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ABSTRACT

Aim Many studies have quantified and mapped cumulative human impacts on

marine ecosystems. These maps are intended to inform management and

planning, but uncertainty in them has not been studied in depth. This paper

aims to: (1) quantify the uncertainty in cumulative impact maps and related

spatial modelling results; (2) attribute this uncertainty to specific model

assumptions and problems with data quality; (3) identify and test sound

approaches to such analyses.

Location We used the Baltic Sea and the Mediterranean and Black Seas as

example regions. The methods and conclusions are relevant for human impact

mapping anywhere.

Methods We conducted computational experiments to test the effects of nine

model assumptions and data quality problems (factors) on maps of human

impact and related modelling results. The factors were implemented on the

basis of a literature review. We quantified aggregate uncertainty using Monte

Carlo simulations, and ranked the factors by their influence on modelling

results using the elementary effects method. Both methods are well established

and theoretically suitable for complex models, but had to be modified for

application to spatial human impact models.

Results Some, but not all, modelling results were robust. This contradicts

previous studies that found only minor effects of the factors they tested. Of the

nine factors tested here, eight had a considerable influence on at least one

modelling result in at least one of the two study regions.

Main conclusions Model assumptions and data quality have larger aggregate

effects on maps of human impact than found in previous analyses. These

effects depend on the study region and the data that describe it. Future human

impact mapping studies should thus include comprehensive uncertainty

analyses. Computational experiments allow us to distinguish robust from less

reliable modelling results and to prioritize improvements in models and data.

Keywords
Baltic Sea, Black Sea, cumulative effects, cumulative impacts, mapping, Med-

iterranean Sea, modelling, sensitivity analysis, uncertainty analysis.

INTRODUCTION

Marine ecosystems are affected by many anthropogenic stres-

sors at the same time. For example, intensive fishing has led

to the collapse of fish stocks and the alteration of entire food

webs (Pauly et al., 2002), and climate change affects species

abundances and distributions, food web dynamics and ocean

productivity (Hoegh-Guldberg & Bruno, 2010). However, the

responses of ecosystems to many stressors, and especially
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their combinations, are still unknown (Claudet & Fraschetti,

2010). Understanding the relationship between stressors and

the state of marine ecosystems thus remains a ‘grand chal-

lenge’ for marine ecologists (Borja, 2014).

Meanwhile, marine spatial planning and ecosystem-based

management need information about the cumulative impacts

of multiple interacting stressors (Foley et al., 2010; Kelly

et al., 2014; Stamoulis & Delevaux, 2015). Recent environ-

mental laws in the USA, Europe and elsewhere require spatial

cumulative impact assessments (SCIAs; Prahler et al., 2014;

Judd et al., 2015). While stressors interact in complex ways,

most SCIAs have so far relied on simple impact models (Stel-

zenm€uller et al., 2013).

The most widely used spatial model for SCIAs is the addi-

tive model proposed by Halpern et al. (2008a). This model,

and variations of it, have since been used in many studies

(Halpern et al., 2009, 2015; Selkoe et al., 2009; Ban et al.,

2010; HELCOM, 2010; Korpinen et al., 2012, 2013; Allan

et al., 2013; Andersen et al., 2013; Maxwell et al., 2013;

Micheli et al., 2013; Agbayani et al., 2015; Holon et al., 2015;

Murray et al., 2015a,b; Okey et al., 2015). Some authors have

proposed alternative approaches (e.g. Stelzenm€uller et al.,

2010; Coll et al., 2012; Parravicini et al., 2012; Kelly et al.,

2014; Goodsir et al., 2015; Knights et al., 2015; Marcotte

et al., 2015). Yet Halpern et al.’s model is the only spatial

model that has been widely used for human impact mapping

around the world.

Like all models, Halpern et al.’s uses imperfect input data

and makes many assumptions (Halpern & Fujita, 2013). For

example, it assumes that the effects of multiple stressors sim-

ply add up, whereas much research in fact suggests that

effects of multiple stressors are complex and that stressors

can interact non-additively (Crain et al., 2008; Darling &

Côt�e, 2008; Ban et al., 2014; Strain et al., 2014; Cheng et al.,

2015). The results of SCIAs could thus be highly uncertain.

Applications of modelling results to ecosystem-based plan-

ning and management require an understanding of the

uncertainty in model outputs (Agumya & Hunter, 2002; Salt-

elli & Funtowicz, 2014). Rigorous studies of uncertainty in

SCIA results and other spatial data intended to inform pol-

icy, planning and management are thus important. Several

existing SCIAs have conducted uncertainty analyses, and have

generally concluded that the results of SCIAs based on Hal-

pern et al.’s model are robust. However, previous analyses

have only studied the effects of a few model assumptions or

problems with data quality (called ‘factors’ in the following).

This is problematic, because for modelling results with many

potential sources of uncertainty, studying a few factors only

reveals a fraction of the potential aggregate uncertainty. Fur-

thermore, previous analyses used one-at-a-time (OAT)

approaches. These typically start with a baseline in factor

space, i.e. a set of factor values that are used as a reference.

OAT approaches then systematically explore the effects of one

factor at a time by changing it while keeping the other fac-

tors at their baseline values. But this can be misleading if fac-

tors interact. For example, consider two factors A and B,

each ranging from 0 to 1. A has strong effects on the model

output if B� 0.6, but negligible effects otherwise. In this sit-

uation, an OAT approach could find either a large or a negli-

gible effect of A, depending on the baseline chosen for B. If

B has little direct influence on model outputs and B< 0.6 at

the baseline, the OAT analysis would furthermore falsely con-

clude that neither A nor B change model outputs much,

although they would in fact be very different for some values

of A if B� 0.6. Saltelli & Annoni (2010) thus make a strong

case against the use of OAT approaches. For these two rea-

sons, additional analyses are needed to provide a sound pic-

ture of aggregate uncertainty in SCIAs.

This paper aims to quantify and map the uncertainty in SCIA

results (uncertainty analysis, UA), to attribute this uncertainty to

different factors (sensitivity analysis, SA) and to demonstrate

sound methods for such analyses. We investigated the effects of

nine factors, some of which have not been studied before, by

means of computational experiments. In contrast to previous

efforts, we used global methods that assess the effects of all factors

simultaneously, including their interactions: the elementary effects

(EE) method (Morris, 1991; Campolongo et al., 2007) for SA and

Monte Carlo (MC) simulations for UA. The EE method, while

also varying one factor at a time, avoids the pitfalls of standard

OAT approaches by evaluating the effect of each factor at many

points in factor space. In the example above, it would evaluate the

effect of A for different values of B, and vice versa. Similarly, our

MC simulations avoid the limitations of previous UAs by explor-

ing the full factor space. This paper thus presents the most com-

prehensive analysis of uncertainty and its sources in SCIAs to

date. While using regional analyses as examples, and providing

regionally relevant results as supporting figures and tables, it

focuses on general conclusions about uncertainty in SCIAs. It also

demonstrates how to use MC simulations and the EE method

with a spatial cumulative impact model, and hence complements

other recent studies suggesting global UA and SA methods for

spatial models (e.g. Lilburne & Tarantola, 2009; Chen et al.,

2010). While we focus on marine SCIAs, terrestrial and freshwater

ecosystems are also subject to multiple stressors (Sanderson et al.,

2002; V€or€osmarty et al., 2010; Hecky et al., 2010). Our methods

and conclusions are thus relevant beyond the marine realm.

DATA AND METHODS

Original model

Halpern et al. (2008a) estimate a unitless human impact

score I for each cell (x,y) of a regular grid as

Isumðx; yÞ5
Xn

i51

Xm

j51

Diðx; yÞejðx; yÞli;j (1)

where Di is the log(X 1 1)-transformed and rescaled (to max-

imum 1) intensity of stressor i, ej is the presence (1) or

absence (0) of ecosystem component j, and li,j is a weight

representing the sensitivity of ecosystem component j to

stressor i.
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The main output of SCIAs with Halpern et al.’s model

is a regular grid where each cell contains an impact score.

However, the input data are typically coarse, and the out-

put maps therefore do not accurately represent local

details. They are instead interpreted in terms of broad-

scale patterns. We thus investigated uncertainty in the out-

put maps as well as the following commonly reported

model outputs:

� ranks of the subregions of the study area (most to least

impacted, as proxy for broad-scale spatial patterns);

� ranks of stressors (highest to lowest impact in the whole

study area, normalized to account for changing number

of stressors);

� ranks of ecosystem components (most to least

impacted).

We used existing open source software implementing Hal-

pern et al.’s original model (Stock, 2016) as a foundation,

and extended it by adding alternative model assumptions as

well as UA and SA functions (see Appendix S1).

Input data

We reproduced two published SCIAs: for the Baltic Sea (Kor-

pinen et al., 2012) and for the Mediterranean and Black Seas

(Micheli et al., 2013). To achieve acceptable computation

times, we changed the spatial resolution of the Mediterra-

nean/Black Sea data from 1-km to 2-km grid cells. We

defined subregions for studying the effects of the factors on

broad-scale spatial patterns on the basis of existing HELCOM

and FAO regions. We split large subregions into coastal (up

to 12 nautical miles from the mainland or large islands) and

offshore. We also split the Black Sea into four coastal and

four offshore subregions of similar sizes. Table S1 summa-

rizes the data sources and Fig. S1 shows the subregions.

Factors and model extension

Table 1 summarizes the factors included in this analysis. Fig-

ure 1 illustrates a single model evaluation. Details and equa-

tions are provided in Appendix S1.

Missing stressor data (X0)

SCIAs typically suffer from missing stressor data. For exam-

ple, Halpern et al. (2009) identified 53 relevant stressors for

their study area, but could only obtain data for 25. Andersen

et al. (2013) identified 47 relevant stressors and could only

obtain data for 33. We investigated the effect of missing

stressor data by randomly excluding up to a third of

stressors.

Sensitivity weight errors (X1)

Halpern et al.’s (2008a) model uses sensitivity weights (li,j in

equation (1)) to estimate the impact of stressor i on ecosys-

tem component j. These weights are derived by expert judge-

ment (e.g. Halpern et al., 2007; Teck et al., 2010), but it is

unknown how well they describe ecosystem component sen-

sitivity (Halpern & Fujita, 2013). We thus added random

errors to the sensitivity weights up to plus or minus half the

maximum of the original weights (equation S1 in Appendix

S1).

Spreading of impacts from point stressors (X2)

Halpern et al.’s (2008a) model assumes that many stressors

affect only those grid cells where the human activities that

cause them occur, while in fact impacts can occur tens of kil-

ometres away (Andersen et al., 2013). This underestimates

impacts from stressors represented by point or line data (e.g.

fish farms). Thus, some studies (Ban et al., 2010; Andersen

et al., 2013; Batista et al., 2014) assumed that stressor inten-

sity decays linearly from sites of human activities. We investi-

gated the effects of assuming linear decay of stressors

represented by points, using 20 km as the maximum decay

Table 1 Factor ranges in the Monte Carlo (MC) simulations and levels in the Morris (elementary effects) design.

Factor Range in MC simulations Levels in Morris design

X0: missing stressor data 0 to 1/3 of data sets missing 0, 1/9, 2/9, 1/3 missing

X1: sensitivity weight errors Errors from uniform distribution U(–k,k) with k

ranging from 0 to 2 (original range of sensi-

tivity weights is 0–4)

Errors up to 6 0, 0.67, 1.33, 2

X2: point stressor linear decay Decay distance 0–20 km Decay distance 0, 7, 13, 20 km

X3: nonlinear responses Threshold response function for 0–100% of eco-

system component–stressor combinations

Threshold response function for 0, 1/3, 2/3 and

all ecosystem component–stressor

combinations

X4: reduced analysis resolution 0 (original) or 1 (reduced) resolution As MC simulation

X5: improved stressor resolution 0 (original) or 1 (improved) resolution As MC simulation

X6: mean or sum of impacts 0 (sum) or 1 (mean) As MC simulation

X7: transformation type 0 [log(X 1 1)], 1 (CDF) or 2 (P-transformation) As MC simulation

X8: MSEM 0 (additive), 1 (dominant stressor) or 2

(antagonistic)

As MC simulation

CDF, cumulative distribution function; MSEM, multiple stressor effect model.

Uncertainty in human impact maps
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distance (equation S2 in Appendix S1), which was the mean

for stressors represented by point or line data in an expert

survey (Andersen et al., 2013).

Nonlinear responses to stressors (X3)

Halpern et al.’s model assumes that the impact on individual

ecosystem components increases linearly with increasing

(log-transformed) stressor intensity, but the responses of eco-

systems to stressors are often nonlinear (Hughes et al., 2005;

Large et al., 2015). In our simulations, the response of each

ecosystem components to each stressor could be either linear

(equation S3 in Appendix S1) or nonlinear (equation S4 in

Appendix S1). The nonlinear responses represented ecological

thresholds and mimicked empirical relationships between

marine ecosystem status and pressures from harbours and

coastal urbanization (Parravicini et al., 2012). Figure S2

shows some examples. Hunsicker et al. (2015) found that

nonlinear responses to anthropogenic and natural stressors

are common in pelagic ecosystems, and argue that, in the

absence of better knowledge, it may be safer to assume a

nonlinear response than a linear one. We thus let the propor-

tion of nonlinear responses vary between 0% and 100%.

Reduced analysis resolution (X4)

Most cumulative human impact maps have spatial resolu-

tions of 1 km (e.g. Micheli et al., 2013) to 5 km (Korpinen

et al., 2012). We investigated the effects of reducing the spa-

tial resolution of all stressor and ecosystem data by factor of

two.

Improved resolution for coarse stressor data (X5)

The stressor data have different, sometimes coarse, spatial

resolutions. For example, important data sets for the Medi-

terranean/Black Sea (e.g. demersal fishing with seabed-

Figure 1 Overview of a

single evaluation of the

extended model.

A. Stock and F. Micheli

4 Global Ecology and Biogeography, VC 2016 John Wiley & Sons Ltd



destructing gear) had a spatial resolution of one geographical

degree. We created fine-resolution versions of such coarse

data (Baltic Sea: fishing, atmospheric deposition, hunting;

Mediterranean and Black Seas: fishing, ocean acidification,

UV) by randomly redistributing stressor intensities inside the

original coarse-resolution cells (Fig. S3 shows an example).

Mean or sum of impacts on present ecosystems (X6)

Halpern et al. (2008a) and some later studies (e.g. Korpinen

et al., 2012) calculate human impact scores as sums of

impacts over all ecosystem components that are present in a

given cell (Eq. (1)). Other studies (e.g. Halpern et al., 2009)

use the mean impact across all ecosystem components pres-

ent in a cell (calculated by dividing the summed impact by

the number of ecosystem components present; equations S5

& S6 in Appendix S1). We investigated the effects of this

decision.

Transformation type: log, CDF, P (X7)

Halpern et al.’s (2008a) approach makes different measures

of stressor intensity (e.g. fishing effort and pollutant concen-

trations) comparable by log(X 1 1)-transforming and then

rescaling so that the largest rescaled stressor intensity is 1.

While transformation is necessary for summing impacts from

different stressors (Halpern et al., 2015) and ‘a standard pro-

cedure for spatial pressure mapping’ (Geldmann et al., 2014),

such transformation modifies numbers that may represent

real differences. A purpose of the log-transformation is to

reduce the effect of rare, extremely high, stressor intensities

on model outputs (Micheli et al., 2013). But this could also

be achieved using other transformation types. A common

approach to normalize variables uses their cumulative distri-

bution functions (CDFs; Allan et al., 2013). For spatial stres-

sor data this can in practice be achieved by setting the

intensity of each stressor to the percentile to which it corre-

sponds (V€or€osmarty et al., 2010). The effects of extreme val-

ues could also be avoided by setting all stressor intensities

higher than the 99th percentile to equal the 99th percentile

(in the following called ‘P-transformation’), but leaving

smaller stressor intensities untransformed. We tested the

effects of choosing one of these three transformation types

(equation S7 in Appendix S1).

Modelling multiple stressor effects (X8)

Halpern et al.’s (2008a) model assumes that the effects of

multiple stressors in a cell simply add up. However, stressors

can interact in complex ways (Shears & Ross, 2010; Ban

et al., 2014) and non-additive effects are common in nature

(Crain et al., 2008; Darling & Côt�e, 2008). We thus investi-

gated the effects of using three different ‘multiple stressor

effect models’ (MSEMs) suggested in the literature. First, we

used an additive model (equation (1); Halpern et al., 2008a),

with extensions as described above (equation S8 in Appendix

S1). Second, we used a ‘dominant impacts’ model (Halpern

et al., 2008b), where the impact score of a cell depended only

on the stressors having the highest impact on each ecosystem

component present (equation S9 in Appendix S1). Such a

model could be plausible for high-impact stressors that alone

can destroy habitat, such as dredging (Folt et al., 1999).

Third, we used an antagonistic impacts model, in which mul-

tiple stressors had diminishing effects on each ecosystem

component (Stelzenm€uller et al., 2010). For example, in a

location where three stressors have impacts >0 on ecosystem

component j, this model weighed the impacts of the stressor

with the highest impact by 1, the impacts of the stressor

with the second-highest impact by 2/3, and the impacts of

the stressor with the third-highest impact by 1/3 (equation

S10 in Appendix S1). Because we could find no published

synergistic MSEM for more than two stressors, we did not

include such a model here (see Section 4.2).

Uncertainty analysis

We investigated the range of possible SCIA results under

alternative model assumptions and data quality problems

using Monte Carlo simulations with 3000 runs. In each sim-

ulation run, we set all quantitative factors to random values

taken from a uniform distribution within their ranges, and

all qualitative factors to one of their values with equal proba-

bility (Table 1). We recorded how often each grid cell was in

the most and least impacted 25% and 10% of the study

areas. We also recorded how often each subregion, ecosystem

component and stressor was among the most and least

impacted or impacting 25%. We chose 25% as the main

threshold following Halpern et al.’s (2015) distinction of high

and low impacts.

Sensitivity analysis

We ranked the factors by influence on the ranks of subre-

gions, stressors and ecosystem components using the Elemen-

tary Effects (EE) method (Morris, 1991; Campolongo et al.,

2007). This method estimates the effect of each factor on the

model output repeatedly, while the other factors take on dif-

ferent values from their entire ranges, and then averages these

estimates into a measure of overall effect. It allows robust

and computationally efficient ranking of factors, and is

model-free (Saltelli et al., 2004, 2008). Table 1 lists the factor

levels.

There were three complications using the EE method for

our model. First, the method as originally described requires

that changes in factors have a direction (i.e. the factors can

increase or decrease). This was not the case for our qualita-

tive factors with multiple levels (e.g. selecting one of three

transformation functions). Second, the model has stochastic

components that are not determined by the input data and

factors. For example, X0 determines how many stressors are

excluded, but not which stressors. Third, our model does not

have a single numerical output but produced one rank for

each subregion, for each stressor and for each ecosystem

component, which we then used to estimate the effects of

each factor on the overall rankings. We thus adjusted the EE

method as described in Appendix S1. The adjusted method

Uncertainty in human impact maps
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produced two results for each factor: l�, an estimate of the

overall influence of a factor on the model output (including

interactions with other factors), and r�, an estimate of how

much the influence of a factor depended on interactions and

stochasticity.

The multiple model outputs and stochasticity made our

results more variable than they would be for a deterministic

model with a single number as output. We thus had to use a

larger than usual sample size (t 5 500). We confirmed that

this sample size was sufficient by repeating the calculations

twice.

RESULTS

Uncertainty analysis

Some, but not all, spatial patterns of modelled human impacts

were robust. Figure 2 compares high- and low-impact areas

according to the original Baltic and Mediterranean/Black Sea

models with the results of the MC simulations (see also Figs

S4–S6). Of the 25% of the Baltic Sea’s grid cells identified as

most impacted using the original model, 31% were in the

same category in more than 75% of simulation runs. Of the

25% identified as least impacted using the original model,

64% were in the same category in more than 75% of simula-

tion runs. Uncertainty was slightly greater in the Mediterra-

nean model. Of the 25% of the Mediterranean/Black Sea grid

cells identified as most impacted using the original model,

26% were in the same category in more than 75% of simula-

tion runs. Of the 25% of those identified as least impacted

using the original model, 21% were among the least impacted

in more than 75% of simulation runs. Compared with the

most and least impacted 25% of grid cells in the study areas,

there were fewer robust results for the most and least

impacted 10% (Fig. S6). This suggests that human impact

maps produced with Halpern et al.’s model are best interpreted

in broad, qualitative terms (e.g. distinguishing high, interme-

diate and low impact areas). Only tiny areas were among the

most or least impacted in more than 75% of simulation runs

but not in the original model.

UA for region, stressor and ecosystem component ranks

also found both robust and unreliable results (Fig. S7, Tables

S2 & S3). Note that while we reported robust proportions of

original results for the most and least impacted areas, the fol-

lowing numbers are totals (i.e. the maximum in the absence

of uncertainty would be 25%). For the Baltic Sea: 13% of

regions were ranked among the most impacted 25% in more

than 75% of simulation runs; 20% of regions were ranked

among the least impacted 25% in more than 75% of simula-

tion runs; 17% of stressors were ranked among the 25% with

the highest impact in more than 75% of simulation runs;

15% of stressors were ranked among the 25% with the lowest

impact in more than 75% of simulation runs; no ecosystem

components were ranked among the most or least impacted

25% in more than 75% of simulation runs. For the Mediter-

ranean/Black Sea: 5% of regions were ranked among the

most impacted 25% in more than 75% of simulation runs;

11% of regions were ranked among the least impacted 25%

in more than 75% of simulation runs; 12% of stressors were

ranked among the 25% with the highest impact in more

than 75% of simulation runs; 18% of stressors were ranked

among the 25% with the lowest impact in more than 75% of

simulation runs; 6% of ecosystem components were ranked

among the most impacted 25% in more than 75% of simula-

tion runs; 12% of ecosystem components were ranked among

the least impacted 25% in more than 75% of simulation

runs.

Sensitivity analysis

Which factors were most influential overall depended on the

SCIA (Baltic or Mediterranean/Black Sea) and the modelling

result considered. Figure 3 shows l� and r� averaged over all

subregions, stressors and ecosystem components. Note that

we do not report the effects of X0 on stressor ranks (because

the removal of stressors automatically changes the ranks of

others), and that X2 had no effect in the Mediterranean/Black

Sea (because there were no point stressors).

All factors except X5 (improved stressor resolution) were

among the three most influential factors for at least one

modelling result in one SCIA. Furthermore, while some fac-

tors had a greater influence overall on specific model outputs

than did other factors, there was much variability in the

influence of these factors on the ranks of particular subre-

gions, stressors and ecosystem components (Fig. S8). An

example is the spatial decay of point stressors (X2) in the

Baltic Sea. Overall, it was one of the less important factors,

but was among the three most important factors affecting

the rank of 10% of subregions: it changed the ranks of those

subregions that contained or were close to many point stres-

sors, but was irrelevant elsewhere. High values of r� com-

pared with l� for some factors (e.g. X0 for Mediterranean/

Black Sea regions) suggest that the effects of these factors

depended on the values of other factors and on stochastic

model components.

DISCUSSION

Comparison with the findings of earlier studies

Several previous studies tested the effects of model assump-

tions and data quality problems on the results of spatial

cumulative impact assessments (SCIAs), including errors in

sensitivity weights (Halpern et al., 2008a; Selkoe et al., 2009;

Korpinen et al., 2012; Allan et al., 2013), missing stressor

data (Selkoe et al., 2009; Allan et al., 2013) and stressor data

transformation (Halpern et al., 2008a; Allan et al., 2013).

None found major effects on the results of SCIAs for any fac-

tor studied here (but see Brown et al., 2014). Our results,

based on a more comprehensive analysis, contradict these

findings. Not all results were robust, and a considerable part

of the total uncertainty was caused by factors such as stressor

data transformation, missing stressor data and errors in sen-

sitivity weights that previous studies (which assessed the

A. Stock and F. Micheli
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effects of fewer factors and each one in isolation) found to

have little influence.

Limitations of study design

We could obtain most but not all of the original input data

from Korpinen et al. (2012) and Micheli et al. (2013). We also

extracted sensitivity weights from other documents (Halpern

et al., 2007; HELCOM, 2010), and it was not always clear which

spatial data sets corresponded to which sensitivity weights. Fur-

thermore, we did not know about Korpinen et al.’s and Micheli

et al.’s data processing (e.g. how raw vector data were trans-

formed to a regular grid) in sufficient detail to reproduce the

analyses exactly. We could therefore not exactly reproduce the

results of the original assessments. Lastly, we reproduced

Micheli et al.’s SCIA at a coarser spatial resolution (2 km

Figure 2 Spatial distribution of high and low human impacts (defined as the 25% (a, b) or 10% (c, d) of the study areas with the

highest or lowest impact scores) in the cumulative human impact maps reproduced with the original model and in the Monte Carlo

simulations. Red and dark blue areas and to a lesser extent orange and light blue areas are robust results (a colour version of the figure

is available online).

Uncertainty in human impact maps
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instead of 1 km) to achieve acceptable computation times for

thousands of model evaluations. This imperfect reproduction

is unlikely to have affected our findings, for three reasons. First,

our analyses were conducted on realistic data. The reproduced

maps were very similar to the original maps (correlation coeffi-

cients c. 0.9; Fig. S9) and the tested factors changed the maps

much more than the imperfect reproduction. Second, this

paper focuses on general insights about uncertainty in SCIAs,

and our conclusions are supported by the results for both

example regions. It is unlikely that small within-region differ-

ences between the original SCIAs and reproduction could affect

findings that are consistent across both example regions. Third,

the differences between our findings and those of the previous

studies are much better explained by our use of global UA and

SA methods than by the imperfect reproduction.

The main limitation of this study is the omission of some

potentially relevant factors and the identification of ranges

and levels for the factors that we did include. Using ranges

for quantitative factors that are too small and omitting rea-

sonable alternative model assumptions could result in an

underestimation of uncertainty. Using factor ranges that are

too large or including unjustified alternative model

assumptions, in contrast, could result in an overestimation of

uncertainty. We thus limited our analyses to factors for

which there was literature suggesting ranges or alternative

model structures. For example, we implemented three

MSEMs: dominant, additive and antagonistic. We imple-

mented these MSEMs based on published literature (Folt

et al., 1999; Halpern et al., 2008a; Stelzenm€uller et al., 2010).

However, while there is concern about synergistic effects of

multiple stressors (Crain et al., 2008), we could not find any

studies suggesting a synergistic effects model that could be

implemented for this study. There are other model assump-

tions and limitations that we did not address (Halpern &

Fujita, 2013). For example, we did not test the effects of

errors in the spatial distributions of ecosystem components

and stressors, and of ignoring the timing of seasonal phe-

nomena like spawning. We also ignored sources of uncer-

tainty that were specific to a particular study region or data

set. For example, Micheli et al. (2013) did not have ocean

warming data for the Black Sea, which contributes to the

consistently low impacts in parts of this area. But Black Sea

surface temperatures are among the most rapidly increasing

in the world (Belkin et al., 2009). The consistently low
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impacts in the Black Sea are thus caused in part by a data

gap. As this example illustrates, the omission of potentially

important factors means that we have missed some uncer-

tainty in the two example SCIAs. However, our general

results (that the SCIA results were less robust than previous

studies found, and that the effects of the factors depended

on the study area and result considered), are not affected.

The example also illustrates that it is important to under-

stand the limitations of individual data sets and model

assumptions for each specific study area. Our general UA

and SA methods and results can complement and support,

but not replace, such region-specific understanding.

Implications for SCIAs and future directions

Some SCIAs refer to UA and SA results reported in other

assessments, arguing that some factors of concern have

already been shown to have little influence on model out-

puts. However, our results suggest that such generalizations

are a priori unjustified because factors can have different

effects in different SCIAs and on different model outputs.

For example, missing stressor data (X0) was more important

in the Mediterranean/Black Sea than in the Baltic Sea. This is

because the Baltic Sea assessment includes 47 stressors, many

having similar spatial patterns. The Mediterranean/Black Sea

assessment, in contrast, includes 17 stressors with diverse

spatial patterns. Thus, when a stressor was excluded from the

Baltic Sea assessment, others with similar spatial patterns

often remained. Missing stressor data had therefore less influ-

ence in the Baltic than the Mediterranean/Black Sea.

Each SCIA should thus include its own UA and SA, using

global methods that can account for interactions between

factors and considering the factors that are expected to be

most relevant for the specific study area and the modelling

results of interest. This is feasible because UA and SA as

demonstrated here require additional work but no additional

data. They are thus a cost-effective way to improve SCIAs

and identify the most robust results. The use of existing soft-

ware can reduce the work required. Our source code is avail-

able online (https://github.com/anstoc/ImpactMapper—UA).

Using it as foundation for UA and SA has the advantage that

it is ready to work with Halpern et al.’s model and the factors

tested here. Disadvantages are that some code will still have

to be adjusted to fit a specific SCIA, and that only the factors

and methods described in this paper have been implemented

so far. If different UA or SA methods are needed, general

toolsets like SAFE (Pianosi et al., 2015) may be a better foun-

dation. They provide a better choice of methods, but addi-

tional work would be required to make them work with a

spatial human impact model.

This paper focused on Halpern et al.’s model because it is

the most widely used, but other promising approaches to

cumulative human impact modelling have been recently

developed. They are promising because they empirically iden-

tify the responses of ecosystems to stressors from data (Parra-

vicini et al., 2012; Large et al., 2015; Teichert et al., 2016) or

are based on key ecological concepts like food webs (Fulton

et al., 2011; Griffith et al., 2012; Giakoumi et al., 2015). No

matter what models future SCIAs use, UA and SA can distin-

guish robust from less reliable results and point out the most

important model and data improvements.

CONCLUSIONS

We found that the study of uncertainty and its sources in

spatial cumulative human impact assessments is important,

and we suggest methods and practices for this purpose:

1. Some but not all tested impact assessment results were robust.

It is thus important to distinguish robust from unreliable results.

2. Eight of nine tested factors were influential for at least

one modelling result in one of the two study areas, and their

aggregate effects were considerable. It is thus important to

investigate the effects of many factors.

3. There were interactions between factors. Uncertainty and sen-

sitivity analysis methods for spatial cumulative impact assess-

ments must thus be global, i.e. explore the whole factor space.

4. The influence of the factors on assessment results

depended on which model output was considered. It also

depended on characteristics of the study areas and the data

that describe them. Finding that one result is robust with

respect to a given factor should thus not be generalized to

other results or other study areas.

5. Future SCIAs should include global, comprehensive uncer-

tainty and sensitivity analyses. The methods demonstrated in

this paper can serve as a minimum standard.
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Appendix S1 Supplementary methods.

Figure S1 Subregions used to analyse the effects of model

assumptions and data quality on broad-scale spatial patterns

of human impacts.

Figure S2 Example nonlinear response functions ra for

different values of a.

Figure S3 Example of a randomly generated fine-resolution

version of a coarse-resolution data set based on locally

rescaled noise.

Figure S4 Spatial distribution of high and low human

impacts (defined as the 25% of study areas with the highest

and lowest modelled impact scores) in maps reproduced with

the original model and in the Monte Carlo simulations.

Figure S5 Spatial distribution of high and low human

impacts (defined as the 10% of study areas with highest

and lowest modelled impact scores) in maps reproduced

with the original model and in the Monte Carlo

simulations.

Figure S6 Percentage of the most and least impacted 25%

and 10% of the two study areas that were in the same

impact category in at least 75% and 90% of simulation

runs.

Figure S7 Percentage of regions, stressors and ecosystem

components that were among the most and least impacted

(or, in the case of stressors, most and least impacting) 25%

in at least 75% and 90% of simulation runs.

Figure S8 Percentage of subregions, stressors and ecosystem

components for which X0 . . . X8 were among the three most

influential factors according to l�.
Figure S9 Korpinen et al.’s (2012) and Micheli et al.’s (2013)

human impact maps and their reproduction for this study.

Table S1 Data sources for reproduction of the Baltic Sea and

Mediterranean/Black Sea SCIAs.
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were among the most impacted (or, in the case of stressors,

most impacting) 25% in at least 75% of simulation runs.

Table S3 Subregions, stressors and ecosystem components

that were among the least impacted (or, in the case of

stressors, least impacting) 25% in at least 75% of simulation

runs.
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