their method yields more accuracy

under all conditions than the approach in [12].

The SDP relaxation approach can solve small problems effectively. The paper reports

a few seconds of laptop execution time for a 50-node localization problem. However, the

number of constraints in the SDP model is O(n2), where n is the number of nodes in the

network. Even a few hundred-node problem leads to excessive memory and computation

time by available SDP solvers such as DSDP (Benson, Ye, and Zhang [3]) and SeDuMi

(Sturm [44]). These solvers are effective for SDP problems with dimension and number

of constraints up to a few thousand.

Tseng [46] has presented a second-order cone programming (SOCP) relaxation model
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that permits solution for problem sizes up to a few thousand using available SOCP

solvers. However, the additional relaxation of the original model usually generates larger

error rates, and the run-times are high. The author reports CPU times of 330 seconds

for 1000 nodes and 3 hours for 2000 nodes using SeDuMi 1.05 [44] and Matlab 6.1 on

a Linux PC.

Biswas and Ye [5] propose a decomposition scheme to overcome the scalability issue

with SDP solvers. The anchors in the network are first partitioned into many clusters

according to their physical positions, and sensors are assigned to these clusters if they

have a direct connection to one of the anchors. Each cluster formulates a subproblem,

and the subproblems are solved independently on each cluster using the SDP relaxation

of [4]. The paper reports results for randomly generated sensor networks of 4000 sensors

partitioned into 100 clusters strictly according to their geographic locations. Sensors with

distance connections to more than one cluster are included in multiple clusters. The final

estimation of their locations is determined by the cluster that gives the least estimated

errors. An execution time of about 4 minutes on a 1.2GHz Pentium laptop is reported

for this sized problem. The time could be reduced by using multiple CPUs.

Although Biswas and Ye [5] make large-scale sensor network localization possible by

decomposing the large-scale problem geographically, there are shortfalls in this approach

that may prevent its large-scale deployment. First of all, for any real deployment of a

wireless sensor network, localization algorithms should run in real-time, where minutes

could be too long and multiple CPUs could be too expensive. Secondly, since the partition

is strictly based on geographic locations, sensors near the border lines of a cluster may not

be positioned as accurately as they would be using other approaches. This is due to the

fact that each cluster may include only partial connection information for the bordering

sensors if the bordering sensors have connections with multiple clusters. Furthermore,

the SDP relaxation approach that their decomposition method is based on provides poor

accuracy on certain topologies with low anchor density or small radio range for even

medium-size networks (refer to section 3.3.2).

1.4 Solution Techniques

A basic tool that we have developed during this research is a rule-based iterative algo-

rithm named SpaseLoc (sub-problem algorithm for sensor localization). It is effective for

networks involving tens of thousands of sensors and beyond.

To solve a large localization problem (defined as the full problem), SpaseLoc proceeds

iteratively by estimating only a portion of the total sensors’ locations at each iteration.
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Some anchors and sensors are chosen according to a set of rules. They form a sensor

localization subproblem that can be treated similarly to the basic SDP formulation of

Biswas and Ye [4]. The solution from the subproblem is fed back to the full problem and

the algorithm iterates again until all sensors are localized.

Computational results show that SpaseLoc can solve small or large problems with

excellent accuracy and scalability. It is capable of localizing 4000 nodes with great

accuracy in under 20 seconds, and 10000 nodes in about a minute on a 2.4GHz laptop.

With the SpaseLoc tool in hand, we are able to develop a dynamic sensor localization

algorithm to track hundreds or thousands of sensors moving within a larger network. We

also develop distributed methods for deploying SpaseLoc in arbitrarily large networks. A

3D version of SpaseLoc extends its utility further. In addition, a preprocessor is designed

to allow SpaseLoc to be applied to sensor localizations in anchorless networks.

1.5 Thesis Outline

The basic sensor localization concept and current methods are described in the first

chapter. Chapter 2 introduces the semidefinite programming model that our SpaseLoc

subproblem is based on. We present our sensor localization algorithm SpaseLoc and

computational results in Chapter 3.

In Chapter 4, a dynamic version of SpaseLoc is developed for estimating moving

sensors’ locations in a real-time environment. The method uses dynamic distance mea-

surement updates among sensors, and utilizes SpaseLoc for static sensor localization.

Computational results for the algorithm are presented, along with an application to bus

transit systems.

Chapter 5 describes ways to deploy sensor localization algorithms in clustered dis-

tributed environments for true scalability.

In Chapter 6, we extend the algorithm to solving sensor localizations in 3D space.

In order for SpaseLoc to apply to networks containing no anchors, a preprocessor is

developed in Chapter 7 to obtain relative positions of all sensors in the network.

The last chapter summarizes, and points out future promising research areas.



Chapter 2

The Subproblem SDP Model

This chapter reviews the quadratic programming formulation of the sensor localization

problem, and the SDP relaxation model of Biswas and Ye [4] on which the SpaseLoc

subproblem is based. Error analysis is also reviewed here as a reference for later chapters.

2.1 Euclidean Distance Model

Consider a network of sensors and anchors labeled as in Figure 1.1. For any point in

the network, there could be three types of distance measurements. Since we generally

do not need the distance information between two anchor points, we exclude this type of

measurement from now on.

The other types of distance measurements are the two we need for the localization

model. First is the distance measurement between two sensors (i and j) with unknown

positions; second is the distance measurement between a sensor (i) and an anchor (k)

with known position. Corresponding to these two types of distances, we define sets N1,

N1, N2 and N2 as follows:

• N1 includes pairwise sensors (i, j) if i < j and there exists a distance measurement

d̂ij:

N1 = {(i, j) with known d̂ij and i < j}.

• N1 includes pairwise sensors (i, j) with unknown measurement d̂ij and i < j:

N1 = {(i, j) with unknown d̂ij and i < j}.

7
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• N2 includes pairs of sensor i and anchor k if there exists a measurement d̂ik:

N2 = {(i, k) with known d̂ik}.

• N2 includes pairs of sensor i and anchor k with unknown measurement d̂ik:

N2 = {(i, k) with unknown d̂ik}.

The full set of nodes and pair-wise distance measurements form a graph G = {V, E},
where V = {1, 2, . . . , s, s + 1, . . . , n} and E = N1 ∪N2.

Introduce αij to be the difference between the measured squared distance (d̂ij)
2 and

the squared Euclidean distance ‖xi − xj‖2 from sensor i to sensor j. Also, let αik be

the difference between the measured squared distance (d̂ik)
2 and the squared Euclidean

distance ‖xi − ak‖2 from sensor i to anchor k. Intuitively, we seek a solution for which

the magnitude of these differences is small.

Lower bounds rij or rik are imposed if (i, j) ∈ N1 or if (i, k) ∈ N2. Typically each rij

or rik value is the radio range (also known as radius) within which the associated sensors

can detect each other.

Biswas and Ye [4] formulate the sensor localization problem as minimizing the `1

norm of the squared-distance errors αij and αik subject to mixed equality and inequality

constraints:

minimize
xi,xj ,αij ,αik

∑

(i,j)∈N1

|αij| +
∑

(i,k)∈N2

|αik|

subject to ‖xi − xj‖2 − αij = (d̂ij)
2, ∀ (i, j) ∈ N1,

‖xi − ak‖2 − αik = (d̂ik)
2, ∀ (i, k) ∈ N2,

‖xi − xj‖2 ≥ r2
ij, ∀ (i, j) ∈ N1,

‖xi − ak‖2 ≥ r2
ik, ∀ (i, k) ∈ N2,

xi, xj ∈ R2, αij, αik ∈ R,

i, j = 1, . . . , s, k = s + 1, . . . , n.

(2.1)

The above model is a non-convex constrained optimization problem. As yet there is

no effective solution method. In the following sections, we review Biswas and Ye’s [4]

relaxation method for solving this problem approximately.
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2.2 The Euclidean Distance Model in Matrix Form

The distance model (2.1) is reformulated into (2.2) (refer to Biswas and Ye [4]) by intro-

ducing matrix variables as follows:

minimize
∑

(i,j)∈N1

(α+
ij + α−ij) +

∑

(i,k)∈N2

(α+
ik + α−ik)

subject to eT
ij Y eij − α+

ij + α−ij = (d̂ij)
2, ∀ (i, j) ∈ N1,

(
ei

−ak

)T(
Y XT

X I

)(
ei

−ak

)
− α+

ik + α−ik = (d̂ik)
2, ∀ (i, k) ∈ N2,

eT
ij Y eij ≥ r2

ij, ∀ (i, j) ∈ N1,

(
ei

−ak

)T(
Y XT

X I

)(
ei

−ak

)
≥ r2

ik, ∀ (i, k) ∈ N2,

Y = XT X,

α+
ij, α−ij, α+

ik, α−ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.2)

where

• X = (x1 x2 . . . xs) is a 2× s matrix to be determined;

• eij is a zero column vector except for 1 in position i and −1 in position j, so that

‖xi − xj‖2 = eT
ij XT X eij;

• ei is a zero column vector except for 1 in position i, so that

‖xi − ak‖2 =

(
ei

−ak

)T (
X I

)T (
X I

) (
ei

−ak

)
;

• Y is defined to be XT X;

• The substitutions αij = α+
ij − α−ij and αik = α+

ik − α−ik are made to deal with |αij|
and |αik| in the normal way.
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2.3 The SDP Relaxation Model

The approach of Biswas and Ye [4] is to relax the constraint Y = XT X to be Y º XT X,

for which an equivalent matrix inequality is (Boyd et al. [6])

ZI ≡
(

Y XT

X I

)
º 0. (2.3)

With the definitions

AI =




0 0 0

1 0 1

0 1 1


 , bI =




1

1

2


 ,

where 0 in AI is a zero column vector of dimension s, problem (2.2) is relaxed to a linear

SDP:

minimize
∑

(i,j)∈N1

(α+
ij + α−ij) +

∑

(i,k)∈N2

(α+
ik + α−ik)

subject to diag(AT
I Z AI) = bI ,

(
eij

0

)T

Z

(
eij

0

)
− α+

ij + α−ij = (d̂ij)
2 ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
− α+

ik + α−ik = (d̂ik)
2 ∀ (i, k) ∈ N2,

(
eij

0

)T

Z

(
eij

0

)
≥ r2

ij ∀ (i, j) ∈ N1,

(
ei

−ak

)T

Z

(
ei

−ak

)
≥ r2

ik ∀ (i, k) ∈ N2,

Z º 0, α+
ij, α−ij, α+

ik, α−ik ≥ 0,

i, j = 1, . . . , s, k = s + 1, . . . , n,

(2.4)

where the constraint diag(AT
I ZAI) = bI ensures that the matrix variable Z’s lower right

corner is a 2-dimensional identity matrix I, so that Z takes the form of ZI in (2.3).

Initially, Biswas and Ye [5, 4] omit the ≥ inequalities involving rij and rik, and solve

the resulting problem to obtain an initial solution Z1. (The inequality constraints increase

the problem size dramatically, and Z1 is likely to satisfy most of them.) They then adopt
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an “iterative active-constraint generation technique” in which inequalities violated by Zk

are added to the problem and the resulting SDP is solved to give Zk+1 (k = 1, 2, . . .).

The process usually terminates before all constraints are included. Further study of this

approach is presented in section 3.3.1.

2.4 SDP Model Analysis

Let Z̄ =

(
Ȳ X̄T

X̄ I

)

be a feasible solution of the relaxed SDP (2.4). Biswas and Ye [4]

give conditions under which X̄ and Ȳ solve problem (2.2) exactly, when exact distance

measurements are assumed:

• Z̄ is the unique optimal solution of (2.4), including all inequality constraints.

• In (2.4), there are 2n + n(n + 1)/2 exact pair-wise distance measurements.

These conditions ensure that Ȳ = X̄T X̄. In practice, distance measurements have

noise and we only know that the SDP solution satisfies Ȳ − X̄T X̄ º 0. This inequality

can be used for error analysis of the position estimation provided by the relaxation. For

example, trace(Ȳ − X̄T X̄) =
∑

τi, where

τi ≡ Ȳii − ‖x̄i‖2 ≥ 0, (2.5)

is a measure of deviation of the SDP solution from the desired constraint Y = XT X

(ignoring off-diagonal elements). The individual trace τi can be used to evaluate the

position estimation x̄i for sensor i. In particular, we interpret a smaller τi to mean higher

accuracy in the estimated position xi. Further explanation is given in [4].



Chapter 3

SpaseLoc: A Scalable Localization

Algorithm

When the number of nodes in (2.4) is large, applying a general SDP solver such as

DSDP5.0 [3] or SeDuMi [44] would not scale well. In this chapter, we present a sequential

subproblem approach named SpaseLoc to solve the full localization problem iteratively.

We first explain in detail how SpaseLoc works, followed by an example to illustrate

the steps of SpaseLoc. The last section presents computational results.

3.1 Adaptive Subproblem Approach

We call the overall sensor localization problem including all sensors and anchors the

full problem. At each iteration, SpaseLoc selects from the full problem a subset of the

unpositioned sensors and a subset of the anchors to form a localization subproblem. We

call the selected sensors in the subproblem subsensors, and the selected anchors in the

subproblem subanchors, These subsensors and subanchors, together with their known

distance measurements and known anchors’ locations, form a sub SDP relaxation model

to be solved using the same formulation as in (2.4).

In our adaptive approach, the subanchors and subsensors for each subproblem are

chosen dynamically according to rule sets. (Rather than using predefined data, every

new iteration’s subproblem generation is based on the previous iteration’s results.) The

resulting SDP subproblems are of varying but limited size. Currently they are solved by

Benson, Ye, and Zhang’s SDP solver DSDP5.0 [3].

SpaseLoc is a greedy algorithm in the sense that each subproblem determines the final

estimate of the associated sensor positions.

12
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3.1.1 The SpaseLoc Algorithm

The main steps of SpaseLoc are listed below, followed by explanations of the steps and

definitions of new terms used therein.

A0 Set subproblem size.

A1 Subproblem creation: Select subsensors and subanchors to be included in the sub-

problem.

A2 Formulate SDP relaxation model (2.4) based on the chosen subsensors and sub-

anchors, together with the known distances among them and the subanchors’ known

positions.

A3 Call SDP solver to obtain optimal solution for the subsensors’ positions.

A4 Classify positioned subsensors according to their τi value.

A5 If all sensors in the network become positioned or are determined to be outliers, go

to step A6. Otherwise, return to step A1 for the next iteration.

A6 Output all sensor locations and report outliers if any. Stop.

In step A0, subproblem size specifies a limit on the number of unpositioned sensors

to be included in each subproblem. It can range from 1 to a upper limit value that

is potentially solvable by the SDP solver. In our experiments, the upper limit is 150.

The most effective subproblem size seems to change with the full problem size, the model

parameters such as radius, and the SDP solver used. We perform an approximate line-

search to find subproblem size that corresponds to the minimum time, since empirically

the total execution time with all other parameters fixed is essentially a convex function

of subproblem size.

For example, when full problem size is 10000 with 100 anchors, radius 0.02068, and no

noise, subproblem size 5 seems to give the best execution time with the DSDP5.0 solver

(refer to Figure 3.1). The search time for subproblem size is not included as part of the

SpaseLoc execution time.

Step A1 involves choosing a subset of unpositioned sensors (no more than subprob-

lem size) and an associated subset of nodes with known positions. The latter can include

a subset of the original anchors and/or a subset of sensors already positioned by a pre-

vious subproblem (we define them as acting anchors). The rules for choosing subsensors

and subanchors in this iteration are discussed in sections 3.1.3–3.1.4.
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Figure 3.1: SpaseLoc execution time as a function of subproblem size: total nodes =
10000, anchors = 100, radius = 0.02068.

In step A4, the error in sensor i’s positioning is estimated by its individual trace τi as

discussed in section 2.4. Subsensors whose τi value is within a given tolerance τ are labeled

as positioned and treated as acting anchors for the next iteration, whereas subsensors

whose positioning error is higher than the tolerance are also labeled as positioned but are

not used as acting anchors in later iterations. These new acting anchors are labeled with

different acting levels as explained in section 3.1.3. The value of τ has an impact on the

localization accuracy. Bigger values allow more positioned sensors to be acting anchors,

but with possibly greater transitive errors. Smaller values may increase the estimation

accuracy for some of the sensors, but could lead to more outliers. A rule of thumb is to

use a small τ for networks with high anchor density to achieve potentially more accuracy,

and a bigger τ for networks with low anchor density to avoid potential outliers.

In step A5, an unpositioned sensor is called an outlier when it does not have any

distance information for the algorithm to decide its location. If a sensor has no connection

to any anchors, it is classified as an outlier. In addition, if a connected cluster of sensors

has no connection to any anchors, then all sensors in the cluster will be outliers.

The next sections explain the subproblem creation procedure used by step A1 above.

Section 3.1.2 lists steps S1–S9 of the creation procedure itself. Section 3.1.3 presents

rules RS1–RS4 for subsensor selection in step S5. Section 3.1.4 presents rules RA1–RA3

for subanchor selection in step S8. Section 3.1.5 illustrates the method for independent

subanchor selection used in rules RA2–RA3. Sections 3.1.6–3.1.7 discuss the routines

used in step S7 to localize sensors that have less than 3 connected anchors.
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3.1.2 Subproblem Creation Procedure

As explained, subproblem size is a predetermined parameter that represents the maximum

number of unpositioned sensors that can be selected as subsensors in a subproblem.

When there are more than subproblem size unpositioned sensors, we have a choice to

make among them.

The subproblem creation procedure makes sure that the choice of subsensors is based

first on the number of connected anchors they have, and second on the type of connected

anchors such as original anchors and different levels of acting anchors as defined by

a priority list (section 3.1.3), and the choice of subanchors is based on a set of rules

(section 3.1.4). The main steps are listed below, followed by explanations of the steps

and definitions of new terms used.

S1 Specify MaxAnchorReq.

S2 Initialize AnchorReq = MaxAnchorReq.

S3 Loop through unpositioned sensors, finding all that are connected to at least An-

chorReq anchors. If AnchorReq ≥ 3, determine if there are 3 independent suban-

chors; if not, go to next sensor.1 Enter each found sensor into a candidate subsensor

list, and enter its connected anchors into a corresponding candidate subanchor list.

Each sensor in the candidate subsensor list has its own candidate subanchor list (so

there are as many candidate subanchor lists as the number of sensors in the candi-

date subsensor list). Let sub s candidate be the length of the candidate subsensor

list.

S4 If sub s candidate = subproblem size, the candidate subsensor list becomes the

chosen subsensors list. Go to step S8.

S5 If sub s candidate > subproblem size, the choice of subsensors is further based on

subsensor selection rules RS1–RS4 described in section 3.1.3. After exactly sub-

problem size subsensors are selected from the candidate list according these rules,

go to step S8.

S6 If sub s candidate < subproblem size and the candidate list is not null, go to step

S8.

1See section 3.1.5 for dependency definition and independent anchor selection.
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S7 Now sub s candidate = 0. Reduce AnchorReq by 1.

If AnchorReq ≥ 3, go to step S3 for another round of subproblem creation.

If AnchorReq = 2, apply the procedure in section 3.1.6 then go to step S3.

If AnchorReq = 1, apply the procedure in section 3.1.7 then go to step S3.

Otherwise, AnchorReq = 0 and sub s candidate = 0 indicates that there are still

unpositioned sensors left that are not connected to any positioned nodes. We

classify them as outliers and exit this procedure to continue at step A6 of section

3.1.1.

S8 Now that we have a subsensor list and the candidate subanchor lists, choose sub-

anchors using selection rules RA1–RA3 presented in section 3.1.4.

S9 The subsensors and subanchors are selected and the subproblem creation routine

finishes here. Continue at step A2 in section 3.1.1.

In step S1, MaxAnchorReq determines the initial (maximum) value of AnchorReq.

It is useful for scalability when connectivity is dense. A smaller MaxAnchorReq would

generally cause fewer subanchors to be included in the subproblem, thus reducing the

number of distance constraints in each SDP subproblem and hence reducing execution

time for each iteration. For instance, under ideal conditions (where there is no noise),

even if a sensor has 10 distance measurements to 10 anchors, we don’t need to include

all 10 anchors because we can use 3 to localize that sensor accurately.

In the presence of noise, a bigger MaxAnchorReq should reduce the average estimation

error. For example, if there is a large distance measurement error from one particular

anchor, since MaxAnchorReq anchors are all taken into consideration for deciding the

sensor’s actual position, the large error would be averaged out. Another consideration

for setting MaxAnchorReq is the trade-off between estimation accuracy and execution

speed. If we are in a static environment and would like to have sensor positioning as

accurate as possible under noise conditions, we might choose a large MaxAnchorReq.

However, in a real-time environment involving moving sensors, where speed might take

priority, we would consider a smaller MaxAnchorReq.

In step S2, AnchorReq is a dynamic parameter that may decrease in later steps.

In step S6, the subproblem will contain less than subproblem size subsensors, and

this is perfectly acceptable. The alternative is to reduce AnchorReq by 1 and find more

subsensor candidates that have fewer distance connections. However, this approach might

reduce the accuracy of the algorithm, because we do want to localize the subsensors as
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accurately as possible as the iteration progresses, and the newly localized subsensors

could be further used as acting anchors for the next iteration.

In step S7, AnchorReq is iteratively reduced by 1 from MaxAnchorReq to 0 eventually.

This approach allows sensors with at least AnchorReq connections to anchors to be

positioned before sensors with fewer connections to anchors. As we know, under no-noise

conditions, a sensor’s position can be uniquely determined by at least 3 independent

distance measurements to 3 anchors. If a sensor has only 2 distance measurements to

2 anchors, there are two possible locations; and if there is only 1 distance measurement

to an anchor, the sensor can be anywhere on a circle. In this situation, we use heuristic

subroutines described in sections 3.1.6–3.1.7 to include the sensor’s anchors’ connected

neighboring nodes in the subproblem in order to improve the estimation accuracy.

3.1.3 Subsensor Selection Priority List

In step S5, when the number of sensors in the candidate subsensor list is bigger than

subproblem size, the choice of subsensors is further based on the types of anchors each

sensor is connected to.

First, we introduce the concept of sensor priority. We assign a priority to each sensor

in the candidate subsensor list. A sensor with a smaller priority value is selected to be

localized before one with a bigger priority value. A sensor’s priority is based on the types

of anchors the sensor is directly connected to. Next, in order to define different types of

anchors, we introduce the concept of anchor acting levels. All anchors including acting

anchors are assigned certain acting levels. Original anchors are always set to acting

level 1. Every acting anchor is set to an acting level after it has been localized as a

sensor. The acting level depends on the priority of the sensor that becomes this acting

anchor. Essentially, acting anchors are set with acting levels depending on the levels of

the anchors that localized them.

The priority rules for selecting subsensors from a candidate subsensor list are as

follows:

RS1 When AnchorReq ≥ 3 and a sensor has at least 3 connected anchors that are

independent, the sensor’s priority depends on the lowest acting level among all the

connected anchors and the number of anchors in this level. The lower the acting

level and the larger the number of anchors in that level, the higher the sensor’s

priority.

RS2 If the sensor has 3 connected anchors that are dependent, it is ranked with the

same priority as when the sensor is connected to only 2 anchors.
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Table 3.1: An example: priority list when MaxAnchorReq=3.

Priority Level 1 Level 2 Level 3–7 Level 8–10 Resulting

value anchor anchor anchor anchor level
1 ≥ 3 any any any 2
2 = 2 total ≥ 1 any 3
3 = 1 total ≥ 2 any 4
4 0 ≥ 3 any any 5
5 0 = 2 total ≥ 1 any 6
6 0 ≤ 1 total ≥ 2 if level 2 anchor = 1, else total ≥ 3 any 7
7 total ≥ 3, at least one of the 3 anchors is acting level 8 or 9, or 10 8
8 total = 2 9
9 total = 1 10

RS3 Sensors with 2 anchor connections are ranked with equal priority, independent of

the acting levels of the 2 connected anchors. (This can be easily expanded to

be more granular according to the connected anchors’ acting levels.) Sensors in

this category are assigned lower priority than any sensors that have at least 3

independent anchor connections.

RS4 Sensors with 1 anchor connection are ranked with equal priority, independent of the

acting level of the connected anchor. (Again, this can be more granular according

to the connected anchor’s acting level.) Sensors in this category are assigned lower

priority than any sensors that have at least 2 anchor connections.

Table 3.1 illustrates the priority list for an example where MaxAnchorReq = 3 and

the sensor’s priority is determined by the number of its connected anchors that have

the lowest acting level among all the sensor’s connected anchors. We can certainly add

more granularity by further classifying the sensor’s second and third connected anchors’

acting levels. Although more categorizations of the priorities should increase localization

accuracy under most noise conditions, more computational effort is required to handle

more levels of priorities. In Table 3.1, we assume we will generate only 9 levels of

priorities.

Each item in the table represents the number of anchors with different acting levels

that is needed at each priority. The last column represents the resulting acting anchors’

acting levels for subsequent iterations. For example, if a sensor has at least three inde-

pendent connections to anchors, and if 2 of the anchors are original anchors (acting level

1) and at least 1 of the connected anchors is at any acting level from 2 to 7, this sensor

belongs to priority 2 as listed in row 2 of the table. Also, when this sensor is positioned,



Chapter 3. SpaseLoc: A Scalable Localization Algorithm 19

it becomes acting anchor level 3. The sensors that connect to two anchors belong to

the second last priority (8 in the table), and sensors that connect to only one anchor

belong to the last priority (9 in this case). In addition, if a sensor connects to at least 3

independent anchors, among which at least one anchor belongs to level 8, 9, or 10, this

sensor will be classified as the third last priority as listed in row 7.

3.1.4 Subanchors Selection

In step S8, for each unpositioned subsensor, only AnchorReq of the connected anchors are

allowed to be included in the subproblem. We use the following rules to select subanchors

from a candidate subanchor list that contains more than AnchorReq anchors.

RA1 Original anchors are selected first, followed by acting anchors with lower acting

level.

RA2 The subanchors chosen should be linearly independent.

RA3 Among independent anchors in the candidate subanchor list, we use distance scale-

factors to encourage selection of the closest subanchors.

Rules RA2 and RA3 are implemented as in section 3.1.5. Rule RA3 is based on

the assumption that under noise conditions, we trust the shorter distance measurements

more than the longer ones. This is specially true for ranging devices based on RF (radio

frequency) strength.

For certain applications, it may be beneficial to choose MaxAnchorReq large in order

to increase the localization accuracy, though it could impact the algorithm speed.

3.1.5 Independent Subanchors Selection

Suppose sensor i is connected to K (K >3) anchors at locations aik with corresponding

distance measurements d̂ik (k = 1, . . . , K). Define the matrices

A =

(
1 1 . . . 1

−ai1 −ai2 . . . −aiK

)
, D1 = diag(1/

√
1 + ‖aik‖2), D2 = diag(1/d̂ik).

We select an independent subset by a QR factorization with column interchanges [17]:

B = AD1D2, BP = QR, where Q is orthogonal, R is upper-trapezoidal, and P is a

permutation chosen to maximize the next diagonal of R at each stage of the factorization.

(D1 normalizes the columns of A, and D2 biases them in favor of anchors that are closer
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to sensor i.) If the 3rd diagonal of R is larger than a predefined threshold (10−4 is

used in our simulation), the first 3 columns of AP are regarded as independent, and

the associated anchors are chosen. Otherwise, all subsets of 3 among the K anchors are

regarded as dependent. (In Matlab, R and P are obtained by a command of the form

[Q,R,P] = qr(B).)

3.1.6 Geometric Subroutine (Two Connected Anchors)

This section illustrates the heuristic techniques used in step S7 of section 3.1.2 to localize

sensors connected to only two anchors.

When a sensor’s connected anchors are also connected to other anchors, this subrou-

tine may improve the accuracy of the sensor’s positioning, as illustrated by an example

in Figure 3.2.

±°
²¯
s1 ±°

²¯
a3

±°
²¯
a4 ±°

²¯
a5

±°
²¯
a6 ±°

²¯
a7 ±°

²¯
s2

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)
b

(6, 0)

(0, 1)

(0, 2)

(2, 3)b

(5, 2)b

Figure 3.2: Sensors with connections to at most two anchors.

In this example, assume s1 and s2 are sensors with unknown locations, and a3(1, 3),

a4(1, 2), a5(2, 2), a6(4, 1), a7(5, 1) are anchors with known positions in brackets. Assume

that the sensors’ radio range is
√

2, and we are also given two distance measurements

d̂13 = 1 and d̂14 =
√

2 for sensor s1 and one measurement d̂27 = 1 for sensor s2.

Given two distances d̂13 and d̂14 to two anchors a3(1, 3) and a4(1, 2), we know that

s1 should be either at (0, 3) or (2, 3). If we only use s1, a3(1, 3), a4(1, 2) in an SDP

subproblem, SDP relaxation will give a solution near the middle of the two possible

points, which would be very close to point (1, 3). If there is any anchor (a5) that is near

s1’s connected anchors (a3 and a4) with any of the two possible sensor’ points within

their radio range (point (2, 3) is within a5’s range), that point (2, 3) must not be the real

location of s1, or else s1 would be connected to this anchor (a5) as well. Thus we can

infer that s1 must be at the other point (0, 3).

Inspired by the above observation, when a sensor has at most 2 connected anchors, we

include these anchors’ connected anchors in the subproblem (we call them the connected
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Figure 3.3: (a) Sensor with two anchors’ circles intersecting. (b) Sensor with two anchors,
a2’s circle in a3’s. (c) Sensor with two anchors’ circles disjoint.

anchors’ neighboring anchors) together with the sensor and its directly connected anchors.

By including the neighboring anchors, we might hope that the inequality constraints in

the SDP relaxation model (2.4) would push the estimation towards the right point.

However, because of the relaxation, enforcing inequalities in (2.4) is not equivalent to

enforcing them in the distance model (2.2). The added inequality constraints only push

the original solution near (1, 3) a tiny bit towards s1’s real location (0, 3), and the solution

essentially stays at around (1, 3).

Given the ineffectiveness of the SDP relaxation approach under this condition, we

propose instead a geometric approach as illustrated in Figure 3.3. Assume s1(xx, xy) has

measurements d̂12 to anchor a2(a2x, a2y) and d̂13 to anchor a3(a3x, a3y). We also assume

d̂12 ≤ d̂13 (we can always swap the two indexes otherwise). Let al (l = 4, . . . , k) be a2

and/or a3’s neighboring anchors with radio range r1l (l = 4, . . . , k), and let d23 be the

known (exact) Euclidean distance between a2 and a3.

• If two circles centered at a2 and a3 with radii d̂12 and d̂13 intersect each other

(d̂12 + d̂13 ≥ d23 and d̂13 − d̂12 ≤ d23) as in Figure 3.3(a):

– Two possible locations of s1 are given by solutions x∗ and x∗∗ of the equations

‖x− a2‖2 = d̂ 2
12 , ‖x− a3‖2 = d̂ 2

13 .

– Sensor s1’s position is selected from x∗ and x∗∗, whichever is further away from

any neighboring anchor. Thus, for l = 4 to k,

if ‖x∗ − al‖2 < r2
1l, then x = x∗∗ and stop

else if ‖x∗∗ − al‖2 < r2
1l, then x = x∗ and stop.

Otherwise, x = (x∗ + x∗∗)/2 and stop.

• Under noise conditions, the a2 circle may be inside the a3 circle (d̂12 + d̂13 ≥ d23

and d̂13 − d̂12 > d23) as in Figure 3.3(b).
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– The solutions x∗ and x∗∗ of the following equations give two possible points

for s1 on the a2 circle:

(xx − a2x)
2 + (xy − a2y)

2 = d̂ 2
12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second equation.

– If ‖x∗ − a3‖ < ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This guarantees

that the point further from a3 is chosen. Note that we base the sensor’s

estimation on the closest anchor (a2 here since d̂13 ≥ d̂12), assuming that a

shorter measurement is generally more accurate than longer ones, given similar

anchor properties.

The same approach applies when the a3 circle is inside the a2 circle (d̂12−d̂13 > d23).

• Under noise conditions, the a2 and a3 circles may again have no intersection (d̂12 +

d̂13 < d23) as in Figure 3.3(c).

– The solutions x∗ and x∗∗ of the following equations give two possible points

for s1 on the circle for the anchor with smaller radius. Let’s assume d̂12 ≤ d̂13:

(xx − a2x)
2 + (xy − a2y)

2 = d̂ 2
12,

(a2x − a3x)(xy − a2y) = (a2y − a3y)(xx − a2x),

where x is on the line through a2 and a3 represented by the second equation.

– If ‖x∗ − a3‖ > ‖x∗∗ − a3‖, then x = x∗∗; otherwise x = x∗. This guarantees

that the point closer to a3 (in between a2 and a3) is chosen.

3.1.7 Geometric Subroutine (One Connected Anchor)

Similar inefficiency occurs in the SDP solution when a sensor connects to only one anchor.

The SDP solver under this condition gives a solution for the sensor to be in the same

location as the sensor’s connected anchor. In reality, the sensor could be anywhere on

the circle. The SDP gives an average point, at the center of the circle, and that is where

the connected anchor is. Even if the anchor’s neighboring anchor is included in the SDP

subproblem, the inequality constraints are not active most of the time because the SDP

solution may not provide optimal solutions all the time.
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Figure 3.4: (a) Sensor with one anchor connection a and one neighboring anchor b. (b)
Sensor with one anchor connection a and two neighboring anchors b, c.

We propose a heuristic for estimating a sensor’s location with only one connecting

anchor. The idea is to use one neighboring anchor’s radio range information to eliminate

the portion of the circle that the sensor would not be on, and then calculate the middle of

the other portion of the circle to be the sensor’s position. For the example in Figure 3.2,

because we know the distance between s2 and a7 is 1, we know that s2 could be anywhere

on the circle surrounding a7 with a radius of 1. Knowing a7’s neighboring anchor node

a6 is not connected to s2, we know that s2 would not be in the area surrounding a6 with

a radius of
√

2. Thus, s2 could be anywhere around the half circle including points (5, 2),

(6, 1), (5, 0). The heuristic chooses the middle point between the two circles’ intersection

points (5, 2) and (5, 0), which happens to be (6, 1) in this example. The heuristic gives

better accuracy for the sensor’s location than the SDP solution under most conditions.

The procedure follows:

• Assume s has one distance measurement d̂ to anchor a, and b is the closest connected

neighboring anchor to a with radio range r (refer to Figure 3.4(a)). We assume

a = (ax, ay), b = (bx, by), x = (xx, xy).

• The solutions x∗ and x∗∗ of the following equations give two possible points s on

the circle:

(xx − ax)
2 + (xy − ay)

2 = d̂ 2,

(ax − bx)(xy − ay) = (ay − by)(xx − ax),

where x is on the line through a and b represented by the second equation.

• If ‖x∗ − b‖ < r, then x = x∗∗; otherwise x = x∗. This guarantees that the point

further from b is chosen.

The above heuristic provides a simple way of estimating a sensor’s location when

the sensor connects to only one anchor. A more complicated approach can be adopted
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when the connected anchor has more than one neighboring anchor, which can increase

the accuracy of the sensor’s location. We call it an arc elimination heuristic. The idea

is to loop through each of the neighboring anchors and find the portion of the circle

that the sensor won’t be on, and eliminate that arc as a possible location of the sensor.

Eventually, when one or more plausible arcs remain, we choose the middle of the largest

arc to be the sensor’s location. For example, assume we add one more neighboring anchor

c to sensor s’s anchor a from the previous example in Figure 3.4(a). The new scenario is

shown in Figure 3.4(b). First, we find the intersections (points 1 and 2) of two circles:

one at a with radius d̂, the other at b with radius r. We know that the 1–2 portion of the

arc closer to point b won’t be the location of s. Second, we find the intersections (points

3 and 4) of two circles: one at a with radius d̂, the other at c with radius r. We know

that the arc 3–4 closer to point c won’t be the location of s. Thus we deduce that s must

be somewhere on the arc 1–4 further away from b or c. The estimation of s is given in

the middle of the arc 1–4. As we see, this method should provide more accuracy than

the one-neighboring-anchor approach.

3.2 An Example

A simple example is shown in Figure 3.5 to illustrate the SpaseLoc algorithm and some

of the rules of the subproblem selection process. Assume s1, s2, . . . , s14 are sensors with

unknown locations, and a15, a16, . . . , a20 are original anchors. Assume that the actual

locations of these nodes are all on a regular square grid structure with edge size 1, and

that the sensors’ radio range is
√

2. We also use the priority list in Table 3.1 in this

example.
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Figure 3.5: An example.

• In A0 we set subproblem size = 3.
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• In A1 we go through the subproblem creation procedure:

– In S1 we set MaxAnchorReq = 3

– In S2, AnchorReq is set to MaxAnchorReq, which is 3.

– S3 goes through the unpositioned sensor list and finds that s4 and s7 both have

at least 3 connections to anchors. However, anchors a15, a16, a17 connected

to sensor s4 are dependent, so the subsensor candidate list is only s7 for this

iteration.

– Since the subsensor candidate list of 1 is shorter than the subproblem size of

3, we are at S6. AnchorReq is not reduced yet because the candidate list is

not empty. Continue to S8.

– In S8, we have anchors a16, a17, a18, a19 connected to sensor s7 in the subsensor

candidate list, so we follow the subanchor selection rules RA1–RA3 in section

3.1.4. Rule RA2 says to choose three independent anchors, which could be a16,

a18, a19 or a17, a18, a19. Since anchors a16, a17, a18 are dependent, they won’t

be chosen. Rule RA3 says that if there are multiple anchors to choose from,

the closest ones should be used. Therefore a17, a18, a19 are selected instead of

a16, a18, a19.

– In S9, the subproblem consists of subsensor s7 and subanchors a17, a18, a19.

• In A2, formulate the SDP subproblem from subsensor s7 and subanchors a17, a18,

a19.

• In A3, call SDP to give s7’s position estimation.

• In A4, s7 is positioned and becomes an acting anchor at level 2 for the next iteration.

• In A5, some sensors are still not positioned. Go back to A1.

• With s7 as acting anchor, iterate steps A1–A5 (2nd time). s4, s8, s14 are positioned

in this iteration with subanchors a16, a17, a19, a20, s7, and all become acting anchors

at level 3 for the next iteration.

• With added acting anchors s4, s8, s14, iterate steps A1–A5 (3rd time). s1, s5, s9 are

positioned with subanchors a15, a16, s4, s7, s8, s14, a20, and become acting anchors

at levels 3, 7, 4.
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• With added acting anchors s5 and s9, iterate steps A1–A5 (4th time). s2 and s6

are positioned with subanchors s1, s4, s5, s8, s9, and both become acting anchors

at level 7.

• With added acting anchors s2 and s6, iterate steps A1–A5 (5th time). s3 is posi-

tioned with subanchors s2, s5, s6, and becomes acting anchor at level 7.

• With s3 positioned, iterate steps A1–A5 (6th time). Although we find unpositioned

sensor s12 has connections to 3 anchors s6, s9, a20, they are dependent. There is

no unpositioned sensor with connections to at least 3 independent anchors, so we

move to S7.

• Since the subsensor candidate list is now empty, AnchorReq is reduced from 3

to 2 at S7. Iterate steps A1–A5 (7th time) with a new AnchorReq value of 2,

finding s12 and s10 with at least 2 anchor connections. Since s12 has connections

to 3 dependent anchors s6, s9, a20, it is effectively the same as being connected

to exactly 2 anchors. s10 is connected to s3 and s6. We now follow the geometric

subroutine in section 3.1.6 for sensors connected to two anchors. Subanchors s3,

s6, s8, a20 have connected neighboring anchors s2, s5, s8, s14 and they are used to

exclude the other possible points for s10 and s12. Thus s10 is now positioned, and

both become acting level 9.

• With s10 positioned, iterate steps A1–A5 (8th time). There is no unpositioned

sensor with connections to at least 2 anchors, so we move to S7 again.

• Since the subsensor candidate list is now empty, AnchorReq is further reduced from

2 to 1 at S7. Iterate steps A1–A5 (9th time) with a new AnchorReq value of 1.

Since s11 connects to only one subanchor s10, follow the geometric subroutine in

section 3.1.7. s10’s nearest connected neighboring anchor s3 is used to determine

the position of s11, and it becomes acting level 10.

• Iterate steps A1–A5 (10th time). There is no unpositioned sensor with connections

to 1 or more anchors, so we move to S7 again.

• Since the subsensor candidate list is now empty, AnchorReq is further reduced from

1 to 0 at S7. Because AnchorReq = 0 and there is one more unpositioned sensor

s13, s13 is classified as an outlier in S7. Now we move to step A6.

• In A6, report sensor positions and outliers and stop.
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3.3 Computational Results

This section explains the simulation method and the setup for experimenting with the

SpaseLoc algorithm, then presents results for various parameter settings.

For the simulation, a total number of nodes n (including s sensors and m anchors)

is specified in the range 50 to 10000. The positions of these nodes are assigned with a

uniform random distribution on a square region of size r × r where r = 1, or put on

the grid points of a regular topology such as a square or an equilateral triangle on the

same region. MaxAnchorReq = 3 is used in the simulation. The m anchors are randomly

chosen from the given n nodes. We assume all sensors have the same radio range (radius)

for any given test case. Various radio ranges were tested in the simulation.

Euclidean distances dij = ‖xi − xj‖ are calculated among all sensor pairs (i, j) for

i < j. We then use d̂ij to simulate measured distances, where d̂ij is dij times a random

error simulated by noise factor ∈ [0, 1]. For a given radius ⊆ [0, 1] it is defined as follows:

• If dij ≤ radius, then d̂ij = dij(1+rn∗noise factor), where rn is normally distributed

with mean zero and variance one. (Any numbers generated outside (−1, 1) are

regenerated.)

In practical networks, depending on the technologies that are being used to obtain

the distance measurements, there may be many factors that contribute to the noise

level. For example, one way to obtain the distance measurement is to use the

received radio signal strength between two sensors. The signal strength could be

affected by media or obstacles in between the two sensors. In this study, noise factor

is a normally distributed random variable with mean zero and variance one. This

model could be replaced by any other noise model in practice.

• If dij > radius, the bound rij = 1.001 ∗ radius is used in the SDP model.

In the simulation, we define the average estimation error to be 1
s

∑s
i=1 ‖x̄i − xi‖, where

x̄i is from the SDP solution and xi is the ith node’s true position. In a practical setting,

we wouldn’t know the node’s true location xi. Instead, we would use the node’s trace τi

(2.5) to gauge the estimation error.

To convey the distribution of estimation errors and trace, we also give the 95% quar-

tile.

Factors such as noise level, radio range, and anchor densities can directly impact

localization accuracy. The sensors’ estimated positions are derived directly from the given

distance measurements. If the noise level in these measurements is high, the estimation

accuracy cannot be high. We also need sufficiently large radio range to achieve accurate
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positioning, because too small a range could cause many sensors to be unreachable.

Finally, more anchors in the network should help with the estimation accuracy because

there are more reference points.

In the following subsections, we present simulation results (most results averaged over

10 runs) to show the accuracy and scalability of the SpaseLoc algorithm. We observe the

impact of various radio ranges, anchor densities, and noise levels on the accuracy and

performance of the algorithm. Computations were performed on a laptop computer with

2.4GHz CPU and 1GB system memory, using Matlab 6.5 [29] for SpaseLoc and a Mex

interface to DSDP5.0 (Benson, Ye, and Zhang [3]) for the SDP solutions.

3.3.1 Effect of Inequality Constraints in SDP Relaxation Model

As we discussed in section 3.1.6, because of the Y º XT X constraint relaxation, enforcing

the r2
ij and r2

ik inequality constraints in (2.4) is not equivalent to enforcing them in the

distance model (2.2). In order to observe the effectiveness of including these inequality

constraints, we conduct simulations with the following three strategies, according to the

number of times we check for violated inequality constraints and then include them to

obtain new solution.

I2 corresponds to solving the SDP problem with all equalities (and no inequalities),

and then adding violated inequality constraints and re-solving one or more times

until all inequalities are satisfied. The final solution is an optimal solution to

problem (2.4).

I1 corresponds to solving the SDP problem with all equalities and then adding all

violated inequality constraints at most once.

I0 corresponds to solving the SDP problem with equality constraints only. (No in-

equality constraints are ever added.) The final solution is optimal for problem

(2.4) without the inequality constraints involving r2
ij and r2

ik.

Our experimental results show that the added inequality constraints do not always

provide better positioning accuracy, but greatly increase the execution time. In this

section, we illustrate the inequality constraints’ impact through two simulation examples:

one with no noise but low connectivity; the other with full connectivity but with noise.

In our first example, we run simulation results on a network of 100 randomly uniform-

distributed sensors with radius 0.2275 and 10 randomly selected anchors. One of the

sensors happens to be connected to only two other nodes. The sensors are localized with
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the full SDP and with SpaseLoc, using each of the I2, I1, I0 strategies in turn. And for

SpaseLoc, we also examine each case with or without our geometric routines. The results

are shown in Figure 3.6 and Table 3.2.

Figure 3.6 shows there is a sensor (s) that is connected with only 2 anchors. For full

SDP shown in (a), no violated inequalities are ever found, so full SDP with I2, I1, or

I0 has only one SDP call and always generates the same results. For SpaseLoc in (b)

with I0 and no geometric routine, SDP is called 46 times (with no subsequent check for

violated constraints). It produces the same estimation accuracy as the full SDP approach

but with much improved performance. In (c), SpaseLoc with I2 or I1 produces the same

results, which means violated inequalities are found only once. Comparing (b) and (c),

we see that including violated inequalities does improve the estimation accuracy. Best of

all in (d), SpaseLoc with I0 and our geometric routines localizes all sensors with virtually

no error.

Table 3.2 shows that adding violated inequalities increases execution time slightly for

SpaseLoc.

In our second example, in order to observe the effectiveness of the inequality con-

straints under noise conditions, we run simulations for a network of 100 nodes whose

true locations are at the vertices of an equilateral triangle grid. 10 anchors are posi-

tioned along the middle grid-points of each row, and the radius is 0.25. A noise factor

of 0.1 is applied to the distance measurements. The sensors are localized with either full

SDP or SpaseLoc using I2, I1, I0 in turn without geometric routines. (Although we do

not activate the geometric routines in this experiment, they are not a factor here because

the localization error is not caused by low connectivity but by the noisy measurements.)

The results are shown in Figure 3.7 and Table 3.3. Figure 3.7 (b) and (c) correspond to

strategy I2 for full SDP and SpaseLoc.

As we can see, adding violated inequalities for full SDP not only increases the execu-

tion times dramatically, but also increases the localization error. For SpaseLoc, adding

violated inequalities improves the estimation accuracy slightly. Note that I2 had 2 more

SDP calls but did not improve the accuracy over I1.

In summary, the first experiment shows that when the errors are caused by low connec-

tivity, SpaseLoc with geometric routines and no inequality constraints (I0) outperforms

SpaseLoc with inequalities (I1 or I2) and all of the full SDP options. Given this obser-

vation, from now on we only use SpaseLoc with geometric routines, which means the

geometric routines are used instead of SDP to localize sensors connected to fewer than 3

anchors.
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Figure 3.6: Inequality impact on accuracy: 100 nodes, 10 anchors, no noise, radius 0.2275.

Table 3.2: Inequality impact on accuracy and speed: 100 nodes, 10 anchors, no noise,
radius 0.2275.

Methods Error 95% Error Time SDP’s
Full SDP with I2, or I1 or I0 1.80e-3 1.74e-10 11.63 1
SpaseLoc with I0 and no geometric routines 1.80e-3 1.09e-08 0.40 46
SpaseLoc with I2 or I1 and no geometric routines 4.01e-4 1.09e-08 0.44 47
SpaseLoc with I0 and geometric routines 1.28e-7 8.78e-09 0.41 45
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Figure 3.7: Inequality impact on accuracy: 100 nodes, 10 anchors, noise factor 0.1, radius
0.25.

Table 3.3: Inequality impact on accuracy and speed: 100 nodes, 10 anchors, noise factor
0.1, radius 0.25.

Methods Error Time SDP’s
Full SDP with I2 0.1403 134.50 4
Full SDP with I1 0.1292 34.20 2
Full SDP with I0 0.1268 13.87 1
SpaseLoc with I2 0.0154 0.71 48
SpaseLoc with I1 0.0154 0.65 46
SpaseLoc with I0 0.0165 0.42 30
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The second experiment indicates that under noise conditions, although adding vio-

lated inequalities does not seem to improve the estimation accuracy for full SDP, it does

improve accuracy for SpaseLoc.

In the subsequent sections, we continue to examine the inequality constraints’ effects

on accuracy and speed.

3.3.2 Accuracy and Speed Comparison: Full SDP vs SpaseLoc

For very small networks, the full SDP solution is both accurate and efficient. (This is

vital to the performance of SpaseLoc, as many small subproblems must be solved using

SDP.) However, the performance of the pure SDP approach deteriorates rapidly with

network size.

Table 3.4 shows the localization results using full SDP (a) and using SpaseLoc (b) for

a range of examples with various numbers of nodes whose true locations in the network

are at the vertices of an equilateral triangle grid. Anchors are positioned along the middle

grids of each row. A noise factor of 0.1 is applied to the distance measurements.

Let’s first look at the impact of I2, I1, and I0 on estimation accuracy. As we can see

from Table 3.4 (a), for full SDP, 5 errors with I2 are bigger than with I1, and 8 errors with

I1 are bigger than with I2. Comparing I2 with I0, we see that for each strategy, 8 errors

are bigger than the errors for the other strategy. It appears that full SDP with added

inequalities does not improve the estimation accuracy in this simulation. For SpaseLoc,

I2 and I1 generate almost equivalent estimation accuracy, I0 has 8 errors that are bigger

than with I1, and at the same time, I1 has 7 errors that are bigger than with I0. It is

therefore hard to judge the effectiveness of the added inequalities.

Now let’s compare full SDP with SpaseLoc. Figures 3.8–3.9 plot results for full SDP

with I0 and SpaseLoc with I0 for two of these examples: 9 and 49 nodes, including 3 and

7 anchors positioned at the grid-point in the middle of each row. As we can see from

these two figures and Table 3.4, for localizing 4 and 9 nodes, full SDP and SpaseLoc show

comparable performance. Beyond that size, the contrast grows rapidly. For localizing

49 nodes, SpaseLoc is more than 10 times faster than the full SDP method, with more

than 4 times better accuracy. For 400 nodes, SpaseLoc is about 1000 times faster and 20

times more accurate with strategy I0, about 2000 times faster with I1, and 6000 times

faster with I2, with similar accuracy improvements. Thus, the full SDP model becomes

less effective as problem size increases. In fact, for problem sizes above 49 nodes, the

average estimation error becomes so large that the computed solution is of little value.
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Table 3.4: Accuracy and speed comparison between full SDP and SpaseLoc.

(a) Full SDP

Number Radio Error Time (sec) SDP calls
of nodes range I2 I1 I0 I2 I1 I0 I2 I1 I0

4 2.24 0.0317 0.0317 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.0800 0.0800 0.0704 0.05 0.07 0.02 2 2 1

16 0.75 0.0680 0.0703 0.0837 0.35 0.21 0.10 3 2 1
25 0.56 0.1170 0.1170 0.0938 1.26 0.80 0.37 3 2 1
36 0.45 0.0561 0.0618 0.0719 3.02 1.88 0.81 3 2 1
49 0.40 0.1190 0.1190 0.1190 5.42 5.33 2.10 2 2 1
64 0.40 0.0954 0.0919 0.1218 21.60 9.21 3.43 4 2 1
81 0.40 0.0885 0.0894 0.1380 59.05 19.66 7.26 5 2 1

100 0.25 0.1403 0.1292 0.1268 140.26 34.20 13.87 4 2 1
121 0.40 0.1091 0.1088 0.1157 182.74 81.62 23.24 3 2 1
144 0.21 0.1891 0.1899 0.1480 584.23 168.43 37.76 4 2 1
169 0.40 0.1217 0.1141 0.1283 692.12 278.72 71.87 4 2 1
196 0.18 0.1286 0.1275 0.1404 1081.35 461.97 151.52 4 2 1
225 0.40 0.1571 0.1589 0.1568 2408.67 752.75 232.31 5 2 1
256 0.15 0.1370 0.1375 0.1429 3260.33 1089.52 356.86 5 2 1
324 0.14 0.1685 0.1685 0.1685 2620.20 2659.18 962.66 2 2 1
361 0.13 0.1833 0.1842 0.1734 15281.26 5051.05 1391.04 4 2 1
400 0.12 0.1968 0.1970 0.1819 20321.60 5950.34 1662.22 4 2 1

(b) SpaseLoc

Number Radio Error Time (sec) SDP calls
of nodes range I2 I1 I0 I2 I1 I0 I2 I1 I0

4 2.24 0.0317 0.0317 0.0317 0.01 0.01 0.01 1 1 1
9 1.12 0.0766 0.0766 0.0670 0.11 0.32 0.03 3 3 2

16 0.75 0.0599 0.0599 0.0612 0.07 0.07 0.04 7 7 4
25 0.56 0.0495 0.0495 0.0516 0.11 0.11 0.08 10 10 7
36 0.45 0.0250 0.0250 0.0262 0.22 0.21 0.12 17 17 10
49 0.40 0.0283 0.0283 0.0282 0.21 0.21 0.19 15 15 14
64 0.40 0.0193 0.0193 0.0202 0.41 0.38 0.25 28 27 19
81 0.40 0.0186 0.0187 0.0192 0.56 0.53 0.31 41 40 24

100 0.25 0.0154 0.0154 0.0165 0.71 0.65 0.42 48 46 30
121 0.40 0.0152 0.0152 0.0143 0.86 0.82 0.51 58 57 37
144 0.21 0.0133 0.0133 0.0123 0.99 0.93 0.61 65 63 44
169 0.40 0.0108 0.0108 0.0110 1.22 1.16 0.74 81 80 52
196 0.18 0.0113 0.0112 0.0100 1.30 1.24 0.86 85 83 61
225 0.40 0.0099 0.0099 0.0097 1.88 1.68 0.96 126 118 70
256 0.15 0.0075 0.0075 0.0077 2.01 1.79 1.10 136 126 80
324 0.14 0.0075 0.0075 0.0075 1.64 1.64 1.48 102 102 102
361 0.13 0.0073 0.0073 0.0069 2.20 2.16 1.65 139 139 114
400 0.12 0.0070 0.0070 0.0064 3.31 2.98 1.78 217 204 127
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Figure 3.8: 9 nodes on equilateral-triangle grids, 3 anchors, 0.1 noise, radius 1.12.
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Figure 3.9: 49 nodes on equilateral-triangle grids, 7 anchors, 0.1 noise, radius 0.40.

It may seem non-intuitive that SpaseLoc’s greedy approach could produce smaller

errors than the full SDP method. However, all of the SDP problems and subproblems

of the form (2.4) are relaxations of Euclidean models of the form (2.2). It shows exper-

imentally that the relaxations are tighter in SpaseLoc’s subproblems than in the single

large SDP.

In the following sections, we run more simulations only with SpaseLoc.
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Table 3.5: SpaseLoc scalability. Strategies I2, I1, and I0 generate same results.

Nodes Anchors radius sub size Error 95% Error Trace 95% Trace Time SDP’s
49 7 0.3412 2 1.40e-08 9.86e-10 6.28e-09 4.10e-10 0.21 21

100 10 0.2275 2 1.28e-07 8.78e-09 2.68e-08 2.36e-09 0.45 45
225 15 0.1462 3 6.98e-07 7.74e-08 8.75e-08 1.19e-08 0.80 70
529 23 0.0931 3 2.87e-06 9.42e-08 2.68e-07 1.03e-08 1.99 169

1089 33 0.0620 3 2.50e-06 1.65e-07 1.27e-07 1.12e-08 4.12 350
2025 45 0.0451 3 2.70e-05 2.41e-07 2.28e-07 1.41e-08 8.55 658
3969 63 0.0330 3 6.32e-06 3.53e-07 1.30e-07 1.39e-08 19.51 1302
5041 71 0.0292 3 6.70e-06 5.06e-07 1.44e-07 1.80e-08 25.57 1656
6084 78 0.0266 3 6.95e-06 5.47e-07 1.50e-07 1.84e-08 33.38 2000
7056 84 0.0247 4 5.92e-06 6.43e-07 1.35e-07 1.90e-08 41.58 1743
8100 90 0.0230 5 3.92e-06 6.42e-07 8.23e-08 1.78e-08 50.34 1602
9025 95 0.0218 5 8.38e-06 6.74e-07 1.17e-07 1.74e-08 57.34 1788

10000 100 0.0207 5 4.70e-06 7.63e-07 1.12e-07 1.94e-08 65.08 1981

3.3.3 Scalability

Table 3.5 shows simulation results for 49 to 10000 randomly uniform-distributed sensors

being localized using SpaseLoc with strategies I2, I1, and I0. The node numbers 49, 100,

225, . . . are squares k2, and the radius is the minimum value that permits localization

on a regular k × k grid. The number of anchors changes with the number of sensors in

order to maintain the same anchor density. Noise is not included in this simulation.

We find that the three strategies I2, I1, I0 produce the same results. This is because

the inaccuracy of the positioning estimation is purely caused by low connectivity, not by

noisy distance measurements. Empirically we see that the program scales well: almost

linearly in the number of nodes in the network. Indeed, the computational complexity of

the SpaseLoc algorithm is of order n, the number of sensors in the network, even though

the full SDP approach has much greater complexity, as we now show.

We know that in the full SDP model (2.4), the number of constraints is O(n2), and

in each of iteration of its interior-point algorithm the SDP solver needs to solve a sparse

linear system of equations whose dimension is the number of constraints. Figure 3.10

plots the CPU time for strategy I0 from Table 3.4 (a) as well as three curves of the form

time = apn
p for p = 2, 3, 4, where ap is determined by a least-squares fit. It appears that

the SDP complexity with strategy I0 lies somewhere between O(n3) and O(n4).

In SpaseLoc, we partition the full problem into p subproblems of size q or less, where

p× q = n. We generally set q to be much smaller than n, ranging from 2 to around 10 in

most of our simulations. If τ represents the execution time taken by the full SDP method

for a 10-node network, in the worst case the computation time for SpaseLoc is τ ×O(p).
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Figure 3.10: SDP computational complexity

Thus, SpaseLoc is really linear in p in theory. Since we can assume q to be a parameter

ranging from 2 to 10, with worst case 2, we know that O(p) = O(n/q) ≤ O(n/2) = O(n).

Now we can see that SpaseLoc’s computation time is O(n).

In the remaining subsections we choose the middle network size from Table 3.5 (nodes

= 3969) to observe the effect of varying radio range, noise factor, and number of anchors.

3.3.4 Radio Range Impact

With a fixed total number of randomly uniform-distributed nodes (3969, of which 63 are

anchors), Table 3.6 shows the direct impact of radio range on accuracy and performance.

(Noise is not included.) When radius is reduced to 0.02, the number of unreachable

sensors (outliers) reaches 302, which is unacceptable. Clearly, the simulation could assist

sensor network designers in selecting a radio range to achieve a desired estimation error

and algorithm speed.

Strategies I2 and I1 produce the same results. I2, I1, and I0 generate the same results

except for radius of 0.020, 0.028, and 0.030, when I2 and I1 have more SDP calls than

I0. I2 and I1 produce slightly reduced average error for radius of 0.028 and 0.030 but the

same 95% error, and obviously, I2 and I1 take more time than I0.
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Table 3.6: Radio range impact: nodes = 3969, anchors = 63, no noise.

radius sub Out- Error 95% Error Time SDP’s
size liers I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

0.020 28 302 5.26e-3 5.26e-3 5.26e-3 3.77e-3 3.77e-3 3.77e-3 8.40 7.72 7.30 390 390 388
0.022 13 68 2.93e-3 2.93e-3 2.93e-3 1.49e-3 1.49e-3 1.49e-3 10.92 10.48 9.79 539 539 539
0.024 9 17 1.38e-3 1.38e-3 1.38e-3 2.28e-4 2.28e-4 2.28e-4 12.94 13.02 11.95 684 684 684
0.026 6 7 4.36e-4 4.36e-4 4.36e-4 1.36e-6 1.36e-6 1.36e-6 14.90 14.77 13.49 783 783 783
0.028 3 2 1.20e-4 1.20e-4 1.21e-4 1.01e-6 1.01e-6 1.01e-6 16.31 16.36 14.79 1295 1295 1294
0.030 3 0 3.04e-5 3.04e-5 3.08e-5 6.69e-7 6.69e-7 6.69e-7 18.12 18.15 16.23 1303 1303 1302
0.032 3 0 1.06e-5 1.06e-5 1.06e-5 4.10e-7 4.10e-7 4.10e-7 18.22 18.22 18.22 1302 1302 1302
0.033 3 0 6.32e-6 6.32e-6 6.32e-6 3.53e-7 3.53e-7 3.53e-7 19.51 19.51 19.51 1302 1302 1302

3.3.5 Noise Factor Impact

With constant radius (0.033) and the same randomly distributed nodes (3969), Table 3.7

shows the impact of noise conditions on accuracy and performance. We see that more

noise in the network has a direct impact on estimation accuracy. Simulations of this kind

may help designers determine the measurement noise level that will give an acceptable

estimation error.

We also see that strategies I2 and I1 (with added inequality constraints) provide con-

sistent improvement for both average and 95% error, at the price of increased execution

time.

Table 3.7: Noise factor impact: nodes = 3969, anchors = 63, radius = 0.033, subprob-
lem size = 3.

noise Error 95% Error Time SDP’s
factor I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0
0.1 2.57e-3 2.58e-3 3.18e-3 1.99e-3 2.00e-3 2.23e-3 31.93 30.45 22.00 1907 1860 1303
0.2 4.55e-3 4.60e-3 5.60e-3 3.76e-3 3.79e-3 4.40e-3 43.21 37.52 22.61 2520 2310 1303
0.3 6.49e-3 6.60e-3 8.04e-3 5.49e-3 5.58e-3 6.63e-3 52.96 42.43 23.86 2879 2471 1301
0.4 8.25e-3 8.45e-3 1.01e-2 7.06e-3 7.21e-3 8.62e-3 66.46 48.19 26.07 3075 2533 1302
0.5 1.00e-2 1.03e-2 1.23e-2 8.56e-3 8.78e-3 1.07e-2 86.74 56.13 29.45 3278 2571 1302

3.3.6 Number of Anchors Impact

With constant radius (0.033) and the same randomly distributed nodes (3969), Table 3.8

shows the impact of the number of anchors on accuracy and performance. (Noise is not

included.) As we can see, when the radio range is sufficiently large, the number of anchors

in the network has a very slight impact, improving the estimation accuracy in general,

with no obvious impact on algorithm speed. This analysis is beneficial for designers to

avoid the cost of deploying unnecessary anchors.
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Strategies I2 and I1 produce identical results. I2, I1, and I0 achieve exactly the

same 95% error, although when there are fewer than 30 anchors, the added inequality

constraints improve the average error consistently.

Table 3.8: Number of anchors impact: nodes = 3969, radius = 0.033, no noise, subprob-
lem size = 3.

Anchors Error 95% Error Time SDP’s
I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 1.97e-5 1.97e-5 2.09e-5 4.06e-7 4.06e-7 4.06e-7 22.01 22.21 19.05 1320 1320 1319
10 1.98e-5 1.98e-5 2.10e-5 4.10e-7 4.10e-7 4.10e-7 21.77 21.83 19.07 1319 1319 1318
20 2.00e-5 2.00e-5 2.14e-5 3.65e-7 3.65e-7 3.65e-7 22.12 21.80 19.11 1315 1315 1314
30 5.53e-6 5.53e-6 8.24e-6 3.99e-7 3.99e-7 4.01e-7 21.93 21.87 19.30 1314 1314 1313
40 4.15e-6 4.15e-6 4.15e-6 3.62e-7 3.62e-7 3.62e-7 21.97 21.92 19.29 1309 1309 1309
50 3.64e-6 3.64e-6 3.64e-6 3.73e-7 3.73e-7 3.73e-7 22.02 22.23 19.36 1306 1306 1306
60 6.23e-6 6.23e-6 6.23e-6 3.60e-7 3.60e-7 3.60e-7 22.11 22.13 19.49 1303 1303 1303

3.3.7 Number of Anchors Impact with Noise

With the same radius (0.033) and the same randomly distributed nodes (3969), Ta-

ble 3.9 shows the impact of the number of anchors on accuracy and performance when

a noise factor of 0.1 is included in the simulation. With this radio range (sufficiently

large), more anchors give only slightly better estimation accuracy, with no obvious im-

pact on algorithm speed in general. Compared with Table 3.8, the presence of noise does

add execution time and cause more errors on average.

Regarding strategies I2, I1 and I0, the inequality constraints provide consistent im-

provement for both average and 95% error at the price of increased execution time. I2

requires more SDP calls than I1, but the improvement in estimation accuracy is very

minimal.

Table 3.9: Number of anchors impact: nodes = 3969, radius = 0.033, noise factor = 0.1,
subprob size = 3.

Anchors Error 95% Error Time SDP’s
I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 2.71e-3 2.72e-3 3.31e-3 2.13e-3 2.14e-3 2.35e-3 32.61 30.80 21.93 1958 1920 1323
10 2.68e-3 2.68e-3 3.23e-3 2.06e-3 2.07e-3 2.28e-3 32.19 30.61 21.96 1916 1877 1321
20 2.66e-3 2.66e-3 3.27e-3 2.10e-3 2.10e-3 2.34e-3 32.09 30.42 21.93 1923 1881 1318
30 2.58e-3 2.59e-3 3.15e-3 2.01e-3 2.02e-3 2.22e-3 31.84 30.28 21.97 1885 1842 1313
40 2.61e-3 2.62e-3 3.29e-3 2.02e-3 2.03e-3 2.26e-3 32.41 30.51 22.27 1925 1862 1309
50 2.58e-3 2.60e-3 3.09e-3 2.03e-3 2.03e-3 2.21e-3 31.44 30.01 22.37 1856 1822 1307
60 2.56e-3 2.58e-3 3.18e-3 2.01e-3 2.02e-3 2.25e-3 32.04 30.42 21.90 1911 1870 1304
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3.3.8 Anchors Impact with Noise and Lower radius

With the same randomly distributed nodes and the same noise level but lower radius

(0.026), Table 3.10 shows the impact of the number of anchors on accuracy and perfor-

mance. Increased number of anchors results in slightly better estimation accuracy with

no obvious impact on algorithm speed in general. In addition, decreased radio range

reduces the execution time and causes more errors on average compared with Table 3.9.

At the same time we start to see outlier sensors.

The same conclusion can be drawn for I2, I1, and I0 as in section 3.3.7.

Table 3.10: Number of anchors impact: nodes = 3969, radius = 0.026, noise factor =
0.1, subprob size = 5.

Anchors Out- Error 95% Error Time SDP’s
liers I2 I1 I0 I2 I1 I0 I2 I1 I0 I2 I1 I0

5 3 3.32e-3 3.33e-3 3.96e-3 2.44e-3 2.45e-3 2.81e-3 24.43 23.10 15.28 1437 1399 920
10 2 3.19e-3 3.19e-3 3.77e-3 2.39e-3 2.39e-3 2.75e-3 24.66 23.28 15.24 1470 1434 929
20 9 3.17e-3 3.18e-3 3.81e-3 2.30e-3 2.31e-3 2.66e-3 24.59 23.11 15.29 1452 1408 930
30 4 3.13e-3 3.14e-3 3.65e-3 2.30e-3 2.30e-3 2.61e-3 24.49 23.15 15.33 1429 1401 931
40 2 3.09e-3 3.09e-3 3.65e-3 2.30e-3 2.30e-3 2.63e-3 24.17 22.85 15.22 1389 1355 901
50 2 3.15e-3 3.16e-3 3.59e-3 2.28e-3 2.29e-3 2.56e-3 24.05 22.70 15.16 1397 1360 904
60 7 3.01e-3 3.02e-3 3.51e-3 2.22e-3 2.23e-3 2.51e-3 24.71 23.30 15.33 1429 1385 911



Chapter 4

Moving Sensor Localizations

The previous chapter explains how static sensors are being localized using SpaseLoc. In

many applications, some of the sensors are dynamic. This chapter describes an algorithm

for moving sensor localization. We show that SpaseLoc can be applied to a series of static

localization problems to achieve the desired effect. Simulation results of this algorithm

are then presented. Our experiment shows that our proposed dynamic sensor localization

algorithm scales very well. For example, on a 2.4 GHz Pentium laptop the algorithm is

capable of localizing 500 moving sensors within a 4000-node network every one-second

time interval.

The last section discusses possible applications of the moving sensor localization algo-

rithm, with an illustrated example simulating a bus transit arrival-time reporting system.

4.1 Moving Sensor Localization Method

The main difference between a static localization network and a dynamic one is that the

distance measurements among sensors are constant in the first case, while some distance

measurements are changing in the second case because of the sensor movements. The

idea behind our moving sensor localization method is that at any given moment we can

take a static view of the dynamic sensor network. For each snapshot of the network with

all the sensors frozen in their positions and with the connection information among them,

we can utilize the static localization method SpaseLoc to estimate the locations of the

moving sensors at that particular instant. This provides an acceptable approximation if

the computation time is less than the interval between snapshots.

40
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4.1.1 Problem Formulation

We define tracking instant to be the instant of time that some sensors’ locations need to

be updated. There are two ways to trigger a tracking instant: either at a fixed frequency

after a given time interval, or upon detection of sensor movements, which are revealed

by changes in the distance measurement matrix d̂.

In order to track the moving sensors effectively, we need to isolate the sensors into

two categories. One is called static sensors, the other is called dynamic sensors. At any

given tracking instant, we assume that the static sensors are already localized by the

previous iteration and can be used as anchors by this iteration. There are two situations

in determining which sensors are dynamic. One situation is when the dynamic sensors

are specified ahead of time. We update all of their locations at all tracking instants,

regardless of whether they have moved or not since the previous instant. The other

situation is when any sensor could be static or dynamic at any instant. The ones that

have moved from the previous instant would be the dynamic ones. Under this situation,

we find which ones are moving by searching the distance matrix d̂ for measurement

changes (refer to section 4.1.2 for a method to do this).

As mentioned, at any given instant t we can treat the dynamic sensor localization

problem as a static one and utilize SpaseLoc to localize the moving sensors at that

instant. Corresponding to the SpaseLoc problem definition in section 1.1, we formulate

the dynamic sensor localization problem as follows at tracking instant t.

Input

Total points : n, the total number of static and dynamic sensors, including anchors.

Unknown points : s sensors that are dynamic and whose locations xi ∈ R2, i = 1, . . . , s

are to be determined at tracking instant t.

Known points : m anchors that are static sensors and whose locations ak ∈ R2, k =

s + 1, . . . , n are known at tracking instant t.

Distance measurements : The distance matrix d̂ consisting of d̂ij and d̂ik are the same

as explained in section 1.1, except d̂ is partitioned according to

d̂ =

(
DIST11 m distance

m distance′ DIST22

)
, (4.1)

where DIST11 is an s by s matrix representing the distance measurements among

s dynamic sensors. In some applications, we do not use any distance measurements
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among moving sensors themselves. Under this condition, DIST11 will be all zeros,

represented by sparse(s, s) in Matlab. m distance is an s by m matrix represent-

ing the distance measurements among s dynamic sensors with the m static sensors.

DIST22 is an m by m matrix representing the distance measurements among m

static sensors themselves. They remain unchanged in between tracking instants if

static sensors are continuing to be static.

Output

Locations : Estimated positions xi for s dynamic sensors at tracking instant t.

4.1.2 Moving Sensor Identification Routine

As indicated in section 4.1.1, when the moving sensors are not known, we can identify

the moving sensors by detecting the distance changes between two tracking instants d̂t

and d̂t+1. The following routine illustrates an approach to do this.

1. Define D = d̂t+1 − d̂t.

2. Find a permutation P that sorts D’s rows in descending order of the number of

nonzero elements in each row. let’s call the resulted matrix DR. At the same time,

keep track of the corresponding row indexes.

3. Define

∆ = PDP T =

(
DELTA11 DELTA12

DELTA12′ 0

)
. (4.2)

4. Indexes corresponding to DELTA11 indicate all the moving sensors.

As we can see, equations (4.1) and (4.2) have one to one correspondence in matrix

partitioning. The moving sensor identification routine aims to isolate the 0 matrix from

∆, that corresponds to DIST22. This is because static sensors do not move, their rela-

tive distance changes are always zero. Thus, we have DELTA11 representing the distance

measurement changes among moving sensors, DELTA12 representing the distance mea-

surement changes between moving sensors and static sensors, and DELTA22 representing

the distance measurement changes among static sensors, which would be zero under no-

noise condition. To allow for noise, we would use a tolerance in defining D. Elements

smaller than the tolerance would be treated as zero.
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Figure 4.1 shows an example with 7 sensors at time t in (a) and at time t + 1 in (b).

Let’s assume distance measurements at t and t + 1 are

d̂t =




0 0 0 1 1.5 0 0
0 0 0 1 1.5 1 0
0 0 0 0 1.5 0 0
1 1 0 0 1 0 0

1.5 1.5 1.5 1 0 1 1.5
0 1 0 0 1 0 1
0 0 0 0 1.5 1 0




, d̂t+1 =




0 1 0 1 1.5 0 0
1 0 1 1.5 1 1.5 0
0 1 0 0 1.5 1 0
1 1.5 0 0 1 0 0

1.5 1 1.5 1 0 1 1.5
0 1.5 1 0 1 0 1
0 0 0 0 1.5 1 0




.

We illustrate that the moving sensor identification routine should point out that sensors

2 and 6 are the moving ones. After applying the first two steps, we have

D =




0 1 0 0 0 0 0
1 0 1 .5 −.5 .5 0
0 1 0 0 0 1 0
0 .5 0 0 0 0 0
0 −.5 0 0 0 0 0
0 .5 1 0 0 0 0
0 0 0 0 0 0 0




, PD =




1 0 1 .5 −.5 .5 0
0 .5 1 0 0 0 0
0 1 0 0 0 1 0
0 −.5 0 0 0 0 0
0 .5 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0




.

After the third step, we have

∆ = PDP T =




0 .5 1 −.5 .5 1 0
.5 0 1 0 0 0 0
1 1 0 0 0 0 0
−.5 0 0 0 0 0 0
.5 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0




.

We know that DELTA11 corresponds to sensor indexes 2 and 6. From step 4, we know

that these two are the moving ones, which indeed are the ones that moved from time t

to time t + 1.

There is a situation when the number of moving sensors is greater than the number

of static sensors, and the moving sensors are all moving at the same direction at the

same speed. In this case, the above routine won’t apply. We illustrate this through an

example in Figure 4.2. Sensors 2 and 6 both move diagonally with the same distance.
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Let’s assume distance measurements at t and t + 1 are

d̂t =




0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 0
1 1 0 0 1.5 1.5 0
1 0 1 1.5 0 0 0
0 1 0 1.5 0 0 1
0 0 0 0 0 1 0




, d̂t+1 =




0 1.5 0 1 1 0 0
1.5 0 1.5 1 1 1 1.5
0 1.5 0 0 1 1 0
1 1 0 0 1.5 0 0
1 1 1 1.5 0 1.5 0
0 1 1 0 1.5 0 1
0 1.5 0 0 0 1 0




.

After applying the moving sensor identification routine, we have

∆ =




0 0 1 1.5 1.5 0 1.5
0 0 1.5 1 0 −1.5 0
1 1.5 0 0 0 0 0

1.5 1 0 0 0 0 0
1.5 0 0 0 0 0 0
0 −1.5 0 0 0 0 0

1.5 0 0 0 0 0 0




.

We know that DELTA11 corresponds to sensor indexes 2 and 6, from step 4 we know

that these two are the moving ones, which indeed are the ones that moved from time t

to time t + 1.

As we see, DELTA11 is also a zero matrix. This is because there is no relative

movement between sensor 2 and sensor 6. Since DELTA22 has bigger dimensions than

DELTA11, we are still able to identify the correct moving sensors. However, if the number

of moving sensors moving at the same speed and in the same direction is bigger than the

number of static sensors, the algorithm will mistakenly take the static sensors as moving

ones simply because the routine will put the bigger zero partition at the lower-right part

of the ∆ matrix. This is not a concern for most applications because static sensors will

generally outnumber the moving ones, and it is rarely the case that all moving sensors

would move at the same speed in the same direction at the same time.

4.1.3 Moving Sensor Localization Procedure

The moving sensor localization procedure contains two main steps. The first initializes all

sensors’ positions at network startup. The second step is repetitive formulation of SDP

models with updated distance measurements and then calling of SpaseLoc to localize

moving sensors for the instant the new measurements were taken.
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(a) At time t. (b) At time t + 1.

Figure 4.1: An example of moving sensors.
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Figure 4.2: Sensors moving at same speed.

M1 Initialize all sensors’ locations.

This step assumes that none of the sensors is moving. We are given the number

of sensors, number of anchors, anchor locations, and the distance measurements

matrix d̂. SpaseLoc is called to estimate the locations of all sensors.

M2 Track dynamic sensors’ locations at every tracking instant.

Repeat the following steps at each tracking instant t:

• Determine moving sensors: identify s dynamic sensors and m static sensors

(anchors) using moving sensor identification routine in section 4.1.2.

• Update distance matrix d̂: replace only the m distance portion, and the

DIST11 portion if distance measurements among moving sensors are used.

• Formulate new SDP model with updated sensors, anchors, and d̂.

• Call SpaseLoc to obtain s dynamic sensors’ locations at the given tracking

instant.



Chapter 4. Moving Sensor Localizations 46

In most moving sensor localization applications, seeking the best estimation accuracy

of the moving sensors’ locations might prove costly to real-time performance of the algo-

rithm. Our experiments in Chapter 3 show that SpaseLoc with the subsensor selection

priority rules introduced in section 3.1.3 generally achieves high estimation accuracy un-

der low connectivity and noise conditions. However, the moving sensor localization slows

down by about 20% for most of our test runs when we implement the priority rules listed

in Table 3.1. Hence, when there is sufficient connectivity among sensors in the network

and we trust that the network is not too noisy, it may be advantageous to simplify the

subsensor selection priority rules for greater real-time performance. We can achieve this

by reducing the total number of priorities for sensors and the number of acting levels for

acting anchors.

4.2 Moving Sensor Simulation Results

This section presents simulation results for the moving sensor localization algorithm.

The simulation setup is the same as in section 3.3 using strategy I0 except with added

information on dynamic sensors and distance updates at every tracking instant.

The simulation assumes a fixed number of moving sensors, and a given number of

time intervals of fixed length over which the dynamic sensors are to be tracked. The

movement pattern could be random or along some predefined path.

To simulate random movement of dynamic sensor i, we calculate the sensor’s position

at tracking instant t + 1 to be a random step from 0 to a maximum step of move size.

The following formula is used to generate sensor i’s next position from its current position

PP t(:, i):

PP t+1(:, i) = PP t(:, i) + move size ∗ (2 ∗ rand(2, 1)− 1).

Any points that fall outside the simulation area are regenerated.

As an example, Figure 4.3 shows the simulation results of one sensor moving di-

agonally through a 400-node randomly uniform-distributed sensor network. A red dot

represents the current position of the moving sensor, and the trail of yellow dots rep-

resents the trace of where the moving sensor has been. Following the moving sensor

localization procedure in the previous section, the network with 400 total nodes and 20

anchors is first localized by SpaseLoc. Initially, the moving sensor is intentionally posi-

tioned at the bottom left corner. Then at every time interval, the sensor moves with a

step of +0.1 in both x and y coordinates. The diagram shows the result of 10 movements.

We see that the algorithm localizes all 400 sensors initially with virtually no errors, and
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Figure 4.3: One moving sensor, 400 total points, 20 anchors, radius 0.1078, no noise

then tracks the moving sensor’s 10 steps with the same high accuracy.

4.2.1 Moving Sensor Performance: 10% Moving Sensors

Table 4.1 shows simulation results for 10% of the sensors moving randomly with a uniform

distribution among a total of 49 to about 4000 randomly uniform-distributed sensors.

The number of anchors and the radius both change with the number of sensors being

simulated in order to maintain a similar connectivity level. Noise is not included in this

simulation. Error and Time in the table represent average errors and localization time

per tracking instant for all moving sensors averaged over at least 20 tracking instants.

As we can see, the execution time increases only linearly with the number of dynamic

sensors in the network. The Error doesn’t display a pattern because it depends more on

the connectivity level of all sensors.

Table 4.1: Moving sensor performance: 10% moving sensors

Nodes Moving Anchors radius sub size Error Time (sec)
49 5 7 0.3412 3 1.7e-4 0.011

100 10 10 0.2275 3 2.1e-8 0.020
225 20 15 0.1462 3 1.1e-8 0.039
529 50 23 0.0931 3 2.4e-8 0.095

1089 100 33 0.0620 4 1.8e-6 0.190
2025 200 45 0.0451 4 2.8e-5 0.426
3969 400 63 0.0330 5 7.2e-6 0.778
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4.2.2 Effect of Number of Moving Sensors

With a fixed total number of randomly uniform-distributed nodes (3969, of which 63 are

anchors), Table 4.2 shows the direct impact of the number of randomly moving sensors

on accuracy and performance. (Noise is not included.)

As we expected, Error increases with the number of moving sensors because at each

tracking instant, any moving sensor cannot be used as an anchor. If the number of

original anchors is held fixed at 63, the effect of more moving sensors is similar to having

less available anchors, and thus lower connectivity levels. As the number of moving

sensors increases to 1250 (31%) and beyond, we start to see outliers. With 50% moving,

10 sensors are unlocalizable.

Table 4.2: Effect of number of moving sensors: Anchors = 63, radius = 0.033, subprob-
lem size = 9, no noise

Nodes Moving sub size Error Outliers Time (sec)
3969 1 3 6.99e-8 0 0.0080
3969 5 3 4.31e-8 0 0.0185
3969 10 3 8.59e-8 0 0.0305
3969 20 3 4.70e-8 0 0.0476
3969 30 3 7.09e-8 0 0.0666
3969 40 3 1.28e-7 0 0.0872
3969 50 3 7.83e-8 0 0.1037
3969 100 4 7.26e-8 0 0.2002
3969 200 4 7.94e-8 0 0.3956
3969 300 4 8.04e-8 0 0.5758
3969 400 5 1.69e-7 0 0.7782
3969 500 5 5.53e-6 0 0.9615
3969 600 5 2.56e-5 0 1.1557
3969 700 5 1.97e-5 0 1.4315
3969 800 5 3.94e-5 0 1.6281
3969 900 5 6.51e-5 0 1.8387
3969 1000 5 8.81e-5 0 1.9545
3969 1200 7 1.61e-4 0 2.4104
3969 1250 7 3.01e-3 1 0.1357
3969 1400 7 3.01e-3 1 0.1522
3969 1500 7 3.04e-3 1 0.1628
3969 1600 7 3.06e-3 1 0.1723
3969 1800 7 3.33e-3 3 0.1974
3969 2000 7 3.54e-3 10 0.2203

The execution time displays a linear increase with the number of moving sensors

until around 1200. From 1250 onwards, we see a sudden drop of execution time. This

is because, at this connectivity level, the number of moving sensors connected to less

than three anchors increases dramatically. As explained in Chapter 3, SpaseLoc calls
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the geometric subroutines instead of the SDP solver to localize sensors with less than 3

anchors connections. The geometric subroutines can localize this configuration of sensors

significantly faster than the SDP solver.

4.2.3 Sensor Speed versus Number of Sensors Algorithm Can

Track

As we understand, the speed of the moving sensors does not impact how quickly the

algorithm can track them. The issue is the accuracy of the moving sensor’s estimated

position versus the time interval between the tracking instants.

For example, with a 1-second time interval, tracking a walking person who carries

a sensor can be a lot more accurate than tracking a moving car that carries a sensor,

because at the end of the 1-second interval, a person with a maximum walking speed of

3 miles an hour can be at most 1.4 meters away from his previous interval, but a car

traveling at 60 miles an hour could be 27 meters away. In order to achieve the same

estimation accuracy, we would have to reduce the tracking instant interval for sensors

traveling at a higher speed. But a smaller time interval means fewer dynamic sensors

that the algorithm can keep track of.

Table 4.3 lists the simulation results for tracking the maximum number of sensors with

various traveling speeds at different levels of position estimation accuracy. The column

under “Speed” indicates the sensors’ maximum traveling speed, ranging from 2.24 mph

to 600 mph. The first row of the table lists estimation accuracy, ranging from 1 meter to

100 meters, and there are two columns associated with each level of estimation accuracy:

• The column labeled “Time” represents the time interval (in milliseconds) during

which a dynamic sensor moves the distance indicated by the estimation accuracy

in the row above and at the speed indicated in the left-hand column. This time

defines the frequency for estimating the maximum number of moving sensors.

• The column labeled “#” gives the maximum number of moving sensors; that is, the

number of sensors that the algorithm can keep track of with the specified accuracy

every specified number of milliseconds interval.

For example, the algorithm is capable of tracking 387 people walking at 3 miles an

hour within 1 meter accuracy at 74.6 millisecond intervals, whereas only 2 trains traveling

at 200 mph could be tracked with the same accuracy at 1.12 milliseconds intervals.

Alternatively, the algorithm could keep up with one airliner traveling at 600 mph with
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Table 4.3: Number of moving sensors that can be tracked versus speed of movement:
Anchors = 63, radius = 0.033, subproblem size = 9, no noise, speed in miles/hr, time in
milliseconds

Speed 1m 2.5m 5m 10m 20m 50m 100m
Time # Time # Time # Time # Time # Time # Time #

2.24 100 520 250 1200 500 - 1000 - 2000 - 5000 - 10000 -
3 74.6 387 186 900 373 - 746 - 1492 - 3729 - 7458 -
5 44.7 231 112 577 224 1100 447 - 895 - 2237 - 4475 -

10 22.4 112 55.9 287 112 577 224 1100 447 - 1119 - 2237 -
20 11.2 56 28.0 141 55.9 287 112 577 224 1100 559 - 1119 -
40 5.59 24 14.0 68 28.0 141 55.9 287 112 577 280 - 559 -
60 3.73 14 9.32 43 18.6 89 37.3 189 74.6 387 186 900 373 -
80 2.80 8 6.99 31 14.0 68 28.0 141 55.9 287 140 650 280 -

100 2.24 7 5.59 24 11.2 56 22.4 112 44.7 231 112 577 224 1100
150 1.49 4 3.73 14 7.46 33 14.9 72 29.8 151 74.6 387 149 700
200 1.12 2 2.80 8 5.59 24 11.2 56 22.4 112 55.9 287 112 577
250 0.89 1 2.24 7 4.47 18 8.95 41 17.9 88 44.7 231 89.5 463
300 0.74 0 1.86 5 3.73 14 7.46 33 14.9 72 37.3 189 74.6 387
400 0.56 0 1.40 3 2.80 8 5.59 24 11.2 56 28.0 141 55.9 287
500 0.45 0 1.12 2 2.24 7 4.47 18 8.95 41 22.4 112 44.7 231
600 0.37 0 0.93 1 1.86 5 3.73 14 7.46 33 18.6 89 37.3 189

2.5 meter accuracy at 0.93 millisecond intervals. As many as 14 airliners could be tracked

with 10 meter accuracy every 3.73 milliseconds.
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4.3 Applications of the Moving Sensor Localization

Algorithm

Dynamic sensor networks may find applications in many areas such as battlefield intel-

ligence, police patrol car tracking, taxi dispatching, car tracking in a car-share network,

road traffic monitoring, personnel monitoring, school bus tracking, and bus transit sched-

ule tracking. Most of these applications can be implemented using the global positioning

system (GPS) [9]. However, as we discussed in Chapter 1, several drawbacks of GPS

may prevent its successful use on a wide-range of real-time applications.

This section discusses how our dynamic sensor localization algorithm can be utilized

in such applications, with an implemented example simulating a bus transit scheduling

system. These applications all assume that the surrounding sensor network has sufficient

connectivity.

4.3.1 Battlefield Tracking System

An ad hoc wireless sensor network can be used to form a battlefield tracking system.

Static sensors can be spread around a battlefield by a helicopter. They may be used

to track enemy forces or friendly forces (depending on the type of sensor and who is

currently occupying the territory).

All soldiers could wear dynamic sensors in order to determine where their comrades

are in the adjacent neighborhood. At the same time, commanders could have a real-time

view of their troops’ positions by using our localization algorithm in order to assess the

current situation and direct the next move.

From Table 4.3, assuming soldiers run at a maximum speed of 5 miles an hour within

a 4000-node sensor network, we can see that our dynamic algorithm is capable of tracking

up to 231 soldiers within 1 meter accuracy in 44.7 millisecond intervals; up to 577 soldiers

within 2.5 meter accuracy every 112 milliseconds; and up to 1100 soldiers within 5 meter

accuracy every 224 milliseconds.

Another need in the battlefield is to track moving vehicles. In a hostile environment,

it can be difficult to communicate with the vehicle directly. We can set predefined moving

patterns or paths the vehicles are supposed to follow. Through the tracking traces of

the moving vehicles, the command center can analyze the environment each vehicle is in,

and how safe the vehicle is likely to be.
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4.3.2 Police Patrol Car Monitoring and Dispatching System

If we install enough static sensors to form an ad hoc wireless network for the patrol

environment, and if every police patrol car carries a sensor, the moving sensor localization

algorithm could find out where each patrol car is at each given instant. These locations

could be used to determine the nearest p police cars to a crime or accident scene, in order

to minimize the time for the p cars to arrive at the scene.

From Table 4.3, assuming that cars drive at a maximum of 100 mph within a 4000-

node sensor network, we see that our dynamic algorithm is capable of tracking up to 112

patrol cars with a 10 meter accuracy in 22.4 millisecond intervals, up to 231 cars with

a 20 meter accuracy every 44.7 milliseconds, up to 577 cars with a 50 meter accuracy

every 112 milliseconds, and so on.

Similar logic can be applied to taxi monitoring and dispatching. If we have all taxis

carry dynamic sensors, we can easily find the idle taxi nearest to the customer requiring

service.

4.3.3 Car Tracking in a Car-share Network

Car-sharing networks have been successfully deployed in Europe [14] and are becoming

popular in North America [30]. In a car network, a pool of cars are scattered around the

city to be shared by the network members. Ideally, a member should carry some type of

wireless device such as a PDA or a cell phone to locate and reserve the nearest idle car

anytime the person needs to rent it.

We can design an ad hoc wireless sensor network around the car-sharing network.

Each car in the network would carry a dynamic sensor, so at any time we would be able

to monitor the car’s location. At the same time, we also need to know the location of

the person needing the car rental in order to find the nearest available car. If we assume

the future ubiquitous presence of user-portable wireless data devices (like PDAs or cell

phones), we can envisage installing a dynamic sensor in the person’s hand-held wireless

device. For privacy reasons, the person could turn off the sensing device if he/she is

not using the car-sharing service. Our dynamic sensor localization algorithm could be

used in this system to track the locations of both cars and the people who are currently

looking for a shared car.

A similar method could be used for bike-sharing networks. Some cities like Copen-

hagen already offer bicycles for free use from a public pool. The service should become

more widely used if the matching of people to free bicycles can be implemented more

efficiently.
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4.3.4 Traffic Monitoring System

There have been many studies on the automated highway system, especially on the

development of an inter-vehicle communication system [28]. Such a system could be

used for dynamic traffic routing, driver assistance and navigation, co-operative driving

and platooning [41]. Singh [42] presents test results for an inter-vehicle communication

system based on a wireless LAN 802.11b network. The following proposes an alternative

approach to traffic monitoring.

Suppose static sensors are spread around major highways to form ad hoc wireless

sensor networks, and suppose cars carry dynamic sensors. We can evaluate highway

traffic conditions by tracking the movement of sensors within the cars. For example,

by looking at the current traces of most cars traveling on a particular highway, we can

determine the average actual speed of the cars. Comparing this speed with the maximum

speed of the highway, we can conclude if the highway is jammed or not. One by one,

we would be able to put all highways’ real-time traveling speed on a map maintained

by a central computing facility. The real-time speed map could be used by police patrol

officers, or by fire-fighters to predict a problem even before people could report a problem

on the road. At the same time, if a car’s display is connected to the central computing

facility, the car driver could download any portion of the map in real-time to decide on

the best option to his destination.

An even more proactive approach is to predefine the route a particular driver is to

take to his destination. If there are abnormal conditions on any road along the route,

the driver would be notified with a number of top alternative routes with estimated total

distance and travel times computed for him/her. An alternative is to mark the actual

speed on the map in real-time instants for the driver to reference while driving. We

could label different traffic conditions of highways according to the speed detected by the

sensors. For example, we could have 5 levels to represent traffic conditions, with level 1

being totally smooth and level 5 being totally blocked.

4.3.5 Personnel Monitoring System

Static sensors can be installed to form an ad hoc wireless sensor network in a limited

area such as a university campus, a corporate complex, a retail mall, or a prison camp

to monitor people’s movements for different purposes.

One example application is the prisoner monitoring system. Sensors could be worn

(or imbedded if permitted by law) by prisoners so that all their movements are actively

monitored. Legitimate movements and locations are ignored by the system, but if any



Chapter 4. Moving Sensor Localizations 54

prisoner appears to be too near the fence, for example, the system could alarm relevant

personnel immediately.

4.3.6 Bus Transit Arrival Reporting System

For most city’s public bus transit systems, there are fixed schedules for each bus route.

However, uncertainties on the road often cause the bus to be delayed, leaving new pas-

sengers waiting. In some cities with harsh climates, such as in Ottawa, Canada, there is a

phone number allocated for each bus stop. Passengers can phone for the arrival times of

the next coming bus and the one after that before heading to the bus stop, thus avoiding

a long wait in the cold during winter times. However, the times given to the callers are

mostly from a pre-recorded arrival schedule. If heavy traffic causes a certain bus to be

late, the caller would still be informed about the scheduled time, not the true delayed

time of arrival. It would be ideal if the schedule for each phone number and bus stop

were updated with more accurate arrival times based on the current locations of the next

two buses.

We propose a bus transit arrival reporting system utilizing our dynamic sensor lo-

calization algorithm. We assume each bus stop would be equipped with a static sensor,

and all buses would carry a dynamic sensor. If the distance between bus stops is bigger

than the sensor’s sensing range, we can add more static sensors in between to form an

ad hoc wireless sensor network. At each tracking instant, the algorithm would be able

to estimate each bus’s location in the network. We can calculate the estimated arrival

times of the two buses closest to a particular stop according to average traveling speed,

or if we have current road condition detection, we could use the current traveling speed

to estimate the expected arrival times of the two buses. This information is fed back to

the bus stop and passed on to the callers. We assume the future ubiquitous presence of

user-portable wireless data device (PDA or cell phone), or a fixed LED/LCD display at

each stop, to inform riders of the anticipated wait time for their current location.

Figure 4.4 shows a simulation run of a sample bus transit network. In this ad hoc

network, 400 green circles represent static sensors located at all bus stops and/or in

between bus stops, of which 39 are anchors with their locations known ahead of time.

These anchors are positioned in the middle of the network horizontally and vertically as

represented by the blue stars. Each adjacent two rows or columns of sensors represent a

vertical or horizontal street. Two buses are running on each street (represented by red

circles) with their initial positions at opposite ends of the street. (They are yellow in the

figure because yellow represents the traces of where a bus has been.)
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We can simulate the movement of different buses with different step sizes to represent

different maximum traveling speeds that might be imposed on different streets.

The dynamic sensor localization algorithm initially localizes all sensors, including the

static sensors at all bus stops and the dynamic sensors on all buses. Then with a given

time interval, we generate random directional movements for all buses (follow a random

uniform distribution), and the dynamic sensor localization algorithm tracks all dynamic

sensors for a sequence of time intervals. The circles are the real positions of all sensors.

The dots are estimated locations given by our algorithm (black dots represent static

sensors, red dots the moving sensors, and yellow dots the traces of moving sensors). The

figure shows the end result after 30 time intervals.
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Figure 4.4: Bus transit simulation, 400 total points, 38 anchors, radius 0.0819, no noise
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Distributed Algorithm For Clustered

Networks

As we have seen from previous discussions, existing localization methods have been prac-

tical for only moderate-sized networks (up to a few hundreds nodes), and SpaseLoc

maintains efficient and accurate position estimation for networks with up to ten thou-

sand sensors on a laptop computer with 2.4 GHz CPU and 1GB of system memory.

The variety and scale of future network applications begs for software that can fully

utilize the multitude of sensor devices currently being created. We would like to achieve

an enabling technology analogous to the device technology itself. Achieving the stated

objective for sensor localization—efficient and accurate localization for networks of arbi-

trary size—is an essential requirement for tomorrow’s wireless sensor networks to provide

their intended services. Thus, a further quantum leap is necessary to achieve true scal-

ability. The need is even more imperative when we recognize that the processing power

for the devices that may be used to run the localization algorithm in sensor networks of

the near future will be far less than the Pentium laptop that achieved our stated results.

Distributed computation becomes essential, as we propose in this chapter.

In this chapter, we first discuss the need for a distributed approach to sensor localiza-

tion and the intrinsic clustering architecture of large sensor networks; then we introduce

a hierarchical computational platform that can utilize distributed processing. Computa-

tional results for the proposed algorithm for a particular application are presented in the

last section.

56
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5.1 The Need for Distributed Computing

It is a scientific breakthrough that SpaseLoc is able to solve such large problems with

excellent speed and accuracy. Nevertheless, our experiments show that when the num-

ber of sensors reaches beyond 10000 on our particular laptop, the memory requirement

becomes excessive. The single-processor environment with virtual memory is not able to

proceed effectively for problems of that size.

Thus, in real network applications, SpaseLoc may face two challenges:

• The predicted explosive deployment of wireless sensor networks may involve tens of

thousands of sensors per network in the future. In such large networks, centralized

computing is simply not practical. Another quantum leap in algorithm performance

is urgently needed.

• In some applications, there is no device in the network as powerful as even a 2GHz

laptop computer to run the sensor localization algorithm (like SpaseLoc). We may

have to choose multiple smaller devices, which are used as sensors at the same

time, to compute the sensors’ locations collectively in the network. These devices

may be hand-held devices like PDAs, which currently have very limited processing

speed and system memory (probably only 30MHz and 256KB RAM). This forces

us to think about computing the sensors’ locations distributively among multiple

devices.

5.2 Clustered Sensor Network Architecture

Fortunately, large sensor networks are generally inherently clustered by design. One such

network proposed by Heinzelman et al. [18] exhibits the following characteristics:

• A hierarchical adaptive clustering architecture is recommended for scalability and

energy saving.

• Sensors are partitioned into clusters. Each cluster has a cluster head, and each

sensor belongs to one cluster.

• Dynamic cluster head selection is adopted. All cluster heads broadcast announce-

ments at system startup. When a sensor hears these announcements, it chooses

the cluster head from which the strongest signal is received. Essentially, a sensor

selects the nearest cluster head.
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• Application software, for example the localization algorithm, resides in the cluster

head.

• There is a multi-layer communication hierarchy. Sensors communicate only with

their own cluster heads. All cluster heads communicate with a central command

center. Depending on the particular implementation, cluster heads may be able to

communicate directly among themselves.

The proposed distributed sensor localization algorithm makes use of the clustering

architecture by adopting a hierarchical method in a distributed computing environment,

in order to address networks of any size and topology.

5.3 Distributed Sensor Localization Approach

Taking advantage of the intrinsic clustering of large networks, such as the one proposed in

section 5.2, we propose a hierarchical computational scheme that can utilize distributed

computing for sensor localization. SpaseLoc remains a vital yet intrinsically sequential

tool at a lower level. Scalability is achieved through parallelism at the cluster head level.

The proposed distributed algorithm utilizes three levels of machine devices as imposed

by the clustered sensor network architecture, and three levels of software (algorithm)

structure.

The top-level machine is regarded as a central command center and has relatively

more computing power, like a desktop PC. The second-level machines constitute the

cluster level; they are the cluster heads. These machines are generally devices that have

less computing power, like a current PDA. The lowest level devices are the sensors that

communicate with their own cluster heads. These devices generally don’t handle any

applications. They have signal communications with their neighboring sensors and with

their own cluster heads to report distance information, for instance.

The three levels of software structure are as follows:

distributed algorithm,

cluster-level algorithm,

subproblem algorithm.

The top-level algorithm is the distributed algorithm that we are proposing. It is respon-

sible for distributing a subset of anchors, sensors, and connection information to each

cluster head in order for each cluster head to know when and how to conduct sensor
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localization at the cluster level. It is in charge of the overall sequencing and synchro-

nization of parallel processes. Sequencing rules are created for all clusters according to

their priorities; see section 5.3.2. A synchronization procedure is formulated in order to

impose the sequencing rules. Typical applications can have thousands or even tens of

thousands of sensors being controlled by this command center.

The second level, which is the cluster-level algorithm, utilizes SpaseLoc as a cluster-

level problem solver. Typical applications can have hundreds of sensors in each cluster.

SpaseLoc is very effective in terms of computational speed and accuracy at this level.

SpaseLoc further adaptively separates the problem into a sequence of smaller sub-

problems and calls an SDP solver iteratively as we have discussed in Chapter 3. The

SDP solver in turn is effective at this much lower level.

Careful considerations need to be in place for the distributed algorithm to achieve

network-wide optimal speed without compromising accuracy. For example, the sequenc-

ing and synchronization of clusters allow them to be processed in parallel in the correct

order. The following subsections explain in detail how sequencing and synchronization

works, and then introduce our distributed algorithm.

5.3.1 Sequencing of Parallel Processes

A sequencing rule deals with the order in which all the clusters run the localization

algorithm. It is there to make sure that certain favorable clusters get localized first

before some other clusters so that estimation error is minimized. At the same time it

ensures that clusters in similar favorable conditions get localized in parallel to optimize

computation time.

The sequencing of clusters becomes necessary because the distribution of anchors is

often not uniform across the whole network. For example, in order to save cost, network

designers might allocate enough anchors to localize the sensors in only some of the clus-

ters. Other clusters might not have sufficient anchor density to localize their own sensors

by themselves. In this situation, information regarding anchors and acting anchors is

needed from neighboring clusters. (Neighboring clusters {c1, c2, . . . , cq} of a cluster c

include any cluster that has a sensor within sensing range of some sensor in cluster c.)

This information may become available only after the neighboring clusters’ localizations

run in the previous computation (iteration). Thus, if all clusters are processed in parallel

without careful ordering, some of the clusters may fail to localize all their sensors, or to

localize with lower accuracy than if they had waited for more information when available

from their neighboring clusters.
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Figure 5.1: An example of a sensor network with 25 clusters.

For example, Figure 5.1 shows a sensor network of 25 squared clusters {c1, c2, . . . , c25}.
The following are assumptions for the network:

• Each cluster head is an anchor and is located in the center of each square cluster;

denoted by a black dot (•) in the picture.

• Three clusters {c7, c9, c18} have two extra anchors (denoted by two extra black dots

(•) in the picture) that are within communication range of each other and their

cluster head.

• All other sensors in the network (not shown in the picture) are almost uniformly

distributed around the network. (Of course, we don’t know this before the local-

ization).

• The square borders for each cluster are assumed; they don’t necessarily have to

follow the exact square shape. We draw them that way for easy display.

Given the above conditions, we can clearly see that at the beginning of the localization,

only the three clusters {c7, c9, c18} with three original anchors should be localized first.

And since they are in similar anchor conditions, they can all be processed in parallel. All

the other clusters have only one anchor at this time (iteration); they would not achieve

good estimation accuracy if they were localized before {c7, c9, c18} are localized. We also

notice that clusters {c21, c25} should wait longer than the rest of the one-anchor clusters,

until after one of their neighboring clusters has been localized.

We propose a priority-driven cluster-labeling approach to address this sequencing

need, as presented in the next subsection.
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5.3.2 Cluster Priority

In our approach, all clusters are labeled with numerical values, called cluster priorities,

to indicate their sequencing order. Clusters with a smaller priority value have the higher

priority and are localized before clusters with a bigger priority value. Clusters with the

same priority can be localized in parallel at any time.

Many factors can be considered in classifying the clusters’ priorities. Here are some

important ones:

1. Original anchor density in the cluster.

For better accuracy, a cluster with higher anchor density within its own cluster

should be considered higher priority than the one with lower anchor density. In

Figure 5.1, cluster c18 with 3 original anchors is assigned higher priority than say

clusters c16, c17, c22, which have only one original anchor within each cluster.

2. The cluster’s neighbor-priority and the number of neighboring clusters with that

priority.

We define the a cluster’s neighbor-priority to be the the highest priority among all

the cluster’s neighboring clusters. Let’s assume a cluster c has neighboring clusters

{c1, c2, . . . , cq}, the highest priority among all q clusters is h, and the number of

clusters with this priority h is p. We say that cluster c’s neighbor-priority is h, and

there are p ≤ q neighboring clusters with that priority.

If cluster c has to rely on its neighboring clusters’ information to localize itself, a

higher neighbor-priority h will give cluster c a higher priority than that of a cluster

with a lower neighbor-priority h. For example in Figure 5.1, among all of cluster

c23’s neighboring clusters {c17, c18, c19, c22, c24}, c18 has the highest priority. So the

cluster priority associated with c18 determines the neighbor-priority for c23. We

know from the previous factor that cluster c18 has a higher priority than any of

c21’s neighboring clusters {c16, c17, c22}. So, cluster c23 will be assigned a higher

priority than cluster c21.

When two clusters have the same neighbor-priority h, the one with the bigger

number p will rank with higher priority. For example in Figure 5.1, clusters c19 and

c13 have the same neighbor-priority, both defined by cluster c18’s priority. However,

we know that cluster c13 has 3 neighboring clusters at this priority {c7, c9, c18 }, so

p = 3 for cluster c13, while p = 1 for cluster c19. Therefore, cluster c13 is assigned

higher priority than c19.
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3. The priority and number of anchors that are in the cluster’s neighboring clusters

and are within any of the cluster’s sensors’ radio range.

Let’s define a cluster’s neighboring anchors to be all the anchors in the cluster’s

neighboring clusters that have distance measurements with any sensor in this clus-

ter. A cluster associated with more neighboring anchors and with more neighboring

anchors at lower anchor levels will be assigned a higher priority than one with fewer

neighboring anchors and with more neighboring anchors at higher anchor levels.

Depending on the applications, designers may choose to consider all these factors in

determining the cluster priorities, or simply select any combination of them. Different

granularity of the cluster priorities can be achieved by specifying a range of the above

factors rather than specific values.

We give an example for a specific wireless sensor network application that utilizes the

first two criteria in assigning a cluster’s priority. A wireless sensor network may be used

to detect environmental hazards over a region by using individual sensors in the network

to detect smoke, chemicals or temperatures, etc. Sensors are generally spread roughly on

regular square grids across the protected area according to hazard detection regulations.

For example, the hazard detection rule may require that all detectors (sensors) must be

within a certain distance of another detector (sensor) to guarantee coverage.

We wouldn’t need localization if all sensors could be placed perfectly uniformly on the

regular square grids at installation. In practice, only certain required anchors are put at

known spots; the sensors are placed roughly within the regulated distance without exact

knowledge of their locations. This might be caused by the fact that certain sensors have

to be further apart or closer to each other because of installation barriers such as a wall.

Or, it might be more efficient or convenient to install sensors on certain landmarks, such

as on doors, windows, etc. At system startup, we would need to run the localization

algorithm to determine all the sensors’ locations.

Typically, this type of network is divided into clusters, each with a cluster head. The

cluster head also acts as an original anchor. For most applications, cluster heads are too

far apart from each other to be used as a group of 3 anchors to localize other sensors. For

localization to function, one or more of the clusters must add at least two extra anchors

that are within its cluster head’s and each other’s certain communication range (usually

within radio range of each other would be sufficient). The example shown in Figure 5.1

represents one such network.

Combining criteria 1 and 2 for assigning cluster priority, we give the following routine

designed to determine the cluster priority for such a network.
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Cluster Priority Assignment Routine:

1. Find all clusters that have 3 original anchors, and assign all these clusters priority

10 (the smallest priority value but the highest priority).

For example, in Figure 5.1, clusters {c7, c9, c18} all have three original anchors, so

they are all assigned cluster priority 10.

Table 5.1 tabulates partial cluster priority assignment rules for such a network.

As we can see from the first row, when the cluster is a 3-anchor cluster itself, the

cluster is assigned cluster priority 10.

2. If all clusters have been assigned a priority, go to Step 4. Otherwise go to Step 3.

3. For each cluster that has not been assigned a priority, find the cluster c that has the

highest neighbor-priority, h. To avoid too many cluster priorities being generated

in this step, we classify the neighbor-priorities that have the same first digit (say s)

as one category and count them all towards the number p. Thus, we set p to be the

number of neighboring clusters whose priorities have the same first digit as cluster

c’s neighbor-priority, h. Next, we assign cluster c’s priority to be (10(s+1)−p+9).

(We assume that a cluster has a maximum of 8 neighboring clusters.) For most

applications, the design of network would inherently limit the cluster priorities to

never go beyond the 100 range. The cluster priority calculation will therefore apply.

For example in Figure 5.1, cluster c13 has 3 neighboring clusters with priority 10.

This cluster will be assigned priority (10(1 + 1)− 3 + 9 = 26), as listed in the 7th

row in Table 5.1.

4. Report all cluster priorities and stop.

Going through the whole Cluster Priority Assignment routine for the example in

Figure 5.1, we obtain the cluster priorities listed in Table 5.2.

5.3.3 Synchronization among Parallel Processes

As we discussed in section 5.3.1, after the cluster priorities are assigned, a sequence

of clusters is generated from these priorities to determine the order of localization for

each cluster. A cluster with a higher priority goes before a cluster with a lower priority.

Clusters with the same priority go in parallel.
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Table 5.1: Cluster priority: an example

Cluster 3-anchor # of neighboring clusters # of neighboring clusters ...
priority cluster itself with priority value of 10 with priority value of 2x ...

10 yes - - -
21 no 8 - -
22 no 7 - -
23 no 6 - -
24 no 5 - -
25 no 4 - -
26 no 3 - -
27 no 2 - -
28 no 1 - -
31 no 0 8 -
32 no 0 7 -
33 no 0 6 -
34 no 0 5 -
35 no 0 4 -
36 no 0 3 -
37 no 0 2 -
38 no 0 1 -
... no 0 0 ...

Table 5.2: Cluster priorities for example in Figure 5.1

Cluster index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Cluster priority 28 28 27 28 28 28 10 27 10 28 28 27 26 27 28 35 28 10 28 35 37 28 28 28 37

For each cluster that is ready for the coming parallel iteration, a cluster-level “full”

problem is formed from all reachable anchors in the neighboring clusters plus sensors

and anchors belonging to this cluster. These smaller “full” problems for each cluster are

solved by SpaseLoc, and are processed in parallel by the cluster heads in the network.

Thus, the synchronization process involves the following two tasks:

• Enforcing the order: The lower priority clusters should be run after the higher

priority clusters are localized, to take advantage of the newly available anchors in

the neighboring clusters. Only clusters at the same priority proceed in parallel.

• Updating the neighboring clusters with newly localized anchor information: After

the parallel clusters have been localized, their newly localized acting anchors should

be fed into all their neighboring cluster heads so that the next parallel iteration

will make use of the new information.
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5.3.4 Distributed Sensor Localization Algorithm

After we explain how the sequencing and synchronization work under the distributed

approach, this section presents our distributed sensor localization algorithm that glues

these two processes together.

Distributed sensor localization algorithm:

1. Determine the cluster priority for each cluster in the network. This is done at the

command center machine level by the routine given in section 5.3.2.

2. At the command center machine, sequence the cluster localization order according

to cluster priorities. A cluster with a higher priority ranks before a cluster with

lower priority. Clusters with the same cluster priority are put in the same rank.

Hence, a list of cluster ranks is produced. Let’s assume that r ranks are produced.

For each rank i in the list, there is a list of cluster indexes l associated with i.

The list l could include one index, or multiple indexes, which means that there are

multiple clusters put in the same rank.

3. In the command center level: synchronize all cluster heads to do localizations.

• For each rank i from 1 to r:

• For all clusters in l of same rank i:

Request all cluster heads in l to localize their own sensors simultaneously. For

each cluster c in l, the cluster head does the following tasks in parallel:

– Formulate cluster-level “full” problem, consisting of all the sensors, an-

chors, and distance measurements among them in cluster c, and all the

anchor information from cluster c’s neighboring clusters that are within

cluster c’s radio range.

– Call SpaseLoc to solve the cluster-level “full” problem.

– Update all cluster c’s neighboring clusters with the newly localized acting

anchors.

– Report to the command center that localization is done.

• When the command center receives reports from all clusters in l that they’ve

finished localizing their own clusters, go to next i.
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4. Report localization results. Stop.

In the following, we illustrate the distributed algorithm with the example in Figure

5.1.

• In Step 1, we generate the cluster priorities for this network as in Table 5.2.

• In Step 2, we generate a cluster rank list as shown in Table 5.3. We can see that a

total of 6 ranks are produced.

• Now at Step 3,

– i = 1, cluster heads {7, 9, 18} localize their clusters in parallel.

– i = 2, cluster head {13} localizes its cluster alone.

– i = 3, cluster heads {3, 8, 12, 14} localize their clusters in parallel.

– i = 4, cluster heads {1, 2, 4, 5, 6, 10, 11, 15, 17, 19, 22, 23, 24} localize their

clusters in parallel.

– i = 5, cluster heads {16, 20} localize their clusters in parallel.

– i = 6, cluster heads {21, 25} localize their clusters in parallel.

• All clusters are localized; report results and stop.

Figure 5.2 shows the localization results for the above example with 625 total nodes

in the network and 25 nodes in each cluster. The algorithm accurately localizes all

sensors one cluster at a time with zero errors.

Table 5.3: Cluster rank list for example in Figure 5.1

Cluster priority 10 26 27 28 35 37
Cluster rank 1 2 3 4 5 6
Cluster index 7 9 18 13 3 8 12 14 1 2 4 5 6 10 11 15 17 19 22 23 24 16 20 21 25

5.4 Distributed Algorithm Simulation Results

This section explains the simulation method and the setup for experimenting with our

distributed algorithm, then presents results for various parameter settings and topologies.

All assumptions made in section 3.3 (using strategy I0) regarding simulation region,

MaxAnchorReq, radio range, measured distances, and average estimation errors are ap-

plicable here, except for the following adjustments to the clustered architecture.
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Figure 5.2: An example of distributed localization, with 625 total points, 25 clusters, 25
nodes in each cluster, radius 0.16, no noise

• The clustered network has the same characteristics as the example shown in Figure

5.1 and discussed in section 5.3.1.

• The simulation follows the cluster priority assignment routine proposed in section

5.3.2.

In the following subsections, we present simulation results (all results averaged over

10 runs) to show the accuracy and scalability of the distributed algorithm. We observe

the impact of different numbers of 3-anchor clusters and different node densities, radio

ranges, and noise levels on the accuracy and performance of the algorithm.

5.4.1 Number of 3-anchor Clusters Impact

As we know from section 5.3.1, in a clustered wireless sensor network, some clusters

may have 3 anchors while some clusters may only have the cluster heads as anchors.

This section studies the impact of the number of 3-anchor clusters on the accuracy and

performance of the distributed algorithm, using simulation results from sample networks.

Figure 5.3 displays the topologies of networks with different numbers of 3-anchor

clusters that our simulations are based on. Each network has 4900 nodes and 25 clusters.

Each cluster contains 196 nodes that are uniformly distributed on 14 × 14 square grids

within the cluster. All cluster heads (which are also anchors) are positioned in the middle

of their clusters. They are marked as a black dot in the figure. A 3-anchor cluster also
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Figure 5.3: Topologies of different numbers of 3-anchor clusters.
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has two extra anchors, one on the immediate right grid of the cluster head, and the other

on the immediate lower grid of the cluster head. A 3-anchor cluster is marked with 3

black dots in the figure. When we make choices on the locations of the 3-anchor clusters

among all 25 clusters, we try to choose their locations such that the rest of the 1-anchor

clusters can achieve as high a cluster priority as possible.

Table 5.4: Number of 3-anchor clusters impact: 25 clusters, 4900 total nodes, 196 nodes
in each cluster, radius 0.1, no noise

3-anchor No of Total Error 95% Error Sequential Per cluster Parallel
clusters anchors rankings time time time

2 29 6 7.5e-9 2.4e-9 14.34 0.57 3.44
3 31 6 7.1e-9 2.3e-9 14.48 0.58 3.48
4 33 4 8.0e-9 2.5e-9 14.35 0.57 2.30
5 35 4 1.1e-8 2.5e-9 14.43 0.58 2.31
6 37 4 1.1e-8 2.8e-9 14.48 0.58 2.32
7 39 4 1.1e-8 2.9e-9 14.59 0.58 2.33
8 41 4 1.0e-8 2.2e-9 14.63 0.59 2.34
9 43 3 1.0e-8 2.3e-9 14.86 0.59 1.78

12 49 3 9.7e-9 2.1e-9 14.58 0.58 1.75
13 51 3 9.6e-9 2.1e-9 14.80 0.59 1.78
17 59 3 9.8e-9 2.1e-9 14.87 0.59 1.78
20 65 3 9.0e-9 2.0e-9 14.66 0.59 1.76

With constant radius (0.01) and no noise, Table 5.4 shows the impact of the number

of 3-anchor clusters on accuracy and performance. Since the simulation is run on a

single processor, the sequential time records the total time to have all clusters localized

in the whole network. Time per cluster is a calculated average time taken to localize

each cluster. Parallel time is given as an estimate of execution time if the computation

could be done in real clustered (parallel) networks. As we can see, when the radio range

is sufficiently large, the number of anchors in the network has barely any impact on

estimation accuracy because all test cases show negligible errors. At the same time, we

see that the per cluster execution time remains similar for all test cases. However, the

execution time in a parallel computing environment reduces as the number of 3-anchor

clusters increases. This analysis is beneficial for designers to gauge the performance of a

given design, or to decide on a particular design with a given desired performance.
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5.4.2 Number of 3-anchor Clusters Impact with Noise

Continuing from the test cases in section 5.4.1, we run the same simulation except that

a noise factor of 0.1 is added. Table 5.5 shows the impact of the number of 3-anchor

clusters plus noise on accuracy and performance. As we can see, when the radio range

is sufficiently large, the number of anchors in the network has barely any impact on

estimation accuracy with 0.1 noise. Also, execution time in the parallel computing en-

vironment reduces as the number of 3-anchor clusters increases, the same as with the

no-noise situation. However, compared with the no noise results in Table 5.4, the added

0.1 noise level increases both the estimation error and the execution time on average.

Table 5.5: Number of 3-anchor clusters impact with noise: 25 clusters, 4900 total nodes,
196 nodes in each cluster, radius 0.1, with noise factor = 0 .1

3-anchor No of Total Error 95% Error Sequential Per cluster Parallel
clusters anchors Rankings time time time

2 29 6 6.2e-3 5.7e-3 21.12 0.84 5.07
3 31 6 6.3e-3 5.8e-3 21.48 0.86 5.16
4 33 4 6.1e-3 5.5e-3 21.78 0.87 3.49
5 35 4 6.0e-3 5.5e-3 20.76 0.83 3.32
6 37 4 5.9e-3 5.3e-3 21.10 0.84 3.38
7 39 4 6.0e-3 5.4e-3 22.35 0.89 3.58
8 41 4 5.9e-3 5.3e-3 21.07 0.84 3.37
9 43 3 5.8e-3 5.2e-3 21.28 0.85 2.55

12 49 3 5.8e-3 5.2e-3 21.56 0.86 2.59
13 51 3 5.8e-3 5.2e-3 20.49 0.82 2.46
17 59 3 6.0e-3 5.5e-3 20.50 0.82 2.46
20 65 3 6.2e-3 5.7e-3 20.32 0.81 2.44

5.4.3 Node Density Impact

In order to study the impact of node density, we choose one of the networks in section

5.4.1 with the number of 3-anchor clusters = 8. Then we vary the number of nodes in

each cluster to see its impact on performance. With a fixed total number of 25 clusters

and radio range of 0.1, Table 5.6 shows the direct impact of the number of nodes in each

cluster on accuracy and performance. (Noise is not included.) The table shows that the

algorithm can accurately position all sensors with no errors. As we expected, increasing

node density increases the execution time.
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Table 5.6: Node density impact with number of clusters = 25, number of 3-anchor clusters
= 8, radius = 0.100; noise factor = 0

Total Nodes per Error 95% Error Sequential Per cluster Parallel
nodes cluster time time time

400 4* 4( 16) 9.4e-8 2.5e-8 0.76 0.03 0.12
625 5* 5( 25) 5.0e-8 1.1e-8 1.37 0.05 0.22

1225 7* 7( 49) 2.5e-8 4.7e-9 2.92 0.12 0.47
2025 9* 9( 81) 1.1e-8 2.0e-9 5.07 0.20 0.81
3025 11*11(121) 8.5e-9 2.2e-9 8.22 0.33 1.32
4225 13*13(169) 8.0e-9 1.7e-9 12.86 0.51 2.06
4900 14*14(196) 1.0e-8 2.2e-9 15.13 0.61 2.42
5625 15*15(225) 5.0e-9 1.3e-9 18.78 0.75 3.00
6400 16*16(256) 8.8e-9 2.0e-9 22.79 0.91 3.65
7225 17*17(289) 6.3e-9 1.5e-9 29.01 1.16 4.64
8100 18*18(324) 5.9e-9 1.2e-9 34.45 1.38 5.51
9025 19*19(361) 8.5e-9 1.7e-9 45.47 1.82 7.27

10000 20*20(400) 7.1e-9 1.6e-9 55.03 2.20 8.80

5.4.4 Radio Range Impact

In order to study the impact of radio range, we choose one of the networks in section

5.4.1 with the number of 3-anchor clusters = 8. Then we vary the radio range to see its

impact on accuracy and performance.

Table 5.7: Radio range impact with nodes = 4900, number of clusters = 25, number of
3-anchor clusters = 8, noise factor = 0

Radio Error 95% Error Number of Sequential Per cluster Parallel
range outliers time time time

0.0143(1/70) 0.3847 0.360 195 0.40 0.02 0.064
0.0215(3/2/70) 9.6e-7 5.6e-7 0 15.98 0.64 2.56
0.0286(2/70) 9.6e-7 5.6e-7 0 15.78 0.63 2.53
0.0429(3/70) 1.1e-7 6.8e-8 0 14.54 0.58 2.33
0.0571(4/70) 2.5e-8 5.8e-9 0 13.63 0.55 2.18
0.0714(5/70) 1.7e-8 3.2e-9 0 13.07 0.52 2.09
0.0857(6/70) 1.4e-8 3.0e-9 0 13.36 0.53 2.14
0.1000(7/70) 1.0e-8 2.2e-9 0 14.63 0.59 2.34

With a fixed total number of 4900 nodes in 25 clusters, Table 5.7 shows the direct

impact of radio range on accuracy and performance. (Noise is not included.) We can

see that when the radio range is sufficiently large (no less than 0.0215), increasing radio

range barely has any impact on the estimation accuracy or speed. However, when radius

is reduced to 0.0143, none of the sensors has at least 3 connections to anchors, so the

localizations totally rely on the auxiliary geometric routines, causing the execution time
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to be greatly reduced. In addition, the number of unreachable sensors (outliers) reaches

195, which is unacceptable. Clearly, the simulation could assist sensor network designers

in selecting a radio range to achieve a desired estimation error and algorithm speed.

5.4.5 Noise Factor Impact

In order to study the impact of noise, we choose one of the networks in section 5.4.1 with

the number of 3-anchor clusters = 8. Then we vary the noise factor to see its impact

on accuracy and performance. With a fixed total number of 4900 nodes in 25 clusters,

Table 5.8 shows the impact of noise level on accuracy and performance. As we can see,

more noise in the network has a direct impact on estimation accuracy. This analysis may

help designers determine the sensor noise level that will give an acceptable estimation

error.

Table 5.8: Noise factor impact with nodes = 4900, number of clusters = 25, number of
3-anchor clusters = 8, radius = 0.1

Noise Error 95% Error Sequential Per cluster Parallel
factor time time time
0.00 1.0e-8 2.2e-9 15.50 0.62 2.48
0.05 2.7e-3 2.3e-3 20.46 0.82 3.27
0.10 6.0e-3 5.3e-3 21.51 0.86 3.44
0.20 1.4e-2 1.2e-2 23.86 0.95 3.82
0.30 2.2e-2 2.0e-2 25.30 1.01 4.05
0.40 2.9e-2 2.7e-2 23.35 0.93 3.74
0.50 3.5e-2 3.3e-2 26.95 1.08 4.31

5.4.6 Number of Clusters Impact

This section studies the impact of the number of clusters on the algorithm’s performance.

We run simulations for networks of 4 to 36 clusters. The number of nodes in each cluster

remains the same at 256 nodes. The number of anchors and radius change with the

number of sensors being simulated in order to maintain the same connectivity level.

We assume all clusters are 3-anchor clusters, and the radio range is half the size of the

cluster’s square width. Noise is not included in this simulation.

Table 5.9 shows the simulation results of the number of clusters’ impact on perfor-

mance (all have negligible estimation errors). As we can see, with the increase of the

number of clusters in the network, the parallel execution time increases. This is caused
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by the distributed algorithm’s synchronization routine. The bigger the network, the more

neighbors to search and synchronize.

Table 5.9: Number of clusters impact with 256 nodes in each cluster; all 3-anchor clusters

No of clusters No of nodes Radio range Sequential time Parallel time
4 1024 0.2500 3.17 0.79
9 2304 0.1670 7.62 0.85

16 4096 0.1250 13.91 0.87
25 6400 0.1000 22.31 0.89
36 9216 0.0833 32.97 0.92



Chapter 6

3D Extensions

Sensor localization in 3-dimensional space addresses the need to estimate sensors’ loca-

tions whose distributions are beyond a plane surface in wireless sensor networks. For

example, if an ad hoc wireless sensor network is used to detect fire hazard in a high-rise

building, sensors may be placed on different floors. Our 3D sensor localization algorithm

extends the 2D solver SpaseLoc. In this chapter, we describe modifications to the 2D

implementation to permit effective 3D sensor localizations. Computational results are

presented.

6.1 3D Sensor Localization Geometry

To be localizeable in 3D, a sensor needs at least 4 known distance measurements to at

least 4 anchors that are not on a plane.

For example, assume a sensor at location x ∈ R3 connects to 4 anchors whose known

locations are a, b, c, e ∈ R3. The 4 known distance measurements between the sensor and

the 4 anchors are d̂1, d̂2, d̂3, d̂4.

The first two spheres centered at anchors a, b with radius d̂1, d̂2 put sensor x on a

circle defined by the following two spheres’ surfaces:

||x− a||2 = d̂ 2
1 ,

||x− b||2 = d̂ 2
2 .

Adding the third sphere centered at anchor c with radius d̂3 puts sensor x on two points

74
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x∗ or x∗∗ defined by the following three spheres’ surfaces:

||x− a||2 = d̂ 2
1 ,

||x− b||2 = d̂ 2
2 ,

||x− c||2 = d̂ 2
3 .

Adding the fourth sphere centered at anchor e with radius d̂4 puts sensor x exactly on

one of the two points x∗ or x∗∗ defined by the following four spheres’ surfaces:

||x− a||2 = d̂ 2
1 ,

||x− b||2 = d̂ 2
2 ,

||x− c||2 = d̂ 2
3 ,

||x− e||2 = d̂ 2
4 .

Therefore, to localize a sensor uniquely under no-noise conditions, we need a minimum

of four distance measurements from at least four of the sensor’s connected anchors.

6.2 3D Localization Design

The following adjustments are made to the 2D version of SpaseLoc in order for it to work

in 3D space.

• In the SpaseLoc implementation, we create a parameter called DIM for dimensions.

We assign DIM = 2 or 3 for the 2D or 3D case, respectively.

• All rules for subproblem creation for the 2D scenario discussed in section 3.1.2 are

adjusted to work for the 3D scenario.

• The subproblem to be processed by the DSDP solver is also adjusted to accommo-

date the extra dimension.

• In the independent subanchor selection routine (section 3.1.5), instead of checking

whether 3 points are on a line in the 2D case, the algorithm checks whether 4 points

are on a plane. If so, the 4 anchors are said to be dependent.

• All the auxiliary geometric routines in sections 3.1.6 and 3.1.7 still apply to the

3D case with proper adjustment of dimensions. For example, in section 3.1.6, we

developed a routine for sensors in 2D with only 2 connected anchors to localize
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Figure 6.1: Localization errors for 3D localization with geometric routine.

with more accuracy utilizing neighboring anchors’ information. We extend this

heuristic to 3D space for sensors with only 3 connected anchors. We use the same

technique first to calculate the two possible points where the sensor could be using

three distance equations. Then, we eliminate one of the two possible points by the

sensor’s anchors’ neighboring anchors. Figure 6.1 shows the results of localization

accuracy with or without the auxiliary geometric routine. 27 sensor nodes are

purposely placed on square grids within a 1×1×1 volume in 3D, within which 4 of

the nodes are anchors. With a radio range of 1, some of the sensors do not have at

least 4 independent connected anchors (original or acting) to localize them. We can

see from Figure 6.1 that our geometric subroutine is very effective in reducing error

under this condition. The average error without the geometric routine is 0.0689,

but with the geometric routine, the average error is reduced to 0.0124.

6.3 3D Localization Simulation Results

This section presents some simulation results in order to compare the performance of the

3D algorithm with the 2D version.

The simulation setup is the same as for the 2D case as discussed in section 3.3 using

strategy I0, except the area is confined within 1 × 1 × 1 in 3D. Figure 6.2 shows 100

randomly uniform-distributed nodes being localized by 3D SpaseLoc. As we can see, all

nodes are localized accurately with essentially no error.
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Figure 6.2: 3D sensor localization, 100 total points, 15 anchors, radius 0.5, no noise

6.3.1 Scalability

Table 6.1 shows scalability results for 27 to 10000 randomly uniform-distributed sensors

being localized using the 3D localization algorithm. All sensors’ positions are randomly

generated with a uniform random distribution in the 1× 1× 1 volume with anchors also

randomly chosen. The number of anchors and radius change with the number of sensors

being simulated in order to maintain the same connectivity level. Noise is not included

in this simulation.

Not unexpectedly, comparing with the 2D case in Table 3.5, we see that the execution

times increase steadily with increasing sizes of the networks.

Table 6.1: 3D algorithm scalability.

Nodes Anchors radius sub size Error Trace 95% Error 95% Trace Time SDP’s
27 9 1.0000 2 2.7e-10 1.9e-10 1.9e-10 1.5e-10 0.04 9
64 16 0.6667 2 9.1e-9 7.8e-9 2.0e-9 9.9e-10 0.20 24

125 25 0.5000 2 8.1e-9 1.9e-9 4.4e-9 8.4e-10 0.42 50
216 36 0.4000 2 3.9e-8 5.9e-9 1.9e-8 3.8e-9 0.76 90
512 64 0.2858 2 5.4e-4 1.1e-8 2.7e-8 4.8e-9 2.09 225

1000 100 0.2223 3 2.3e-4 1.1e-8 3.6e-8 6.1e-9 4.71 301
2197 169 0.1667 4 1.2e-7 3.2e-8 5.2e-8 8.7e-9 11.88 508
2744 196 0.1539 5 9.6e-5 1.7e-8 6.3e-8 1.1e-8 15.73 512
3375 225 0.1429 5 1.1e-4 1.6e-8 5.9e-8 9.2e-9 20.34 631
4096 256 0.1334 6 1.1e-4 2.5e-5 6.6e-8 9.8e-9 26.52 642
4913 289 0.1250 6 1.2e-7 1.7e-7 7.3e-8 1.1e-8 33.71 772
5832 324 0.1177 7 1.4e-5 4.6e-6 8.3e-8 1.2e-8 42.34 788
6859 361 0.1112 7 2.2e-5 2.6e-8 9.5e-8 1.4e-8 52.85 930
8000 400 0.1053 7 3.4e-5 2.6e-8 1.1e-7 1.7e-8 65.42 1087
9261 441 0.1010 7 4.8e-5 3.6e-8 1.2e-7 2.0e-8 81.61 1263

10648 484 0.0960 7 4.9e-5 1.2e-6 1.4e-7 2.2e-8 99.80 1455
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6.3.2 Radio Range Impact

With a fixed total number of randomly uniform-distributed nodes (4096, of which 256 are

anchors), Table 6.2 shows the impact of radio range on accuracy and performance. (Noise

is not included.) As we can see from the table, increasing the radius generally produces

better estimation accuracy but increases execution time slightly. Bigger radio range

normally results in more connections among nodes, which may lead to more constraints

for the subproblem.

Table 6.2: Radio-range impact: nodes = 4096, anchors = 256, no noise.

radius sub size Error 95% Error Outliers Time SDP’s
0.1250 6 7.2e-5 8.3e-8 0 25.43 641
0.1300 6 5.9e-5 7.7e-8 0 25.97 641
0.1334 6 1.1e-4 6.6e-8 0 26.52 642
0.1400 6 2.1e-5 5.8e-8 0 27.62 641
0.1450 6 8.8e-5 4.8e-8 0 28.72 641
0.1500 6 6.4e-8 3.9e-8 0 29.53 640

6.3.3 Noise Factor Impact

With constant radius (0.1500) and the same randomly uniform-distributed nodes (4096),

Table 6.3 shows the impact of noise conditions on accuracy and performance. As we can

see, more noise in the network has a direct impact on estimation accuracy. Higher noise

level also increases execution time.

Table 6.3: Noise factor impact: nodes = 4096, anchors = 256, radius = 0.15.

noise factor sub size Error 95% Error Time SDP’s
0.0 6 6.4e-8 3.9e-8 29.53 640
0.1 6 0.042 0.037 37.65 680
0.2 6 0.092 0.083 41.70 746
0.3 6 0.151 0.140 42.30 725
0.4 6 0.219 0.205 43.47 703
0.5 6 0.290 0.275 45.37 663
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6.3.4 Number of Anchors Impact

With constant radius (0.15) and the same randomly uniform-distributed nodes (4096),

Table 6.4 shows the impact of the number of anchors on accuracy and performance.

(Noise is not included.) As we can see, bigger radio range generally improves estimation

accuracy and algorithm speed. This is because more anchors mean less sensors to be

localized and more accurate anchor references are available for localizing sensors other

than relying on acting anchors.

Table 6.4: Number of anchors impact: nodes = 4096, radius = 0.15, no noise.

Anchors sub size Error 95% Error Time SDP’s
16 6 4.6e-4 6.1e-8 31.81 681
32 6 4.3e-5 5.1e-8 31.68 679
64 6 7.7e-8 4.9e-8 31.41 673

128 6 8.1e-8 4.7e-8 30.88 662
256 6 6.4e-8 3.9e-8 29.53 640
384 6 6.1e-8 3.7e-8 28.34 619
768 6 4.9e-8 3.3e-8 24.71 555

6.3.5 Number of Anchors Impact with Noise

With the same radius (0.150) and the same randomly uniform-distributed nodes (4096),

Table 6.5 shows the impact of the number of anchors on accuracy and performance when

a noise factor of 0.1 is included in the simulation. With this radio range, more anchors

give slightly better estimation accuracy and a lot greater algorithm speed in general.

Also, the presence of noise does add execution time and cause more errors on average

compared with Table 6.4.

Table 6.5: Number of anchors impact: nodes = 4096, radius = 0.150, noise factor = 0.1.

Anchors sub size Error 95% Error Time SDP’s
16 6 4.8e-2 4.0e-2 51.37 889
32 6 4.4e-2 3.9e-2 47.15 833
64 6 4.6e-2 4.0e-2 45.51 799

128 6 4.3e-2 3.9e-2 40.74 731
256 6 4.2e-2 3.7e-2 37.65 680
384 6 4.1e-2 3.7e-2 35.36 636
768 6 4.0e-2 3.6e-2 30.22 555
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6.3.6 Number of Anchors Impact with Noise and Lower radius

With the same randomly uniform-distributed nodes and the same noise level but lower

radius (0.125), Table 6.6 shows the impact of the number of anchors on accuracy and

performance. The increase in the number of anchors results in better estimation accuracy

and algorithm speed in general. In addition, decreased radio range reduces slightly the

execution time and causes more errors on average compared with Table 6.5.

Table 6.6: Number of anchors impact: nodes = 4096, radius = 0.125, noise factor = 0.1

Anchors sub size Error 95% Error Time SDP’s
16 6 5.9e-2 4.6e-2 50.40 961
32 6 5.2e-2 4.2e-2 45.45 865

128 6 4.8e-2 4.0e-2 41.28 807
256 6 4.4e-2 3.9e-2 35.08 704
384 6 4.4e-2 3.8e-2 32.60 672
768 6 4.2e-2 3.7e-2 26.43 558



Chapter 7

Sensor Localization in Anchorless

Networks

We have been assuming in the previous chapters that the network contains sufficient

original anchors for the sensors to be localized by our algorithms. This chapter presents

a preprocessor for SpaseLoc called Surrogate Anchor Selection to localize a network

where no absolute locations are known for any node in the network. We call such cases

anchorless networks.

7.1 Anchorless Networks

In an anchorless network, each node can estimate the distance to each of its neighbors,

but no absolute position references such as GPS or fixed anchor nodes are available.

Localization of sensors in this type of network becomes: given pairwise distance mea-

surements between sensors, recover the relative positions of each sensor up to a global

rotation and translation.

Sensor localization without absolute position information is important for homoge-

neous networks, where any node may become mobile.

Niculescu and Nath [34] and Moore, et al. [31] propose anchorless sensor localization

based on a trilateration primitive. Moore’s method uses a notion of robust quadrilaterals

to minimize the probability of realizing a flip ambiguity incorrectly because of measure-

ment noise. The localization problem is formulated as a 2D graph realization problem:

given a planar graph with edges of known length, recover the position of each vertex up

to a global rotation and translation.

Paper [31] reports results from using the method on a network of nodes using MIT’s
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Crickets, which are hardware-compatible with the Mica2 Motes developed at Berkeley

with the addition of an ultrasonic transmitter and receiver on each device. This hardware

enables the sensor nodes to measure inter-node ranges using the time difference of arrival

(TDoA) between ultrasonic and RF signals. Although the Crickets can achieve ranging

precision of around 1cm on the lab bench, the ranging error in practice can be as large

as 5cm because of off-axis alignment of the sending and receiving transducers.

The paper reports experimental results for 16-sensor network localization using the

proposed algorithm. When the measurement errors are averaged at 5.18cm, the algo-

rithm’s localization error is averaged at 7.02cm. The paper also reports simulation results

for bigger networks, and the results of tracking a mobile sensor. There is no report on

the algorithm’s speed.

7.2 Surrogate Anchor Selection

With pairwise distance measurements among sensors and without reference to any ab-

solute positions, we would only be able to determine relative locations of all nodes. The

idea behind our approach is to choose some sensors as reference points (we name these

surrogate anchors), such that the rest of the sensors can be localized relative to these

positions.

We need three surrogate anchors that are not on a line in order to localize the rest of

the sensors uniquely on the plane that the three surrogate anchors are on. (We assume

the network is on a plane. The method can be intuitively expanded to 3D space.)

We define surrogate anchors SA = {a1, a2, a3} in a network to be a subset of sensors

in the same network. Suppose the subset happens to be sensors {s1, s2, s3} with pair-

wise distance measurements d̂12, d̂13, d̂23. These surrogate sensors satisfy the following

properties:

• The first surrogate anchor a1 corresponding to s1 is artificially set to a position of

(0, 0).

• The second surrogate anchor a2 corresponding to s2 is set to a position of (d̂12, 0).

• The third surrogate anchor a3 corresponding to s3 is set to a position of (x∗x, x
∗
y),

an intersection of the following two circles:

x2
x + x2

y = (d̂13)
2,

(xx − d̂12)
2 + x2

y = (d̂23)
2.
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Generally there would be two solutions to the above equations. Either one can be

chosen as (x∗x, x
∗
y).

In this section, we propose a preprocessor to select three sensors to act as surrogate

anchors in the network. SpaseLoc can then be applied to localize the remaining sensor

nodes relative to the surrogate anchors’ positions.

In choosing the surrogate anchors, we give priority to sensors with the highest con-

nectivity to other nodes in the network, in order to reduce transitive errors.

Here are the main steps in the preprocessor for selecting three surrogate anchors.

SA1 Initialize sensor list to include all sensors in the network, and assign sensor list1 =

sensor list.

SA2 For surrogate anchor1, choose the sensor connected to most other sensors in sen-

sor list1, say sensor1.

SA3 For surrogate anchor2, choose sensor2 such that:

– It is connected to surrogate anchor1.

– It is connected to some node sensork that is also connected to surrogate anchor1.

– sensor1, sensor2, and sensork are not on the same line.

If more than one candidate satisfies the above three items, choose the one that has

the most connections to other sensors in sensor list, and set surrogate anchor3 to

be sensork. Go to step SA4.

If there is no candidate satisfying the first three items, delete sensor1 from sen-

sor list1 and return to step SA2.

SA4 Stop.
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dist = [0 1 0 0 1 σ 0 0 0 0 0 0 0 0 0 0
1 0 1 0 σ 1 σ 0 0 0 0 0 0 0 0 0
0 1 0 1 0 σ 1 σ 0 0 0 0 0 0 0 0
0 0 1 0 0 0 σ 1 0 0 0 0 0 0 0 0
1 σ 0 0 0 1 0 0 1 σ 0 0 0 0 0 0
σ 1 σ 0 1 0 1 0 σ 1 σ 0 0 0 0 0
0 σ 1 σ 0 1 0 1 0 σ 1 σ 0 0 0 0
0 0 σ 1 0 0 1 0 0 0 σ 1 0 0 0 0
0 0 0 0 1 σ 0 0 0 1 0 0 1 σ 0 0
0 0 0 0 σ 1 σ 0 1 0 1 0 σ 1 σ 0
0 0 0 0 0 σ 1 σ 0 1 0 1 0 σ 1 σ
0 0 0 0 0 0 σ 1 0 0 1 0 0 0 σ 1
0 0 0 0 0 0 0 0 1 σ 0 0 0 1 0 0
0 0 0 0 0 0 0 0 σ 1 σ 0 1 0 1 0
0 0 0 0 0 0 0 0 0 σ 1 σ 0 1 0 1
0 0 0 0 0 0 0 0 0 0 σ 1 0 0 1 0]

Figure 7.1: Example anchorless network. The entry σ is
√

2.

7.3 An Example

This section illustrates through an example our approach for sensor localization of an-

chorless networks using the surrogate anchor preprocessor.

Suppose a network has 16 sensors, and we are given the table of pair-wise distance

measurements shown as dist in Figure 7.1.

In Step SA2, the surrogate anchor selection procedure finds surrogate anchor1 to be

sensor 11 because that sensor has the most connections to other sensors. In Step SA3,

sensor 10 is chosen to be surrogate anchor2 because it connects to sensor 11 and to sensor

7 (this is sensork, which is also connected to 11) and it has the most connections to other

sensors. Thus, surrogate anchor3 is determined to be sensor 7.

Now we have three surrogate anchors s11, s10, s7. We now give the first surrogate

anchor s11 point position (0, 0), and the second surrogate anchor s10 point position (1, 0)

because the distance between s11 and s10 is 1. For surrogate anchor 3’s position, we solve

the following equations:

x2
x + x2

y = 1,

(xx − 1)2 + x2
y = 2.

The roots of these equations give two points: (0, 1) and (0,−1). Out of habit, we choose

the one with a positive coordinate, namely (0, 1).
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With the distance matrix and three surrogate anchors and their reference positions,

we now call SpaseLoc to localize the remaining sensors. The relative positions of all

sensors output by SpaseLoc are given in Figure 7.2. As we can see, the figure recovers

the relative positions of all 16 nodes satisfying all the distance measurements in dist.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

x

y

Anchorless SpaseLoc

anchor position
true position
estimated position
errors

Figure 7.2: An example of anchorless localization, radius
√

2, no noise



Chapter 8

Conclusions and Future Research

In this dissertation research, we have developed a range of algorithms to estimate sensor

positions in static, dynamic, distributed, 2D and 3D wireless sensor networks. This

chapter summarizes the proposed approaches and discusses future research directions.

8.1 Contributions

The proposed algorithms achieve a breakthrough in scalability and accuracy compared

with existing methods. The advances were recognized when this research project tied for

first prize in the 2005 Stanford-Berkeley Innovators’ Challenge competition. All entries

were judged in the categories of Technical Innovation, Execution, and Future Impact [25].

Existing localization methods have been applicable for only moderate-sized networks.

The recent optimization approach by Biswas and Ye [4] uses semidefinite programming

(SDP) to find an approximate solution. This is a vital tool, but its speed and accuracy

deteriorate rapidly with network size. The computational complexity of this approach is

O(np), where p is between 3 and 4.

The complexity of our SpaseLoc algorithm is O(n). On a 2.4GHz laptop with 1GB

memory, the algorithm maintains efficiency and provides accurate position estimation for

networks with 10000 sensors and beyond.

SpaseLoc is further utilized as a vital tool for more general localization algorithms.

A dynamic version can estimate moving sensors’ locations in real-time, and a 3D version

extends its utility. We also deploy SpaseLoc in clustered and distributed environments,

permitting application to arbitrarily large networks.

Figure 8.1 compares the localization results between our SpaseLoc algorithm and the

pure SDP approach for various size networks. The left-hand figure shows a comparison

86
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Figure 8.1: Accuracy and performance comparison.

in terms of estimation accuracy for localizing various sizes of networks when sensors

are placed at the vertices of an equilateral triangle grid with 0.1 noise factor added to

distance measurements (refer to section 3.3.2). It shows clearly that SpaseLoc provides

much better positioning accuracy.

The right-hand graph summarizes the localization results in terms of execution time

for various sizes of networks. Data for SDP is taken from Table 3.4; data for 2D is taken

from Table 3.5; data for 3D is taken from Table 6.1; and data for distributed time is

taken from Table 5.6. The figure displays remarkable performance improvement of the

proposed algorithms.

The following summarizes our proposed suite of algorithms for various sensor localiza-

tion applications. Please also refer to Figure 8.2 for the hierarchical algorithm structure.

1. The basic SDP relaxation approach is adopted for solving the subproblems gener-

ated by SpaseLoc.

2. SpaseLoc proceeds iteratively by estimating only a portion of the total sensors’

locations at each iteration.

Some anchors and sensors are chosen according to a set of rules to form a (very

small) localization subproblem. This is solved by the SDP approach, or by auxiliary

geometric subroutines.

The subproblem solution is then returned to the full problem and the algorithm

iterates again until all sensors are localized.

3. With SpaseLoc in hand, we are able to develop a dynamic sensor localization al-

gorithm to track hundreds or thousands of sensors moving within a larger network
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Figure 8.2: Hierarchical algorithm structure.

in real-time. This algorithm utilizes SpaseLoc with extracted data sets that only

affect the moving sensors.

4. A priority-driven hierarchical scheme that utilizes distributed computing is de-

veloped for large clustered networks. SpaseLoc remains a vital yet intrinsically

sequential tool at a lower level. Scalability is achieved through parallelism at the

cluster level.

5. A preprocessor for SpaseLoc is developed to localize sensors in anchorless networks.

8.2 Impact of the Research

The proposed sensor localization algorithms (research) transform academic research in

the area into usable software deployable in practical sensor networks.

The variety and scale of future network applications begs for software that can fully

utilize the multitude of sensor devices currently being created. The broad impact of

the research is that it has produced an enabling technology analogous to the device

technology itself. Efficient and accurate localization for networks of arbitrary size is an

essential requirement for tomorrow’s wireless sensor networks to provide their intended

services.

The need is even more imperative when we recognize that the processing power in
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sensor devices of the near future will be far less than a current Pentium laptop. SpaseLoc

is already a major advance for networks up to ten thousands nodes. The distributed

algorithm takes a further quantum leap by attaining true scalability and deployability.

8.3 Future Research

We are actively pursuing extensions of the sensor localization algorithms. The following

are some promising directions.

Molecular structure identification

In biotechnology, there exist ways to obtain clustered pairwise distance measurements

between atoms inside a molecule. The problem then is how to deduce the molecular

structure utilizing these known distance measurements, so the molecule’s characteristics

can be further analyzed. This molecular structure identification problem [47, 48] is very

similar in form to the geometric distance model for sensor localization. The protein

folding problem [1, 10, 32, 35] and the Euclidean Distance Matrix problem [49, 50] are

also closely related. We plan to expand our method to be applicable to these areas.

Cartography

A classical paper by Gauss [16] describes a least-squares approach to constructing a map

of Holland using pairwise distance measurements between neighboring villages. This is

closely related to the sensor localization problem. The distance matrix is sparse, and

the required solution is in 3D (to allow for curvature of the earth). We plan to explore

applying our method to this problem.

General version of distributed algorithm

We are currently working on generalizing our distributed approach to arbitrary topologies.

In the future, we plan to utilize Stanford’s Sweet Hall computer clusters to implement

our distributed algorithm to achieve true parallel computing.

Objective function with `2 norm

This thesis reports results from formulating the sensor localization problem as in (2.1):

minimizing the `1 norm of the squared-distance errors αij and αik. The localization
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problem can also be formulated as a least-squares problem, minimizing the `2 norm of

the errors αij and αik subject to the same equality and inequality constraints as in (2.1):

minimize
xi,xj ,αij ,αik

∑

(i,j)∈N1

α2
ij +

∑

(i,k)∈N2

α2
ik

subject to ‖xi − xj‖2 − αij = (d̂ij)
2, ∀ (i, j) ∈ N1,

‖xi − ak‖2 − αik = (d̂ik)
2, ∀ (i, k) ∈ N2,

‖xi − xj‖2 ≥ r2
ij, ∀ (i, j) ∈ N1,

‖xi − ak‖2 ≥ r2
ik, ∀ (i, k) ∈ N2,

xi, xj ∈ R2, αij, αik ∈ R,

i, j = 1, . . . , s, k = s + 1, . . . , n.

(8.1)

The `2 norm formulation increases the nonlinearity of the problem. SeDuMi [44] is

capable of handling this objective function directly. For DSDP5.0 [3] we could include

additional variables and semidefinite constraints of the form
 

1 βij

βij αij

!
º 0.

Lian, Wang, and Ye [26] have studied the least-squares form of the localization prob-

lem and its SDP relaxation. They show that the `2 objective gives a weighted maximum

likelihood estimation. This formulation could be used for all of the subproblems solved

by SpaseLoc in Chapter 3. A future comparison of the formulations would be of interest.

Porting codes to C

Our localization algorithms are currently implemented in Matlab, with a Mex interface

to the SDP solver DSDP5.0 [3] (which is implemented in C). The next step is to convert

the Matlab codes to C to facilitate their application to real network implementations.

Conversions between absolute locations and digital map

We use coordinates to represent sensors’ locations in our localization algorithms. Some

applications may prefer to use a landmark (called a spot) to pinpoint where the sensors

are. A spot fitting interface will need to be developed for network applications of this

nature. Also, many applications would simply provide a digital map for identifying sensor

locations. Conversion of sensors’ coordinates into a corresponding spot in the digital map

needs further development.
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Deployment to real-world applications

We are currently developing collaborations with several companies with the aim of ap-

plying our algorithms to real-world applications.
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