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INTRODUCTION
Johnsen and colleagues demonstrated that dramatic, physiologically
relevant spectral changes in skylight irradiance occur every morning
and evening during twilight, largely due to the increasing absorbance
of long-wavelength light by the ozone layer as the path length of
direct solar radiation through the atmosphere increases (Johnsen et
al., 2006). Additionally, moonlight is long-wavelength-shifted
relative to direct sunlight, and the full moon, when high in the sky,
has an irradiance roughly equal to that of the beginning of nautical
twilight. Therefore, in the absence of the moon, twilight is
dramatically blue shifted compared with daytime illumination, but
when the moon is present in the sky, its longer-wavelength
illumination causes this twilight blue shift to be lessened or absent
altogether.

The presence, phase and elevation of the moon during evening
twilight varies over the lunar month (Fig.!1A), so we hypothesize
that twilight spectral dynamics will also vary over the month.
Because the evening moon is closest to the horizon when it is full,
but the moon is below the horizon during the twilight of the
following day, we expect that twilight irradiance spectra will
undergo the greatest change between the few successive evenings
before and after the full moon. As this crepuscular period is crucially
important for visual behavior in many species, these lunar-mediated
changes likely have biological relevance.

The synchronization of invertebrate mass spawnings may be one
of the biological phenomena that has evolved in response to lunar-
mediated spectral variations. Mass, synchronous free-spawning in
marine invertebrates is a widespread phenomenon that has long
fascinated biologists (Korringa, 1947; Giese, 1959; Hauenschild,

1960; Babcock et al., 1986; Darwin, 1860). The phenomenon of
thousands of animals synchronizing gamete release within a brief
temporal window on a few nights of the year indeed demands
explanation. Synchronized spawning is observed in invertebrates as
diverse as barnacles, polychaete worms, sponges, corals, ascidians
and echinoderms (Fig.!2), but the phenomenon has attracted the most
research in reef-building corals. This is in part because of their status
as threatened keystone species in critically important tropical reef
habitats, and in part because the physiological basis of massively
synchronized behavior in animals without a central nervous system
is mysterious. Spawning synchrony likely requires interactions
between several different physiological clocks: annual, seasonal,
monthly and daily. However, recent work has shown that although
entrainment to these clocks could cue organisms to a particular night
of spawning, a final, discrete trigger is probably needed to achieve
the tight synchrony observed (Ananthasubramaniam et al., 2011).

Over the last century, many hypotheses have been advanced to
explain seasonal spawning synchrony in invertebrates, particularly
in corals. An early study concluded that temperature could be the
major driver for most organisms (Orton, 1920), whereas other
hypotheses include total solar radiation over the course of a season
(van Woesik, 2006), photosynthate levels produced by symbiotic
zooxanthellae (Muscatine et al., 1984) and cryptochrome cycling
entrained by the lunar cycle (Levy et al., 2007; Shlesinger and Loya,
1985; Jokiel et al., 1985). Additionally, Hunter showed that lunar
phase, seawater temperature and day length all impacted spawning
periodicity in several species of corals (Hunter, 1988). Giese (Giese
et al., 1959) demonstrated that photoperiod is important for several
taxa of invertebrates. Experimental manipulation of light:dark
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SUMMARY
There are dramatic and physiologically relevant changes in both skylight color and intensity during evening twilight as the
pathlength of direct sunlight through the atmosphere increases, ozone increasingly absorbs long wavelengths and skylight
becomes increasingly blue shifted. The moon is above the horizon at sunset during the waxing phase of the lunar cycle, on the
horizon at sunset on the night of the full moon and below the horizon during the waning phase. Moonlight is red shifted compared
with daylight, so the presence, phase and position of the moon in the sky could modulate the blue shifts during twilight.
Therefore, the influence of the moon on twilight color is likely to differ somewhat each night of the lunar cycle, and to vary
especially rapidly around the full moon, as the moon transitions from above to below the horizon during twilight. Many important
light-mediated biological processes occur during twilight, and this lunar effect may play a role. One particularly intriguing
biological event tightly correlated with these twilight processes is the occurrence of mass spawning events on coral reefs.
Therefore, we measured downwelling underwater hyperspectral irradiance on a coral reef during twilight for several nights before
and after the full moon. We demonstrate that shifts in twilight color and intensity on nights both within and between evenings,
immediately before and after the full moon, are correlated with the observed times of synchronized mass spawning, and that these
optical phenomena are a biologically plausible cue for the synchronization of these mass spawning events.
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cycles for organisms such as the sponges Halichondria panicea
(Amano, 1986) and Callyspongia ramosa (Amano, 1988), the
holothurian Isostichopus fuscus (Mercier et al., 2007) and the hard
corals Goniastrea aspera (Babcock, 1984) and Acropora digitifera
(Hayashibara et al., 2004) all resulted in peak spawning occurring
on or near the change from the light to dark phase of the photoperiod.
Differential cryptochrome expression between full moon and new
moon cycles has been invoked as a possible mechanism contributing
to synchrony in Acropora millepora, although the evidence was
tenuous (Levy et al., 2007).

Although each of these observations helps explain how organisms
converge on a season and month for spawning, and thus address
within-year or within-month synchrony, they do not address within-
day synchrony. None of these ideas adequately explains the observed
tight coupling of spawning behavior within a single day, or the
spawning observed for some species synchronized to a single 20!min
period following sunset on a few consecutive nights during the
waning gibbous phase of the moon at latitudes where the day length
varies by a few percent over the course of an entire year (Fig.!2).
Our compilation of published data on spawning windows
demonstrates that in all taxa with documented dates and times of
spawning, mass spawnings are much more tightly constrained to a
specific point in the 24!h circadian cycle (twilight) than within the
monthly circalunar cycle (Fig.!2). This observed tight coupling to a
feature of the 24!h cycle demands explanation, yet there have been
few, if any, hypotheses advanced that can explain this tight circadian
synchrony in addition to circalunar synchrony, or that explain why
circadian synchrony is tighter than circalunar synchrony. We
hypothesize that the ‘blue pulse’ that intensifies each night for a
few nights around the full moon could be a mechanism cuing
spawning and explaining patterns of both circalunar and circadian
synchrony in mass-spawning organisms. Therefore, we quantified
these spectral changes on a coral reef during a month and week
when coral spawning was predicted, to determine whether they merit
further experimental investigation as a plausible cue for mass-
spawning behavior.

MATERIALS AND METHODS
We measured hyperspectral twilight irradiance using the methods
described in Johnsen et al. (Johnsen et al., 2006), modified for
measurements underwater. A splash-proof ruggedized laptop
computer (Panasonic Toughbook model CF-30) and a miniature fiber-
optic spectrometer (Ocean Optics USB2000+, Ocean Optics Inc.,
Dunedin, FL, USA), optimized for high sensitivity, were mounted in
a waterproof case (Hardigg Storm Case model iM2400, Torrance,
CA, USA). The laptop was used to run SpectraSuite spectrometer
software for data acquisition (Ocean Optics). The case in turn was
lashed to an inflated 18!inch tractor tire inner tube that was lashed to
a 1!m2 PVC raft with foam pipe insulation covering the PVC for
additional stability and flotation. A custom-fabricated waterproof 10!m
fiber-optic cable with a 1!mm light-conducting core (Ocean Optics)
was run from the spectrometer down to the reef (at a depth of 2.5!m).
The underwater end of the cable was inserted through a brass tube
15!cm in length mounted to a ring stand at a fixed angle and pointed
at a horizontal metal plate painted with matte titanium-dioxide-based
white paint. Reflectance measurements confirmed that the reflectance
of the painted plate was that of a spectrally neutral and diffuse
(Lambertian) reflector. In this case, the radiance of the plate (viewed
by the end of the fiber) is linearly proportional to the downwelling
irradiance striking it. Although Spectralon is a more commonly used
as a Lambertian reflector, its foam structure makes it unsuitable for
underwater work, particularly at depth.

The spectrometer raft was deployed over a reef habitat in 2.5!m
of water near Yawzi Point in Great Lameshur Bay, St John, US
Virgin Islands (18°19!1.25"N, 64°43!28.19"W). All of the Acropora
palmata Lamarck 1816 colonies in this region were observed close
to this depth, and there were colonies within 100!m of our site,
making the optical properties of our site identical to those where
the coral spawnings in this region occur.

Starting at 18:30!h, approximately sunset, we measured
downwelling underwater irradiance at intervals of 3!min, increasing
the spectrometer integration time as light levels decreased until we
reached the software-determined maximum integration time of 60!s.
After this point, we took one spectrum every minute until the moon
reached its zenith. We measured spectra on 3, 4, 6, 7 and 8 August
2009 and checked local A. palmata colonies for spawning beginning
at 21:00!h each night between 3 and 10 August 2009. For comparison
and calibration, we also measured spectra in the same manner at
the same location at sunset, when the moon was at its zenith (72!deg
lunar elevation) and in the afternoon (25!deg solar elevation).

Raw spectrometer data were smoothed using a median filter and
boxcar algorithm, corrected for the spectral sensitivity of the
spectrometer as a function of wavelength (including attenuation of
the optical fiber), and converted to relative quantal irradiance using
a custom-written MatLab script (Mathworks Inc., Natick, MA,
USA). We determined the optimal dichromatic color visual system
for perceiving the changes in twilight color that we measured. We
assumed the template of a typical opsin absorbance spectrum, a
photoreceptor length of 30!"m and a fairly typical opsin absorption
coefficient of 0.028!"m–1 (Warrant and Nilsson, 1998; Stavenga et
al., 1993). We then calculated the differences in photon catch for
each possible pair of hypothetical opsin pigments in the typical
visible range (350 to 700!nm) discerning the spectra from –10!deg
solar elevation from the nights of 3 and 8 August. We then
determined the optimal pair of hypothetical pigments for discerning
these stimuli to calculate neural opponencies using the difference
between the photon catches of the two optimal pigments divided
by the sum of those catches (Fig.!3) for the spectra that we measured:

Therefore, opponency values near zero represent an equal photon
count in both hypothesized pigments for a given irradiance, whereas
increasingly positive or negative values result from a relatively
greater photon count in one pigment versus the other.

RESULTS
We successfully measured twilight irradiance on 3, 4, 6, 7 and 8
August 2009 (no spectra were measured on 5 August due to logistical
difficulties) and observed a significant impact of lunar elevation on
underwater irradiance on the evenings around the full moon.
Compared with the waxing gibbous phase, on the night of the full
moon, the skylight irradiance spectrum demonstrated a significant
blue shift during twilight, because this is the first night when the
moon is close to or below the horizon at sunset. This shift became
increasingly pronounced on evenings following the full moon
(waning gibbous phase) because the moon rose later on each
successive night (Fig.!1A,B and Fig.!3). On each successive night,
twilight irradiance started bluer at the beginning of our study period
and became bluer as twilight progressed until the moon rose and
shifted irradiance toward the lunar spectrum (see Fig.!4). Although
the raw spectral data for these nights may appear similar on first
inspection, our analyses revealed significant differences that are
illustrated explicitly in Figs!3 and 4.

  Opponency ,= Catch Catch
Catch Catch

1 − 2

1 + 2
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The differences in twilight spectra between the waxing gibbous
and waning gibbous phases (i.e. the nights immediately preceding
and following the full moon, respectively) are due to the varying
mixture of blue-shifted skylight and the slightly red-shifted
moonlight on each night. In the coral reef habitat we studied, the
blue-shifted twilight spectrum with no lunar influence is relatively
narrow and has a peak at 450!nm (Fig.!1B). The spectrum of moon
alone on the reef, with no twilight influence, is much broader and
redder than the twilight spectrum; it has a broad peak at 470!nm
with a broad shoulder extending at nearly the same intensity to
575!nm (Fig.!1B). Intermediate spectra between these two extremes
of twilight-only and moon-only occur on nights where the nearly
full moon is above the horizon during twilight, with the lunar
spectrum dominating when the moon is significantly above the
horizon during twilight (Fig.!1B).

Visual system modeling
An analysis of all possible dichromatic visual systems showed that
two opsins with peaks at 434!nm (P434) and 546!nm (P546) would

A. M. Sweeney and others

best discriminate the twilight spectra from different days (Fig.!3).
We examined the patterns of the opponency in these pigments for
the spectra we measured each night of our experiment. Each night
at approximately –10!deg solar elevation, the opponency value in
our hypothetical visual system was near zero, indicating an equal
photon catch in both hypothetical visual pigments, and eventually
wound up near –0.55, the opponency of skylight dominated by the
moon. However, the dynamics between 0 and –0.55 were quite
different every night. On the night of 3 August, three nights before
the full moon, this opponency immediately decreased from near zero
to a minimum of –0.55 within an hour after sunset (approximately
–12!deg solar elevation), indicating an increasing photon catch in
P546 vs P434 over the course of the evening. On each subsequent
night, the opponency value immediately increased slightly from zero
and stayed positive (greater photon catch in P434 vs P546) for a longer
period of time before eventually decreasing to the negative
opponency value obtained from the moon-dominated spectrum after
moonrise. On the night of 8 August, two nights after the full moon,
there was a dramatic shift in opponency dynamics from the
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Fig.!1. Twilight spectral dynamics during waxing gibbous, full and waning gibbous moon phases. (A)!Range of lunar altitudes at sunset over a year of lunar
cycles in the US Virgin Islands. Red tick marks indicate nights of the lunar cycle for which data are shown; green tick marks indicate nights of the lunar
cycle during which we observed spawning. (B)!Twilight spectra taken every minute, beginning 45!min after sunset and continuing until moonrise for the
nights of 3 August (waxing), 6 August (full moon) and 8 August (waning).



773Twilight spectra and mass spawning

preceding nights: the opponency value increased immediately and
abruptly from zero to a maximum of 0.45, stayed positive for a
much longer period of time, past the irreversible commitment to
spawning marked by bundle-setting in corals, and didn’t decrease
to the lunar value of –0.55 until almost 3!h after sunset (Fig.!4).
Therefore, spectral dynamics of twilight on the evening of 8 August
were significantly different from any other night we measured.
Interestingly, the observation of bundle-setting behavior, when
gamete bundles are moved out of the gonads and into the gastric
cavity of coral polyps and spawning is inevitable, occurred just after
the peak in opponency and when the opponency value was quite
positive (higher photon catch in P434 than in P546) even though actual
spawning, or release of gamete bundles into the water column, occurs
when opponency is dominated by moonlight an hour or two later.
This difference in spectral dynamics was due to the relative positions
of the moon during twilight, as the intensity of maximum lunar
illumination due to changing lunar phase each of those nights did
not significantly differ.

On the nights that we collected data, there were intermittent bands
of clouds moving across the sky. When light clouds crossed the

moon, the intensity of the spectrum dropped (Fig.!1), but the
chromaticity remained relatively constant (Fig.!4). Therefore, our
data suggest that late twilight color is unaltered by light or
intermittent cloud cover, increasing its possible utility as a cue.
During late twilight, sunlight is scattered from parts of the sky that
are more than 40!km in altitude (Bohren and Clothiaux, 2006)
whereas cloud cover is much lower. The overall effect at the sea
surface of twilight under cloud cover should therefore be that of
the usual blue-shifted twilight going through a diffuser, and our data
seem to demonstrate this.

Reef observations
We observed two out of ten focal A. palmata colonies at Yawzi
Point spawn on 9 August, three nights after the full moon, and again
on 10 August, four nights after the full moon (Fig.!1). We observed
the same two colonies spawn beginning at 21:30!h until spawning
was complete at 21:50!h on 9 August again from 21:30 to 21:47!h
on 10 August. On both nights, only partial spawning of the largest
colonies >1!m diameter occurred. We were not on site to observe
any spawning after 10 August.
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1985; 17Marshall, 2002; 18Hagman and Vize,
2003; 19present study; 20Miller et al., 2009; 21M.
Omori, K. Iwao and M. Hatta, personal
communication; 22Caspers, 1984.
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DISCUSSION
It was previously demonstrated that physiologically relevant blue
shifts in irradiance spectrum that occur during twilight are a result
of the increasing absorption of long visible wavelengths by ozone
as the pathlength of direct sunlight through the atmosphere increases
(Johnsen et al., 2006; Hulbert, 1953). Johnsen and colleagues
reported one spectrum of a full moon sky with the moon at an altitude
of 70!deg on land, but did not quantify the impact of lunar phase or
elevation on this twilight blue-shift effect or measure how these
phenomena are altered underwater relative to on land (Johnsen et
al., 2006). Because of the long-demonstrated importance of twilight
and lunar phase on synchronized invertebrate reproductive behavior,
we quantified changes in irradiance spectrum during twilight for
sequential nights with changing lunar elevation around the full moon
on a coral reef. As anticipated, the spectral dynamics in skylight
irradiance that occur underwater on a coral reef are similar to the
terrestrial spectral shifts previously observed (Johnsen et al., 2006).
Additionally, we demonstrated that even underwater, the degree of
the twilight blue shift depends on whether the moon is above or
below the horizon.

Synchronized mass spawning is an especially intriguing correlate
of the twilight phenomena we document here. There are several
physical features of the twilight processes that could be robust,
physiologically relevant cues for spawning behavior consistent with
the short 20!min interval of spawning observed on reefs. These cues
are more closely synchronized to actual observed times of spawning
than the other previously hypothesized synchrony drivers discussed
above, such as temperature. For instance, detecting a twilight
spectrum in the absence of the moon, beyond a certain blue
threshold or in a differing direction of opponency (Figs!5, 6) could
cue bundle-setting behavior (i.e. the final stages of gamete
maturation and extrusion prior to release), subsequently followed
by gamete-release behavior cued by total skylight irradiance reaching
values near zero. Alternatively, a unique rate of decrease of total
irradiance characterizes each night in this portion of the lunar cycle
and could constitute a cue.

A. M. Sweeney and others

The spawning times and dates of reef invertebrates documented
in the literature (Fig.!2) are generally consistent with this hypothesis
that chromatic changes during twilight contribute to spawning
synchronicity. We compiled spawning data for all available species
that have both dates and times of spawning documented. Of these
22 species, 17 always spawn within 2!h of sunset and during the
waning gibbous phase of the moon, consistent with the two-
pigment mechanism cued on the narrowing blue twilight spectrum
we outlined above. Two of these taxa, Pyura stolonifera (a tunicate)
and Ophiarthrum pictum (a brittlestar), clearly do not fit this
particular hypothesis, because these species spawn during the
waxing phase of the moon when the moon is small and consistently
near its zenith in the twilight sky (Fig.!1A). If light cues play a role
in cueing spawning in these species, these spawning observations
are more consistent with more general lunar or solar photoperiod
cues [as proposed in Levy et al. (Levy et al., 2007)] rather than
particular characteristics of a given twilight, as the twilights
observed during this phase of the moon should be fairly constant
across evenings. Two other coral species, Acropora tenuis and
Acropora digitifera, also occasionally spawn before the full moon,
which is also inconsistent with our hypothesis of changing twilight
cues. Therefore, if the chromatic and dynamic twilight phenomena
we describe here play a role in cueing spawning in these taxa, they
would more likely serve as secondary refiners of synchrony, rather
than as primary cues.

In terrestrial invertebrate and vertebrate species, twilight shifts
in irradiance spectrum have been shown to be physiologically
relevant to visual activities such as foraging (Kelber et al., 2002;
Roth and Kelber, 2004). For the species with documented spawning
times and dates that closely fit the pattern discussed above, we
hypothesize that opsin-transduced color vision coupled to a robust
clock sense may be a mechanism that synchronizes and/or triggers
invertebrate spawning occurring during evening twilight following
the full moon. Opsins are a family of proteins that absorb photons
with a carotenoid cofactor to initiate the photosensory transduction
cascade. It is apparently not uncommon for the duplication and
divergence of opsin genes to lead to the evolution of color vision,
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because individual opsin alleles can evolve differing wavelength
sensitivities. This process has occurred frequently, and sometimes
rapidly, in evolutionary time (Pohl et al., 2009; Gojobori and Innan,
2009; Trezise and Collin, 2005). The recent expansion in genomic
data of invertebrates has shown that even animals lacking
morphologically complex eyes are often rich in opsin genes. For
instance, the sea urchin Strongylocentrotus purpuatus has at least
six light-detecting opsins (Raible et al., 2006), and the tunicate Ciona
savignyi has at least three (Kamesh et al., 2008). Our analysis of
the larval Acropora millepora transcriptome identified at least four
visual opsins (data not shown), whereas the fully sequenced genome
of the cnidarian Nematostella vectensis revealed dozens of light-
sensitive opsins (Putnam et al., 2007). Although the field has not
yet progressed to experimental analysis of the action spectra of the
encoded opsin proteins or behavioral experiments necessary to
establish color vision, this observed opsin diversity provides plenty
of genetic potential for the detection of subtle color shifts.

Vize and colleagues recently proposed that opsins and their
associated downstream phosphorylations could be important
transducers of whatever phenomenon ultimately triggers spawning
(Vize et al., 2008). They noted that, in several coral species, there
is differential protein expression between the day and night, although
they do not report results for differential protein phosphorylation
or possible differential expression of downstream messengers from
opsins. A recent survey of the Acropora transcriptome showed that
the core components of evolutionarily conserved metazoan circadian
circuitry, including a likely melanopsin ortholog, are also present
in Acropora (Vize, 2009). This result provides evidence that corals
can likely perform entrainment to circadian and circalunar cycles
(i.e. possess a robust diurnal clock). This clock sense is required
for priming and response to a hypothesized proximate twilight trigger
for broadcast spawning (Ananthasubramaniam et al., 2011; Nilsson,
2009).

Somewhat counterintuitively, no eyes are required to detect the
spectral changes we describe here, and eyes probably reduce the
ability of an organism to perceive low-intensity spectral changes
like these. A broad, unobstructed sheet of photoreceptive tissue like
that present in corals and sea urchins would actually be the optimal
detector design for observing changes in the spectrum of low-
intensity downwelling skylight. The apertures that define an eye
increase angular resolution of the visual system at a steep cost to
sensitivity in part because enclosing an eye to achieve spatial
resolution by definition must block light from many angles. In
addition, angular resolution actually impedes the ability of an
organism to distinguish colors, because there is a trade-off between

packing in more photoreceptors of a given spectral class to achieve
angular resolution and packing in more photoreceptors of varying
spectral classes to achieve detailed color perception (Land and
Nilsson, 2002).

Because organisms that may be using these phenomena as cues
must perceive the color of ambient light rather than the colors of
objects in a scene, any organism taking advantage of these cues
must lack a color constancy mechanism such as the one found in
humans. That is, the visual system used for this task must lack
an ‘auto white-balance’ function to account for changes in
background illumination when perceiving colors. Interestingly, a
visual system like this has already been postulated for organisms
that maintain position in an isolume in the pelagic ocean, and
would require many of the same characteristics we hypothesize
for observing twilight color (Nilsson, 2009). There is one
documented case of an opponency mechanism like this acting in
a single photoreceptor cell (Solessio and Engebretson, 1993). In
this instance, two opsins coexpressed in photoreceptor cells of
the parietal eyes of lizards exert opposing effects on ion channels,
resulting in an opponency mechanism similar to the one we
postulate here (Su et al., 2006). Although the behavioral function
of this mechanism in lizards is not known, it is especially
intriguing that it is active in the parietal eye, an organ involved
in mediating the organism’s responses to dawn and dusk (Solessio
and Engebretson, 1993). It seems plausible that a similar
mechanism operating in mass-spawning invertebrates with
decentralized nervous systems could perceive and transduce the
spawning-associated changes in twilight color we describe here.

Knowlton and colleagues, and Brady and colleagues,
demonstrated that corals in the genus Montastraea can be
manipulated to spawn earlier than control colonies by covering them
to mimic an earlier sunset (Knowlton et al., 1997; Brady et al., 2009).
However, these experiments also demonstrate an apparent loss of
tight synchrony when twilight spectral dynamics are perturbed. The
Brady study showed that untreated corals spawned over a 16!min
interval whereas experimentally covered corals spawned over a
28!min interval. The Knowlton study produced a similar result:
control corals spawned over a 60!min interval whereas
experimentally covered corals spawned over a 90!min interval
(Knowlton et al., 1997). Given that the tight synchrony achieved
by natural spawning cues is thought to be critical for maximum
fertilization rates (Levitan and Petersen, 1995), this elongation of
spawning behavior is likely to reduce reproductive success. These
results complement our findings, as these studies primarily attempted
to advance spawning on a single night when control organisms also
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spawned, and did not address how that particular night or point in
the circadian cycle was chosen by the organisms for synchronous
spawning. The sharpening blue pulse over a few nights before
spawning could provide both a potential opsin-mediated mechanism
for restricting spawning behavior to a short temporal window on a
single night and an accelerating cue to specify the appropriate night
of spawning. Even early in the evening after the full moon, 2!h before
actual spawning is observed, there are changes in twilight spectra
correlated with observed spawning behavior (Fig.!5). The dynamics
of the blue pulse as perceived in a two-pigment opponency system
could provide a thresholding mechanism by which the night of
spawning in addition to the timing of spawning within a night could
be determined (Fig.!5).

Artificial light pollution is quite red-shifted compared with both
moonlight and sunlight (Johnsen et al., 2006), and may therefore
shift twilight spectral dynamics in densely populated areas. As many
of the world’s coral reefs are located in attractive travel destinations
and coastal cities, if our hypotheses bear out, it will be important
to investigate the effects of artificial light pollution on the
invertebrate spawning response. Although this issue has not, to our
knowledge, been rigorously studied, anecdotal reports from
researchers studying coral spawning indicate that increased light
levels may inhibit spawning. In contrast, mass spawnings are not
reported to be much altered under cloudy skies, in accordance with
our observations that light clouds do not alter spectral dynamics,
but corals tend not to spawn during monsoon months in the tropics,
when extremely heavy clouds and rain may disrupt twilight color
more than normal cloudy skies (Mendes and Woodley, 2002).
Therefore, the data shown here indicate that if lunar irradiance affects
the spawning response, then light pollution may delay or inhibit
spawning altogether, whereas routine cloud cover should not.

Although the work we have shown here is correlative, we are
currently planning experiments to investigate the effects of spectral
dynamics on the coral spawning response. Further studies will be
required to assess any impact of this phenomenon on spawning
behavior; however, the changes in spectral dynamics around the
full moon that we report are an interesting environmental
phenomenon with a strong correlation to mass-spawning behavior
that has not previously been documented. We hypothesize that the
rapidly changing spectrum at twilight specific to the nights
immediately following the full moon may be a proximate trigger
for invertebrate reproductive activity. In the case of coral spawning,
it could potentially account for the tight synchrony of this behavior
to an approximately 20!min period in deep twilight.
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