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  Abstract   Perhaps more than any other ecotone, the land–water interface has been 
“reclaimed” solely for human uses—living space, ports and harbors, and agricul-
ture—essentially extirpating other goods and services that these ecosystems pro-
vide. Although the importance of ecosystem services associated with wetland 
transition zones has been increasingly recognized in the past 60 years, the approach 
to “restoration” and “rehabilitation” has largely lacked scienti fi c rigor. The status of 
coastal wetland restoration science is discussed herein with speci fi c attention to 
design criteria that attempt to restore wetland functions and ecological  fi delity. 
Methods for better integration of restoration science and practice to inform policy, 
and the quanti fi cation of restored functions are described within the context of three 
case histories.  
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   Introduction 

   It is an open question whether ecosystem management will become a passing fad, an expan-
sion of rigid bureaucratic procedures, or a sustaining foundation for learning to deal with 
interactions between people, nature, and economic activities (Holling  1996  ) .   

 Restoration ecology straddles the interface of sustainability science and the rec-
onciliation of human use of natural resources with the planet’s ability to provide 
them. As the debate continues over whether humans have “escaped” the domination 
of natural laws or are still subject to them, Cairns  (  2000  )  expressed the concern that 
no matter how robust the science and technology of restoration ecology becomes, 
the science must enjoy societal acceptance of its dependence on ecosystem services 
as part of society’s life support system. Unless this acceptance comes about, Cairns 
warns that the data will not be collected at the scale necessary to advance the sci-
ence of restoration, and its development in a sustainability science framework will 
be hampered. 

 Restoration ecology also manages for change, fosters biodiversity and empha-
sizes the return of system functions, and goods and services to degraded ecosystems. 
An ecocentric framework for restoration is, therefore, an essential component of a 
transformation to global sustainability (Jackson and Hobbs  2009  ) . Because humans 
dominate virtually all landscapes, the practice partially focuses on restoring ecosys-
tem functions (e.g.,  fl ood storage capacity or storm buffering), that are not neces-
sarily a return to “naturalness” (Stanturf et al.  2001 ; Weinstein and Reed  2005  ) . 

 The science of restoration ecology also includes a body of theory for repairing 
damaged ecosystems (Palmer et al.  1997 ; Falk et al.  2006  )  and as these authors 
comment “the time is ripe for basic researchers to ask if current ecological theory 
is adequate for establishing the principles of restoration ecology.” Yet, as Hildebrand 
et al.  (  2005  )  note, “the incredible complexity of nature forces us to simplify the 
systems we study in order to develop theory and generalities by reducing them to 
understandable subsets.” Because ecosystems are inherently dynamic and exhibit 
nonlinearities and behavioral surprises, the ability to predict and manage restora-
tion trajectories have been particularly vexing (Mitsch et al.  1998 ; Anand and 
Desrochers  2004 ; Ruiz-Jaen and Aide  2005  ) . In addition, Hildebrand et al.  (  2005  )  
assert that realistic goals should include multiple scienti fi cally defensible endpoints 
of functional equivalence. In a thoughtful treatise, Ehrenfeld  (  2000  )  offered the fol-
lowing: (a) explicit recognition that no one-size- fi ts-all, goals have to be developed 
appropriately and individually for each project, and (b) that ecologists establish 
“probabilistic laws” to de fi ne the conditions under which it is desirable to address 
landscape-scale ecosystem processes; i.e., to determine the sets of conditions that 
mandate particular methods or goals for individual projects. Because wetlands are 
hydrologically, chemically, and biologically linked to the landscapes in which they 
occur, the “templates” for wetland restoration that comprise the various combina-
tions of climate and hydrogeologic settings in a given geographic region, and cumu-
lative alteration of landscapes therein, are likely the greatest constraint on successful 
restoration design (Bedford  1999  ) . In addressing this particular issue, Kentula 
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 (  2000  )  described an emerging approach that develops a statistical representation 
or “model” of reference sites as the standard for comparison. 

 There are also questions related to community stability, resilience and persis-
tence; all central to understanding/predicting whether a restored system will be self-
sustaining. A primary challenge for restoration ecologists is to develop tools for 
assessing acceptable levels of variability in restored systems, most appropriately in 
a regional or landscape context and within some “bound of expectation”    (White and 
Walker 1997; Weinstein et al.  1997 ; SER  2004 ; French  2005  ) . 

 Thus, the evaluation of restored functions include measures of  processes  such as 
primary or secondary production, but may also re fl ect considerations of biogeo-
chemical cycling, food web structure, food quality, habitat connectivity, biological 
interactions, refuge from predators, keystone species, donor control (Polis and 
Strong  1996  ) , microhabitat structure, and access to resources. Many species exhibit 
complex life histories that place them in different parts of the landscape at different 
times, but their overall success may depend on the quality of speci fi c habitats as 
critical “bottlenecks” in their life-history sequence. For example, marine transient 
 fi n fi sh at mid-latitudes are characterized by life-history traits that evoke a “coastal 
conveyor belt” with adults spawning offshore and near estuaries, and young spend-
ing their  fi rst year of life in various estuarine habitats including tidal wetlands 
(Weinstein et al.  2009a  ) . Young-of-year complete the cycle by accompanying adults 
offshore during their autumn migration to overwintering grounds. It is likely that the 
“quality” of the estuarine habitats, especially tidal wetlands and seagrass meadows 
is re fl ected in the growth and survival of young-of-year marine transients and is a 
critical aspect of their successful recruitment to adult stages. Restoration ecology 
should embrace these considerations.  

   Linking Structure to Function: The Salt Marsh Paradigm 
and Secondary Production 

 Teal’s  (  1962  )  mass balance model for a salt marsh near Sapelo Island, Georgia was 
soon followed by Odum’s  (  1968  )  outwelling hypothesis, and as a result, coastal 
wetlands and their detrital production were soon being depicted as the “great 
engine” driving much of the secondary production of near shore coastal waters (see 
also Turner et al.  1979 ; Weinstein  1981  ) . The fundamental view of a detritus-driven 
system was soon challenged, however, by Haines  (  1979  )  who recognized that 
 fi n fi sh, as well as, other primary producers (phytoplankton and benthic microalgae) 
also contributed substantially to nutrient  fl ux from the salt marsh to open waters. 
Haines  (  1979  )  commented that the “true” nursery-ground of the estuary “was per-
haps not so much the large open waters and sounds as the salt marshes and narrow 
tidal creeks.” She added that the major export of marsh plant production might 
occur “not as particulate detritus but as living organisms.” At about the same time, 
Weigert and Pomeroy  (  1981  )  stated that “our present view of the food web of the 
marsh and estuary suggests that the preservation of  fi sheries depends as much upon 
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the protection of the smaller tidal creeks as upon protection of the marsh and its 
 Spartina  production.” A year after Haines published her “emerging paradigm,” 
Nixon  (  1980  )  reviewed the concept of outwelling and concluded that the average 
passive export of organic matter (particulate and dissolved) was relatively small, 
amounting to between 100 and 200 gC m −2  year −1  for tidal wetlands on the mid-
Atlantic and Gulf coasts of the United States. 

 Haines and Nixon’s views stimulated an era of intense research for re fi ning our 
understanding of functional links between salt marshes and the estuary/coastal zone. 
Thus, the “outwelling” concept (Odum  1968  )  has become but a single component in 
an evolving view of marsh function and the links between primary and secondary 
production. Today, the Haines’ view is still undergoing modi fi cations, and we are 
slowly unraveling the complexities of nutrient exchange, and the links between pri-
mary producers and the marsh/estuary fauna. The notion of the marsh drainage, 
especially the interface between tidal creeks and the marsh plain, serving as eco-
logical “hotspots” ( sensu  Simenstad et al.  2000  ) , and as a potential refugium from 
predators gained popularity in the 1970s (reviewed by Boesch and Turner  1984  ) . 
 Spartina  spp. and many other marsh plants decompose relatively quickly, and this 
in situ production may be available to consumers by the end of the  fi rst growing 
season (Fry et al.  1992 ; Newell  1993  ) . Benthic microalgae and many phytoplankton 
with their high palatability are also readily and ef fi ciently assimilated by many con-
sumers (Currin et al.  1995 ; Sullivan and Moncreiff  1990  ) . Although progress has 
been made in understanding how marshes “work,” we have also learned that the 
story is far more complicated than originally thought (Turner  1977 ; Peterson et al. 
 1994 ; Peters and Schaaf  1991 ; Mallin et al.  1992 ; Polis et al.  1997 ; Deegan et al. 
 2000 ; Winemiller et al.  2007 ; Dame and Christian  2008  ) .  

   Marsh Physiography 

 From a restoration standpoint, the physiography of the salt marsh is a critical link in 
the dynamics and transfer of primary production to consumers. The physiographic 
features of the marsh that contribute to primary and secondary production include: 
elevation, drainage characteristics and surface rugosity that expands “edge” and 
in fl uences the hydroperiod (Kneib  1997 ; Zimmerman et al.  2000 ; Larkin et al.  2008  ) ; 
access to the intertidal marsh for fauna (Rozas et al.  1988  ) ; predation refugia (McIvor 
and Odum  1988    ; Beck et al.  2001,   2003  ) ; and interspersed standing water for foraging 
by resident  fi shes and wading birds, and resting areas for waterfowl (Rubino  1991  ) .  

   “Donor Control” and Restoration Planning 

 Marine transients may also bene fi t from tidal salt marshes and their production 
 without directly occupying these habitats . Many are highly mobile, and tend to 
cross habitat boundaries in their quest for food and shelter. They are generally not 
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habitat specialists but are rather opportunistic in utilizing the resources of the 
estuarine landscape. Restoration planners should and must, therefore, view resto-
ration goals within the context of the habitat mosaic and the exchange of materials 
and organisms between adjacent habitats (e.g., salt marshes and the open waters 
of the estuary). Stated simply, salt marshes do not function in isolation when sup-
porting estuarine secondary production, but are integrated components of larger 
systems (Weinstein et al.  2005  ) . Moreover, the open waters of the estuary may be 
donor-controlled, i.e., they are systems in which the rate of import, availability, or 
dynamics of allochthonous resources (such as products of the salt marsh), is con-
trolled by external donor systems rather than by consumers. Indeed, consumers 
may be more abundant when supported by allochthonous resources than if 
supported solely by the in situ resources of open waters (Polis et al.  1995  ) . The 
latter concept is critical in the context of restoration ecology, because failure to 
account for trophic subsidies in the open estuary may result in restoration designs 
that have negative feedback on the recruitment success of numerous marine 
transients. 

 Childers et al.  (  2000  )  captured these concepts in their description of the interac-
tion among estuarine habitats supporting  fi sheries. Their conceptual model posits 
integrated subsystems linked by an overlying water column that mediates func-
tional processes across subsystem boundaries. Nutrient and organic matter  fl ux 
associated with the movements of animals, especially juvenile marine transients, 
were also recognized as important vectors transcending system boundaries. The 
question of whether speci fi c habitats confer disproportionate survival advantage to 
young marine transients is still rigorously debated (Beck et al.  2001  ) . In our view, 
trophic subsidies to donor-controlled systems may confer survival advantages on 
young nekton.  

   Essential Fish Habitat, Restoration Design, and Higher Order 
Metrics of Restoration Success 

 Restoration efforts can also be evaluated within the context of essential  fi sh habitat 
(EFH) by integrating the factors affecting  fi sh survival and well-being during their 
life cycle (Able  1999  ) . The degree to which a natural or restored habitat is utilized 
is presumed dependent on its value. In restored sites, habitat value is maximized 
once it has reached its restoration asymptote (Weinstein et al.  1997  ) . The applica-
tion of EFH to  fi shery management and restoration design necessitates the analysis 
of habitat information in a hierarchical or matrix fashion. At the least informative 
level (Tier I), the presence or absence information may be used to infer the potential 
value of habitats, albeit with a high level of uncertainty. At increasingly complex 
levels, habitat value becomes a function of the relative abundance or density of 
individuals at different locations (Tier II). At the next level, growth, reproduction, 
and survival rates, if available, are used with the assumption that the habitats 
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contributing most to productivity should be those supporting the highest levels of 
these parameters (Tier III). Finally, production rates can be used to directly relate 
species or life stages to types, quantity, quality, and location of essential habitats 
(Tier IV). There has been a relatively slow evolution of restoration success criteria 
to include the upper tiers of EFH (III and IV). 

 In the remainder of this chapter, we focus on the integration of life-history strat-
egy and landscape scale considerations in restoration planning based on our previ-
ous research on marine transients and estuarine resident  fi n fi sh in the Delaware 
Bay, and Hudson River estuaries, USA. We adopt, but go beyond the premise intro-
duced by Simenstad and Cordell  (  2000  ) , that “the fundamental approach we recom-
mend is ‘self-monitoring,’ letting the  fi sh test whether the occupation of a restored 
habitat provides residence time, foraging success, or growth equivalent to that 
achieved in a comparable reference habitat.” Rather, we address secondary produc-
tion and Tier III and IV EFH parameters as potential endpoints to measure the 
outcome and success of restoration practices. The three case histories we present do 
not make direct comparisons between reference and restored habitats (although we 
have done this), but from a restoration ecology perspective are intended to assist 
future wetland restoration designs, not only to consider speci fi c processes, but also 
to  promote exchange  of materials and organisms between the habitat being restored 
and the adjacent estuary; i.e., the donor control function of wetlands. Case History 
I focuses on the growth and survival of a marsh resident  fi n fi sh, the common mum-
michog,  Fundulus heteroclitus  and stresses the deposition of energy reserves for 
overwintering survival at the end of the  fi rst year (Tier III, EFH). Case History II 
uses bioenergetics modeling in a “whole estuary” approach to estimate the nursery 
value of estuarine regions comprised of marsh and open waters for young-of-year 
weak fi sh,  Cynoscion regalis  (Tier III, EFH), and Case History III addresses the 
response of macroscale tidal salt marsh restoration within the context of secondary 
production of species that depend on these habitats and/or their products (Tier IV, 
EFH). Together, the three case histories demonstrate advances in the science of 
restoration ecology that go far beyond structural characteristics of degraded and 
restored tidal marshes to address the components of functional equivalency of 
restored sites.  

   Case History I (EFH Tier III): Biochemical Condition 
of a Marsh Resident Fin fi sh,  Fundulus heteroclitus  

 Carnivorous  fi shes are reliable indicators of the condition of complex ecosystems 
because they are the tertiary link in the food web. Thus, the magnitude of protein 
and fat deposition and the level of fat reserves can be used to not only assess the 
“degree of well-being” of  fi shes but can also serve to integrate the overall value of 
habitats in their production. Using this premise, we examined the concept of habi-
tat quality for a marsh resident, the mummichog,  F. heteroclitus , in relatively undis-
turbed and  Phragmites australis -dominated tidal salt marshes along the mid-Atlantic 
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Coast of the United States. In addition to our earlier work on the trophic spectrum 
of this species (Wainright et al.  2000 ; Currin et al.  2003  ) , an interesting “natural 
experiment” was available to us because (1) the species spends its entire life cycle 
within the con fi nes of the marsh and has an extremely small home range (Valiela 
et al.  1977 ; Meredith and Lotrich  1979 ; Teo and Able 2003), and (2) many tidal salt 
marshes, particularly those with brackish salinities, are dominated by virtual mon-
ocultures of the invasive variety of the  P. australis  that is perceived to reduce habi-
tat quality for  F. heteroclitus , and general access to the marsh plain by nekton 
(Weinstein and Balletto  1999 ; Saltonstall  2002 ; Hagan et al.  2007  ) . By adopting a 
whole system approach, we essentially had a “captive audience,” one in each of 
two isolated marsh complexes located on the Hudson River estuary (Weinstein 
et al.  2009b  ) , a polyhaline system dominated by  Spartina alterni fl ora  and a meso-
oligohaline system dominated by an invasive variety of  P. australis . In addition to 
others, the following questions were addressed in our work: (1) were there any dif-
ferences in biochemical condition, principally the deposition of energy reserves, in 
mummichogs captured seasonally in the  S. alterni fl ora -dominated “natural” and 
the  P. australis -invaded salt marshes (Tier III EFH analysis); (2) were any differ-
ences related to size distributions of individuals in the populations; and (3) could 
biochemical condition ultimately serve as a success criterion to evaluate the 
functional success of wetland restoration? 

   The Use of Biochemical Condition as a Metric 
of Restoration Success 

 Biochemical condition of individual  F. heteroclitus  was evaluated on the basis of 
triacylglycerol (TAG), free fatty acid (FFA), and phospholipid (PL) composition 
and concentration. Other lipid classes such as cholesterol, fatty alcohols, and wax 
esters were not examined in detail but were included in the calculation of total 
lipid mass. It is generally accepted that the size of lipid stores and their composi-
tion can be used to predict whether a  fi sh is ready to migrate, preparing to over-
winter, or is likely to have future reproductive success (Ackman  1980 ; Shulman 
and Love  1999  ) . Previous results of lipid class dynamic studies in young teleosts 
suggest that TAG is the primary form of lipid used in energy storage; therefore, 
this lipid class was selected as an important indicator of biochemical condition 
(Ackman and Eaton  1976 ; Lochmann et al.  1995 , 1996; Lochmann and Ludwig 
 2003 ; Heintz et al.  2004 ; Weinstein et al.  2010  ) . FFAs and phospholipids, how-
ever, can also contribute to energy metabolism (Ross and Love  1979 ; Yuneva 
et al.  1991 ; Henderson and Tocher  1987  )  and may be important in the reproduc-
tive cycle (Ackman  1980  ) . We examined these in individual  fi sh. TAG, FFA, and 
PL, all expressed in milligrams per gram dry weight for whole  fi sh was extrapo-
lated from extracted subsamples and converted to total storage quantities by 
adjusting to the dry weight of each  fi sh.  
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   Findings and Conclusions 

 The tradeoffs between energy allocation for growth, reproduction, and the laying 
down of suf fi cient storage reserves for periods of resource scarcity as “competing 
demands” in prereproductive organisms living in seasonal environments have been 
described by numerous authors (Walters and Juanes  1993 ; Fullerton et al.  2000 ; Post 
and Parkinson  2001  ) . This is especially important in north-temperate  fi shes because 
experimental and  fi eld data suggest that energy availability is often limiting, i.e.,  fi sh 
in their natural environments tend to grow at less than their physiological optimum 
at a given temperature (Post and Parkinson  2001  ) . 

 Although our comparisons on a dry weight (morphometric; EFH tier II evalua-
tion) basis alone  did not detect differences  in somatic condition of  F. heteroclitus  
populations in the two marshes (Fig.  1a ), the examination of energy reserves in 
these  fi sh after removing the potential confounding in fl uences of the reproductive 
cycle and parasitization clearly indicated that signi fi cant differences occurred in 
TAG and FFAs levels (Fig.  1b ).  

  Fig. 1    ( a ) The relationship between length (mm) and somatic condition (dry weight in g) by loca-
tion for mummichogs  Fundulus heteroclitus  captured in two tidal salt marshes, Horseshoe Cove 
and Piermont Marsh on the Hudson River estuary. ( b ) Total free fatty acids, triacylglycerol (TAG), 
and phospholipids vs. standard length (mm) in individual mummichogs ( F. heteroclitus ) captured 
at Horseshoe Cove (H) and Piermont (P) Marshes. All lipid values expressed in milligrams (mg)         
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Fig. 1 (continued)

 Supplementing tier II data with a tier III biochemical condition approach was, 
therefore, a more sensitive measure of the condition of individuals produced in 
these habitats. This conclusion is supported by Mommsen  (  1998  )  who suggested 
that a 100 g  fi sh acquiring 1 g of lipid was unlikely to change in length, and although 
its weight gain was hardly detectable in the statistical noise, the  fi sh had added a 
statistically signi fi cant amount of energy. 
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 By focusing on energy reserves, principally TAG, we have been able to demon-
strate that mummichogs residing in a polyhaline  S. alterni fl ora -dominated tidal salt 
marsh were better able to acquire energy reserves for reproduction and overwintering 
survival than  fi sh residing in a  Phragmites -dominated marsh. Thus,  Phragmites  
invasion and its consequent habitat impacts may be contributing to lower quality 
EFH for mummichogs (Weinstein and Balletto  1999 ; Hagan et al.  2007 ; Weinstein 
et al.  2009b  ) .   

   Case History II (EFH Tier III): Use of Bioenergetics Models 
to Estimate the Nursery Value of Estuarine Habitats, 
Young-of-Year Weak fi sh ( C. regalis ) 

 Spatially explicit models of  fi sh growth have been used to measure the quality of 
habitats for nekton production in a variety of species and aquatic systems by inte-
grating variability in biotic and abiotic factors across habitats within a bioenerget-
ics framework (Brandt et al.  1992 ; Brandt and Kirsh  1993 ; Mason et al.  1995 ; 
Demers et al.  2000 ; Luo et al.  2001  ) . In this example, a mechanistic growth model, 
Fish Bioenergetics 3.0 (Hanson et al.  1997  ) , was applied to a series of habitat 
“regions” within Delaware Bay (upper, middle and lower Bay; Fig.  2 ). Each region 
consisted of a marsh to open water gradient, and each had its own set of unique 
environmental conditions. While most models estimate growth from environmental 
conditions and the availability of prey, the approach adopted here was to estimate 
prey consumption from detailed growth estimates in juvenile weak fi sh that were 
recruited to the Bay in 1999 and 2001. The calculated rates of consumption 
(“realized” consumption) were compared to those expected if individuals were 
feeding at their maximum rate (“optimum” consumption), under ad libitum prey 
density. The goal was to understand how temporal and spatial variability in avail-
ability of food resources and temperature regime governed habitat use and value for 
juvenile weak fi sh.  

 Trawl survey data were used to estimate growth from the changes in the mean 
monthly weight of juvenile weak fi sh (Litvin  2005  ) . A separate model was con-
structed for each cohort identi fi ed by length frequency analysis within each Delaware 
Bay region/year combination and analyzed for the duration that the cohort per-
sisted. Fixed parameters of the model included prey energy density and the  initial  
wet weight of individuals within cohorts (derived from the empirical data). The 
variable parameters included were: in situ temperature, energy density of juvenile 
weak fi sh and diet composition (shift from specialization on mysids in early recruits 
to >90% piscivory in larger individuals; Grecay and Targett  1996 ; Nemerson  2001  ) . 
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We modeled (1) realized consumption, which is estimated prey consumed under in 
situ temperature and empirical estimates of growth (“realized growth” derived from 
the trawl surveys), (2) optimal growth, which is the theoretical maximum growth 
under in situ temperature and ad libitum feeding conditions; and (3) optimal con-
sumption, which is the prey consumed under optimal growth. From these results we 
calculated the excess demand, the proportional difference between the cumulative 
optimum, and the realized consumption over the period the cohort persisted (which 
is a relative measure of the suitability of a given habitat for  fi sh production). The 
calculated realized and optimal growth and consumption and excess demand were 
compared to determine if food availability, temperature or other factors determined 

  Fig. 2    Weak fi sh ( Cynoscion regalis ) sampling regions in Delaware Bay comprised of lower, middle 
(“mid”), and upper Bay and their associated tidal marshes       
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the production rates of young-of-year weak fi sh. In addition, these measures were 
compared among cohorts, Bay region and years to elucidate how habitat values 
varied both spatially and temporally. 

   Findings 

 Not surprisingly, the relationship between optimum and realized consumption 
varied both spatially and temporally (Figs.  3  and  4 ). Analyzed in terms of the 
cumulative consumption of prey (g individual −1 ), it is important to note that opti-
mum and realized consumption rates are equal when the slopes of their curves 
are equal over a given period. For the  fi rst cohort in 1999, optimum consumption 
increased steadily over the summer and fall in the middle and lower Bay but 
remained  fl at between days 200 and 240 in the upper Bay, before rising for a 
brief period (Fig.  3 ). The realized consumption in the upper Bay exceeded opti-
mum consumption in the early summer (July) then mirrored optimum consump-
tion until the cohort was no longer detected. The optimum and realized 
consumption in the middle and lower Bay regions were approximately equal in 
July and August with optimum consumption exceeding realized consumption 
during the remaining months. The optimum consumption for cohort 2 quickly 
outstripped the realized consumption, except in the lower Bay (Fig.  3 ). Optimum 
consumption in 2001 increased throughout the summer in the lower and middle 
Bay for cohort 1, and was followed by a slight decrease in the fall (Fig.  4 ). 
Optimum consumption in the upper Bay rose in June through July, fell in August, 
and then increased steadily during the remainder of the growing season. The 
realized consumption in all regions fell vastly short of optimum throughout the 
season. For the second cohort, the difference between optimum and realized con-
sumption was substantial in the middle, but not the lower, Bay (Fig.  4 ). The 
excess demand (grams prey consumed per individual) for the  fi rst cohort varied 
substantially between regions and years (Fig.  5 ). The excess demand in 1999 
ranged from −81% (the realized exceeded optimum consumption) through 78% 
in the middle Bay, and rose to 131% in the upper Bay, respectively. The surplus 
consumption in 2001 was markedly higher (407–505%), with peak values occur-
ring in the upper Bay. This was driven both by changes in the estimated growth 
rates in the  fi eld (realized growth) and changes in optimum growth which rose 
from the upper through the lower bay in both years and was higher in 2001 in all 
regions (Fig.  5 ).     
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  Fig. 3    The relationship between realized ( open squares ) and optimum ( open bullets ) consumption 
for juvenile weak fi sh captured in 1999, Delaware Bay, USA. LB, MB, and UB are lower, middle, 
and upper Bay, respectively       
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  Fig. 4    The relationship between realized ( open squares ) and optimum ( open bullets ) consumption 
for juvenile weak fi sh capture in 2001, Delaware Bay, USA. LB, MB, and UB are lower, middle, 
and upper Bay, respectively       
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   Summary and Conclusions 

 The trends in optimum consumption and excess demand provided insights into the 
relative suitability of the different segments of Delaware Bay for juvenile weak fi sh. 
In both years, estimates of optimum consumption suggested that the region with the 
physiological conditions most suitable for potential growth varied temporally. In 
July and August, optimum consumption estimates were higher in the lower Bay 
than those from the middle Bay, and both possessed higher values than the upper 
Bay region. This disparity in potential habitat quality dissipated as temperatures fell 
through September and October, with the optimal zone shifting to the upper Bay in 
the  fi nal days modeled. Between years, the differences in the mean estimates of 
excess demand (~100% and ~450% for 1999 and 2001, respectively) suggested that 
the value of Bay regions for the production of young weak fi sh was considerably 
lower in 2001. While it is dif fi cult to determine if the variability in estimated habitat 
suitability between habitats and among years is driven by differences in prey supply, 
the expected reduction in juvenile weak fi sh foraging success due to high turbidity 
encountered in oligohaline habitats, or physiochemical considerations not accounted 
for in the model (see below), these results parallel the spatial patterns in juvenile 
weak fi sh condition and growth previously reported for this estuary and its marshes 
(Grecay and Targett  1996 ; Paperno et al.  2000 ; Litvin and Weinstein  2003 ; Litvin 
 2005  ) . 

 Two factors, both attributable to the high river discharge rates in June and July of 
2001, likely drove inter-annual differences in habitat suitability (USGS 1 ). Juveniles 
recruited to the upper Bay in June through the early fall of 2001 faced increased 
physiological stress and lower potential growth rates than those from other regions 

  Fig. 5    Optimal growth, realized growth, and excess demand for cohort 1 from each Bay region 
( lower  LB;  mid  MB;  upper Bay  UB) for 1999 and 2001       

   1   USGS New Jersey Monthly Stream fl ow Statistics for Trenton, NJ (Site # 01463500);   http://waterdata.
usgs.gov/nl/nwis    .  

 

http://waterdata.usgs.gov/nl/nwis
http://waterdata.usgs.gov/nl/nwis
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due to the interaction of high temperatures and low salinity (Lankford and Targett 
 1994 ; Grecay and Targett  1996 ; Paperno et al.  2000  ) . In addition, an increase in the 
 fl ow rates might have lead to “compression” of the meso and polyhaline regions and 
resulted in the increased density of piscivorous marine predators that might nor-
mally be restricted from oligohaline waters (Weinstein et al.  1980 ; Taylor  1987 ; 
Martino and Able  2003  ) . Therefore, juvenile weak fi sh moving down Bay in 2001 
into meso and polyhaline waters with superior physiochemical conditions likely 
faced increased predation risk, relative to low  fl ow years, which in turn might affect 
acquisition of prey and growth (Walters and Juanes  1993 ; Sogard  1997  ) . 

 A signi fi cant purpose of any modeling effort is to identify data needs and sug-
gest future directions for research. We developed several recommendations base on 
this work. It is important to examine the interactive effects of temperature and 
salinity on the scope of growth to parameterize future bioenergetics models 
intended to gauge habitat value for estuarine  fi sh. Knowing the choices in prey, 
aside from their energy density may also be important. The variability of postcon-
sumptive constraints based on prey type, known to occur in young weak fi sh 
(Lankford and Targett  1997  ) , were not considered although they may lead to con-
sumption-dependent systematic errors in estimates of growth (Bajer et al.  2004  ) . 
Although labor-intensive, obtaining estimates of spatial and temporal variability of 
prey from stomach content analysis, and the incorporation of this information into 
bioenergetic variables (that represent postconsumptive processes), would further 
increase model accuracy. Also, the methods to account for seasonal changes in 
habitat utilization patterns, e.g., estimating movements out of marsh habitats and 
downstream migration rates as individuals grew (Litvin and Weinstein  2004  ) , 
should be accounted for when determining spatially explicit growth. Stable isotope 
analyses have demonstrated great utility as “biomarkers” for discerning habitat 
utilization patterns in juvenile weak fi sh and other species from Delaware Bay and 
the employment of this technique in conjunction with  fi eld measures of length and 
weight will improve the accuracy of growth estimates (Weinstein et al.  2000 ; Litvin 
and Weinstein  2003,   2004  ) . These three considerations are also particularly impor-
tant when using bioenergetics models to move beyond the “regional” approach 
utilized here to determine the value of speci fi c marsh habitats for juvenile nekton 
in the context of the greater estuary. Estuarine and marsh habitats, even those sepa-
rated by small distances, should be expected to have different environmental 
regimes as well as abundance and diversity of food resources. For restored marsh 
habitats, their position in the restoration trajectory may heavily in fl uence these fac-
tors (Weinstein et al.  2005  ) . In addition, understanding the habitat utilization pat-
terns of species, like juvenile weak fi sh, potentially using a wide variety of estuarine 
habitats is critical to understanding the relative value of marsh habitats for  fi sh 
production. For example, the physiochemical conditions in open waters of the Bay 
region in 2001 were sub-par, and so the biotic conditions in marsh habitats may 
have resulted in higher optimum and realized growth for juvenile weak fi sh. This 
may both increase the value of marsh habits for juvenile  fi sh production in a given 
year, and buffer individuals leaving marshes to migrate toward the bay mouth from 
the depressed conditions in the open estuary. Together, these two situations would 
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ultimately increase the relative contribution (per unit area) from marsh habitats to 
overall estuarine production. While the exclusion of these considerations does not 
preclude the use of the model to help understand the variables governing the dem-
onstrated spatial and temporal stochastisity in the nursery value of estuarine habi-
tats for young weak fi sh and other species, their incorporation into models would 
help to improve both their accuracy and utility as a tool for both ecologists and 
natural resource managers.   

   Case History III (EFH Tier IV): Estimating the Response 
of the Delaware Bay Ecosystem to Tidal Marsh Restoration 

 During the 1990s, 45.5 km 2  of wetland habitat were restored in the Delaware Bay 
ecosystem to offset mortality caused by power plant cooling water intakes (Teal 
and Weinstein  2002  ) . The restoration effort resulted in a 3% increase in marsh habi-
tat (Balletto et al.  2005 ; Hinkle and Mitsch  2005  )  and provided scientists with the 
opportunity to assess changes to system productivity and structural changes before 
and after restoration. A series of baseline and monitoring studies were conducted to 
quantify nekton assembly composition and usage of restored and reference marshes 
(Kimball and Able  2007 ; Nemerson and Able  2005 ; Jivoff and Able  2003 ; Able 
et al.  2008  ) . These studies documented the impact of restoring habitat and demon-
strated that the nektonic assemblage responded favorably to restoration. These 
studies, however, did not address overall system productivity and the structural 
changes resulting from restoration efforts. 

 In the following section, we summarize the approach and results reported in 
Frisk et al.  (  2011  )  who estimated the increment of new secondary production that 
resulted in the entire Delaware Bay ecosystem following restoration. Estimating 
system-wide impacts required distinguishing between the impacts of restoration 
and background variability in spatiotemporal patterns of productivity and ecosys-
tem structure. The latter effort entailed estimating system productivity after restora-
tion and simulating the proportion of biomass that would have been lost if restoration 
efforts had not taken place. To achieve this result required the development and 
parameterization of a mass-balanced time-dynamic ecosystem model  fi tted to 
observed time series of key species and then simulating a nonrestored system. 

   Assessing Restoration Using Ecopath with Ecosim 

 Details regarding the model structure of Ecopath with Ecosim (EwE) can be found in 
Christensen and Pauly  (  1992  ) , Walters et al.  (  1997  ) , and Pauly et al.  (  2000  ) , and, for 
the model presented here, in Frisk et al.  (  2011  ) . Ecopath was used to develop a 
mass-balanced network of trophically-linked biomass pools representing a static 
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description of the ecosystem from detritus to upper-trophic level species. The Ecopath 
model provided the initial parameters used to  fi t the dynamic Ecosim model to time 
series of data for the Delaware Bay ecosystem. Ecosim uses a series of coupled 
delay-difference age/size-structured equations to model all species in the system. 
The  fl ows between species are linked by both predator and prey consumption rates.  

   Parameter Inputs 

 The times series data are derived from long-term biological studies and harvest 
records used to estimate biomass and landings and for the development of stock 
assessments for key species in Delaware Bay (DNREC 1966–2003; NOAA Fisheries 
 2011  ) . The demographic and diet data were derived from the literature or inferred 
from adjacent systems when necessary.  

   Measuring Habitat Restoration 

 Changes to ecosystem structure and productivity following restoration were 
re fl ected in the biological time series conducted in the Bay during 1996–2003. 
Therefore, the biomass gains resulting from restoration were captured in a model 
 fi tted to these data. To estimate the lost productivity had restoration not occurred, 
a second model was run that assumed a 3% decrease in the available marsh habitat. 
This was achieved by  fi tting the Ecosim model for 1966–2003 and applying 
forcing functions to decrease the production rates for marsh meiofauna and macro-
fauna for the years following restoration, 1996–2003. The difference between the 
two models’ total system biomass was used to estimate the gains associated with 
restoration. 

  Model development . The modeling approach used 47 functional groups includ-
ing: 27  fi sh species, 5 invertebrate groups, 4 multi-species benthic groups, 6 multi-
species  fi sh groups, 3 plankton groups, 1 shorebird group, and 1 marine mammal 
group (Frisk et al.  2011  ) . The static mass-balanced Ecopath food-web model was 
developed for 1966 and served as the initial parameter estimates for the time-
dynamic Ecosim model for the period 1966–2003. The Ecopath model required 
estimates of biomass (B), the ratio of production to biomass (P:B), consumption to 
biomass (Q:B), ecotrophic ef fi ciency (EE), and diet data for all model groups. The 
Ecosim models were parameterized using catch, biological survey, diet, and demo-
graphic data. Time series of biomass (catch per unit effort) for eight species, catch 
time series for six species and  fi shing mortality for  fi ve species were  fi tted in Ecosim 
(Table  1 ).  
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   Table 1    Data used for  fi tting the Ecosim model included time 
series of catch ( C ), biomass ( B ), and  fi shing effort ( F ) where num-
bers represent the length of time series in years   

 Species   C   
fi tted

    C  
subtracted

    B    F  

 American eel  38 
 Atlantic croaker  38  38  38 
 Atlantic menhaden  38  38  38 
 Blue crab  38  38 
 Blue fi sh  38  38  38 
 Clearnose skate  27 
 Dog fi sh  27 
 Horseshoe crab  30 
 Oyster  38 
 Spot  38 
 Striped bass  38  23  38 
 Summer  fl ounder  38 
 Weak fi sh  38  27 
 White perch  38 

  Catch was statistically  fi tted ( C   
fi t
 ) or subtracted from model esti-

mated biomass ( C  
sub

 ). Stock assessments were conducted on 
Atlantic croaker, Atlantic menhaden, and blue fi sh providing bio-
mass (CPUE) and  fi shing effort ( fi shing exploitation rate). Other 
biomass estimates were derived from the DNREC surveys except 
striped bass which came from ASMFC (2004)  

 The catches were subtracted from the estimated biomass for eight key species 
that did not have prior estimates of  fi shing mortality to ensure that the model pro-
duced stock sizes large enough to support the historical  fi sheries.  

   Findings 

 The results of the model runs indicated that restoration resulted in a net gain of 
47.7 tons km −2  year −1  in system biomass. The biomass change was seen across a wide 
range of species and biomass groups, and had an average percent change of 1.2%, 
ranging from 4.3% for macrozooplankton to 1.3% decrease in blue crab (Fig.  6 ).  

 Restoration also resulted in 41 species increasing in biomass and four species 
showing slight decreases. The decreases likely resulted from food web interactions 
with groups that increased. Proportionally, consumer trophic species such as Atlantic 
menhaden, resident striped bass, macrozooplankton, and summer  fl ounder showed 
the greatest gains.  
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   Summary and Conclusions 

 As with any modeling attempt, ecosystem complexities are not completely cap-
tured in the model structure. Ecosystem models require large amounts of informa-
tion, and the reliability and availability of data varies by species and biological 
group. The Delaware Bay model is a compromise among realism, parameteriza-
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tion, and data limitations. Estimating restoration impacts utilizing data collected 
continually before and after restoration does not allow for direct comparisons of an 
ecosystem with and without restoration. Instead, the statistically  fi tted model was 
altered to re fl ect a simulated no-restoration system to estimate the loss of biomass 
had the marsh habitat not been created. The approach allows for a total system 
evaluation of restoration; however, the simulation approach may add uncertainty to 
the results. 

 Large-scaled restoration efforts require an enormous investment of time and 
money. The success and justi fi cation of these efforts should be judged by whether 
or not the degraded ecosystems can ultimately be rehabilitated to provide basic 
ecological goods and services. In Delaware Bay, researchers conducted numerous 
 fi eld studies documenting the success of newly created marsh habitat for use by 
native species and general production of  fi n fi sh and shell fi sh (Kimball and Able 
 2007 ; Jivoff and Able  2003 ; Able et al.  2008  ) . More broadly, Frisk et al.  (  2011  )  
were able to show that the overall ecosystem biomass increased including several 
important commercial  fi n fi sh. The results supported previous  fi eld estimates and 
demonstrated increases throughout the entire food web that were dependent on the 
increased marsh habitat. The results from the Frisk et al.  (  2011  )  mass-balanced 
time-dynamic ecosystem model of Delaware Bay were used to address the follow-
ing questions: (1) Has restored habitat resulted in changes to the productivity of the 
ecosystem?; (2) Is there evidence that restoration can impact the structure and health 
of the Delaware Bay ecosystem? 

 The model results indicated that many species increased in biomass including 
ecologically important lower trophic groups such as macrofauna, macro-meso zoo-
plankton, and higher trophic groups consisting of striped bass, Atlantic croaker, and 
summer  fl ounder. The model estimates indicated that restoration of marsh habitat 
resulted in increased biomass throughout the food web. These results, when com-
bined with previous  fi eld studies indicated that the restoration of 45.5 km 2  of marsh 
habitat increased productivity and restored ecologically meaningful amounts of 
goods and services to the Bay. 

 In addition to biomass gains, the model results indicated that restoration has the 
potential to alter the structural composition of Delaware Bay, and that there were 
slight changes in several ecosystem properties including productivity and system 
maturity metrics (see Frisk et al.  2011 , for details). This has important implications 
for stemming over a century’s loss of wetland habitat. Network analyses indicated 
that the Delaware Bay is in an immature state and suffers from decades of nutrient 
enrichment and pollution (Sharp  2010  ) . It is encouraging that these model results 
indicate that restoration can reduce the impact of long-term alteration of estuarine 
ecosystems and potentially increase system maturity. The changes, however, were 
slight and even larger-scaled restoration efforts integrated with management 
strategies covering the entire drainage basin may be needed to further restore 
ecosystem function.   
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   Synthesis 

 The need for linking restoration ecology, ecological restoration, and sustainability 
science are a  sin qua non  of the global sustainability transition. In this Age of 
Humans (Crutzen  2002  ) , they form what Aronson and Vallejo  (  2006  )  term our “sur-
vival strategy” where “nonscientists and scientist work together in transdisciplinary 
efforts to imagine, develop, test and apply new methods, tools and approaches to the 
enormous [sustainability] challenges ahead.” Moreover, managing our life support 
systems will require stewardship “from the inside” in ways that recognize our 
dependence on, and responsibility to, sustainably manage the systems that we are an 
integral part of. Aronson and Vallejo  (  2006  )  suggest that restoration projects should 
adopt broad suites of relevant, reliable and complementary traits or ecosystem attri-
butes that when combined, re fl ect the structural and functional dynamics of the 
system. 

 The discipline of restoration ecology has now matured to where knowledge of 
natural systems can de fi ne a better pathway to the desired restoration outcomes 
(Larkin et al.  2008  ) . Whether it is considering individual habitats in a system-wide 
integrated framework (Childers et al.  2000 ; Weinstein et al.  2005  ) , reestablishing 
the physiographic heterogeneity (and concomitant physical access) of a salt marsh 
that we have set forth above, or other “landscape” features—hydrology/hydroperiod 
(Rozas et al.  1988 ), edge or “critical transition zones” (Baltz et al.  1993 ; Kneib 
 2003  ) , drainage density (Kneib  1994,   1997  ) , area of vegetated marsh (and its rela-
tionship to secondary production; Turner  1977 ; Zimmerman et al.  2000  ) —and 
organism interactions; trophic access (sensu Kneib  2003  ) , predator–prey interac-
tions (Boesch and Turner  1984 ; Deegan et al.  2000  ) , ecological and engineering 
criteria can be combined into a much more quantitative approach to achieving “suc-
cess” (or whatever we choose to call it; Zedler  2007  ) . Despite the current debate 
over the issue of attaining habitat equivalency of marsh  functions , we agree with 
Kneib  (  2003  )  that the rubic “build it and they will come” has a degree of validity 
with respect to organisms utilizing the restored habitat. Kneib notes that “early indi-
cations suggest that  fi shes do not discriminate between natural and excavated wet-
land channels,” and that “there should be every expectation that nekton production 
from the restored created site has potential to rapidly match that of natural systems.” 
But Kneib  (  2003  )  also noted that “site-speci fi c bioenergetic and landscape con-
straints [while setting upper limits to production] should guide the development of 
realistic expectations and success criteria for marsh restoration designed to enhance 
estuarine nekton production.” The simple underlying question then is: yes, we have 
restored a marsh, but what kind of marsh have we restored and will it ful fi ll our 
expectations with respect to secondary production goals for targeted species? 

 What seems clearly lacking in today’s purview is a policy and practice that 
goes beyond developing the status and trend inventories for coastal wetlands 
(Stedman and Dahl  2008  ) , or the promulgated guidelines for conservation, resto-
ration and management that lack rigorous ecological criteria for meeting design 
goals. Clearly, the importance of coastal wetlands as EFH is recognized by 
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resource agencies: “coastal wetlands provide valuable habitat for the vast majority 
of commercially and recreational marine species” (Stedman and Dahl  2008  ) . 
Although more than $28 million has been allocated by the National Oceanographic 
and Atmospheric Administration’s (NOAA) for habitat restoration (J. Rapp, per-
sonal communication) there seems to be a great paucity of process and function 
criteria, in general, and especially at higher levels of EFH analysis. In NOAA’s 
“Science-Based Restoration Monitoring of Coastal Habitats” guidelines for devel-
oping a monitoring plan (Thayer et al.  2003  ) , explicit recognition is given to the 
need to develop testable hypotheses to “determine progress toward restoration 
goals,” yet the examples given of postimplementation monitoring are large struc-
tural criteria, and no functional criteria are proposed above the level of Tier II, 
EFH; i.e., density and composition of organisms. A cursory review of Progress 
Reports submitted under the NOAA Restoration Center’s Community-based 
Restoration Program (CRP), Progress Report Narrative Formats includes only 
biological inventories (restricted at or below EFH, Tier II) and/or topographical/
structural parameters. 

 We can and must do better. Simenstad et al.  (  2006  )  note that “while desirable 
functions may result from the structure of ecosystems, it is typically the dynamics 
of ecosystem processes that sustain the structure at the landscape scale or in some 
cases may even be the underlying mechanism behind the function.” Further, the 
relationship between salt marsh restoration and attributed functions is highly 
scale-dependent, nonlinear, and dictated by thresholds (Simenstad et al.  2006  ) . 
We agree that the long-term performance of a restored site depends on reintroduc-
ing natural dynamics and disturbances into the system (Middleton  1999  ) , also 
within the context of life-history requirement of extant  fl ora and fauna. Perhaps 
these restoration efforts should be approached as “natural experiments” to be 
quanti fi ed for their return of desired ecosystem goods and services, and, as 
Simenstad et al.  (  2006  )  note, be treated in a manner that enables learning from the 
results. Performance criteria should include more process-based metrics to help 
ensure success. 

 Virtually all restoration scientists agree that tidal marshes are complex systems 
that require the best applications of science and engineering principles (Weinstein 
et al.  1997  )  to achieve the goals of a particular restoration design; especially when 
these are systems whose physiographic province affecting virtually every component 
of secondary production support is measured in centimeters (Vivian-Smith  1997  ) . As 
noted above, the progress we have made in understanding how marshes “work” is far 
from complete, and research should not become subordinate to practice in advancing 
the goals of restoration. Ongoing research can provide important perspectives on the 
results achieved, and will allow us to correct mistakes, and suggest new approaches 
for de fi ning success (Kentula  2000  ) . 

 It is beyond the scope of this chapter to attempt a comprehensive review of the 
application of restoration science to the design and success of tidal wetland restora-
tions in supporting secondary production except to say that quantitative studies are 
far and in-between in the published literature. A relatively recent review by Borde 
et al.  (  2004  )  helps make the point. Beginning in 1998, more than 550 citations from 
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scienti fi c journals, books, technical reports and proceedings were surveyed for 
“innovations” in coastal restoration. This effort supported NOAA’s attempts “to 
advance the science of restoration ecology” including research on coastal ecosys-
tem structure and function. Although the review of the literature suggested that 
restored salt marshes were functioning to increase the growth, production, and resil-
ience of  fi sh populations, there were no speci fi c recommendations to incorporate 
these functional criteria into goal setting and success criteria, nor have we seen 
inclusion of parameters like EFH Tier III and IV criteria built into restoration plan-
ning. Rather, the authors’ summary of “innovative methods and techniques” to our 
knowledge have yet to  fi nd their way into NOAA Restoration Center design proto-
cols, monitoring techniques, nor project success. We are not saying it will be easy, 
but simply recognizing that is should and must be done. 

 Finally, we leave the reader with a research approach proposed by Choi 
 (  2004  ) . It serves both as a useful take home message and template for future 
progress. In synthesizing the need for a “futuristic approach” to restoration, Choi 
proposed that we:

    1.    Set realistic and dynamic (rather than static) goals for future, instead of past, 
environments  

    2.    Assume multiple trajectories acknowledging the unpredictable nature of ecologi-
cal communities and ecosystems  

    3.    Take an ecosystem or landscape approach, instead of ad hoc gardening, for both 
structure and function  

    4.    Evaluate restoration progress with explicit criteria  
    5.    Maintain long-term monitoring of restoration outcomes     

 Of course, we recommend further that these efforts be supported by strong ongo-
ing and fully funded restoration science research!      
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