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Abstract

Predation shapes many fundamental aspects of ecology. Uncertainty remains, however, about whether predators can
influence patterns of temporal niche construction at ecologically relevant timescales. Partitioning of time is an important
mechanism by which prey avoid interactions with predators. However, the traits that control a prey organism’s capacity to
operate during a particular portion of the diel cycle are diverse and complex. Thus, diel prey niches are often assumed to be
relatively unlikely to respond to changes in predation risk at short timescales. Here we present evidence to the contrary. We
report results that suggest that the anthropogenic depletion of daytime active predators (species that are either diurnal or
cathemeral) in a coral reef ecosystem is associated with rapid temporal niche expansions in a multi-species assemblage of
nocturnal prey fishes. Diurnal comparisons of nocturnal prey fish abundance in predator rich and predator depleted reefs at
two atolls revealed that nocturnal fish were approximately six (biomass) and eight (density) times more common during the
day on predator depleted reefs. Amongst these, the prey species that likely were the most specialized for nocturnal living,
and thus the most vulnerable to predation (i.e. those with greatest eye size to body length ratio), showed the strongest
diurnal increases at sites where daytime active predators were rare. While we were unable to determine whether these
observed increases in diurnal abundance by nocturnal prey were the result of a numerical or behavioral response, either
effect could be ecologically significant. These results raise the possibility that predation may play an important role in
regulating the partitioning of time by prey and that anthropogenic depletions of predators may be capable of causing rapid
changes to key properties of temporal community architecture.
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Introduction

Predation is believed to have played an important role in

shaping the long-term evolution of diel cycles and temporal niche

partitioning in animals. For example, a major factor that

contributed to the nocturnal disposition of multiple species

appears to have been the capacity to avoid daytime active

predators [1,2]. Presumably many patterns in temporal niche

separation that arose from historical predator/prey interactions

continue to be enforced today by contemporary predation risk.

Generally there is much interest amongst ecologists in

understanding how key properties of community organization

and function, such as diel partitioning, change when the drivers

that brought them about are relaxed. In the case of predation

there is considerable field and experimental evidence demonstrat-

ing that a variety of basic life history traits (e.g. growth and

reproduction) can evolve rapidly when predation pressure is

reduced [3–5]. There has, however, been limited research on

whether diel behavior and patterns of temporal niche partitioning

can also undergo rapid change following modulation of predation

risk [6,7]. The dynamics of the relationship between diel behavior

and predation deserve more attention given that predators in

myriad ecosystems are being rapidly depleted by humans [8,9].

Here we engage these issues by considering whether nocturnal

animals are capable of behaviorally or numerically responding to

reductions in predation risk from daytime active predators. To do

this we compared the relative abundance of nocturnal prey fish

communities observed during the day at a coral reef ecosystem

where large daytime active predators were abundant to those on

physically similar reefs where these predators have been fished to

low levels in the last three decades. Our results suggest that

predators may indeed play an important role in enforcing the

boundaries of nocturnal prey niches. Such observations challenge

us to more broadly consider the controls that predators may have

upon fundamental aspects of niche construction and inform our

understanding of the full extent to which anthropogenic change is

capable of impacting animal ecology.

Methods

This work was carried out under permission from USFWS SUP

# 12533-06032 and from the Republic of Kiribati Environment
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and Conservation Division. This research was conducted at

Palmyra (USA; 5u 529 N, 162u 049 W) and Tabuaeran (Kiribati;

(3u 519 N, 159u 199 W) Atolls. Palmyra is a US National Wildlife

Refuge and prohibits the take of all reef fish. The reefs of Palmyra

are among the least disturbed in the world and host especially high

densities of large predatory fish [10,11,12]. Tabuaeran, located

350 km southeast of Palmyra, is a lightly populated atoll that hosts

approximately 2,500 persons (Secretariat of the Pacific Commu-

nity, Kiribati 2005 Census Volume 2: Analytical Report).

Densities of many large fish, particularly sharks and other top

predators, have been much reduced at Tabuaeran by fishing [10].

The bulk of these reductions appear to have taken place in the last

several decades and were associated with the arrival of a mass

influx of new residents to Tabuaeran during government

settlement programs in the 1980’s and 90’s [13]. These two

nearby atolls are otherwise physically, chemically, and oceano-

graphically similar to one another [13].

We used SCUBA belt transect surveys to inventory fish

assemblages during full light conditions (1000 – 1600 h) on the

forereefs (ocean-side of reef crest) of both Palmyra and Tabuaeran.

A complete fish survey consisted of four belt transects, the

dimensions of which were matched to size (total length; TL) of

individual fish being inventoried: $50 cm TL fish 25068 m

transect; 30–49 cm TL fish 25064 m transect; 15–29 cm TL fish

25064 m transect; ,15 cm TL fish 22562 m transect [14]. All

transects were run along a 10–12 m depth isobath. In each

transect two divers identified, counted, and estimated the total

length of individual fish. Nine forereef sites were surveyed seven

times each at Palmyra (along north and south shores) and five

forereef sites were surveyed four times each at Tabuaeran (along

west and south shores). Sites were evenly spaced , 2 km apart

from one another at random locations. Fish surveys were

conducted at Palmyra between June – Aug 2006 and at Fanning

between Mar –April 2007; replicate surveys were evenly tempo-

rally dispersed across these periods. The same two divers

conducted all surveys at both atolls. Fish biomass was estimated

from survey data using length-weight conversion constants

obtained from FishBase (Froese and Pauly 2009) or other

published literature. Each species of fish observed in these surveys

was classed as either: 1) ‘‘nocturnal’’– .75% of its feeding and

activity takes place at night (dusk to dawn); 2) ‘‘diurnal’’–.75% of

its feeding and activity takes place during the day (dawn to dusk);

or 3) ‘‘cathemeral’’–all other fish, i.e. species active during the day

and night. These assignments were made using data from

FishBase, extensive reviews of published literature, and surveys

of expert opinion (Supporting dataset S1).

Fish within each of these three categories differ in their degree

of conformity and specialization to the specified diel modes. In the

case of nocturnal fishes, the ratio of eye diameter to fish standard

length (SL) serves as a convenient proxy for picking out gradients

in adherence to nocturnal living [15–17]. Animals that have larger

eyes relative to their body length are generally thought to have

better visual acuity in dim light situations and be more strictly

nocturnal [18]. Many of the physiological adaptations that permit

these especially nocturnal fish to function in low light environ-

ments (e.g. increased rod density, reduced cone density, specialized

spectral sensitivity, changes in focal length [16,19]) may make their

vision less well suited for high light environments. Thus, the

differential investment in nocturnal vision by fish with large eye:

SL ratios likely make such species especially vulnerable to

predation during the day (as seen in reverse for refuging diurnal

species [20]) and more responsive to the removal of large daytime

active predators. To examine these hypotheses, we collected data

on the ratios of eye diameter (widest part of the eyeball along

anterior-posterior axis) to SL for all of the fish genera encountered

at Palmyra and Tabuaeran from museum specimens (California

Academy of Sciences) and from published values [17]. Species for

which values were not reported in the literature were taken from

two individuals from each of two species per genus.

Differences in the density and biomass of diurnal, cathemeral,

and nocturnal fish species were compared between Palmyra and

Tabuaeran using effect size measurements (Cohen’s D with pooled

standard deviation; Supporting Text S1). We also measured

differences in fish abundance between atolls by comparing the

percentage of surveys in which each species was sighted (i.e. .0

individuals observed at any point during the survey dive). To

gauge how fishing by the residents of Tabuaeran may have

impacted the abundance of large predators capable of feeding on

nocturnal prey, we compared the biomass of all ‘‘large predators’’

(piscivorous fish $10 kg; size at which predator gape most

reasonably permits the capture of all size classes of nocturnal

fishes) observed during fish surveys at both atolls. All of these large

predators were daytime active (i.e. either diurnal or cathemeral)

and the majority were cathemeral (Supporting dataset S1). To

search for direct associations between nocturnal fish abundance

responses and predator abundance, we regressed the density effect

size of all fish species against their eye diameter to SL ratio. Large

predators were excluded both from these regressions and effect

size analyses.

The significance of these effect size comparisons was evaluated

using Kruskal-Wallis and Wilcoxon rank sum tests – as data could

not be transformed to meet parametric assumptions. Post-hoc

Holm’s sequential Bonferroni corrections [21] were applied to

interpret significance levels (3 groups: diurnal (D) vs cathemeral

(C) vs nocturnal (N)). All statistics were computed in Program R (R

Development Core Team (2010), http://www.R-project.org).

Results

Of the 185 species that were shared between Palmyra and

Tabuaeran we classified 141 as diurnal species, 26 as cathemeral

species, and 18 as nocturnal species (Supporting dataset 1).

Nocturnal fish included representative species from 6 families:

Holocentridae, Priacanthidae, Pempheridae, Lethrinidae, Mulli-

dae, and Serranidae. No nocturnal fish in this assemblage

achieved a SL .50 cm (mean size = 22.4 cm SL, 65.19 SD),

generally qualifying all as potential prey for large piscivorous reef

fish. Data from our fish surveys indicated that large daytime active

predators were abundant on the reefs of Palmyra, but were

considerably depleted at Tabuaeran (Fig. 1d; W = 108, P = 0.04).

This finding parallels observations made by other researchers that

have reported pronounced anthropogenic depletions of large

piscivores at Tabuaeran [10,11].

Analysis of the effect size patterns of diurnal, cathemeral, and

nocturnal fish species indicated that nocturnal fish showed by far

the strongest increases in both density and biomass during the day

at Tabuaeran relative to Palmyra (Fig 1a and 1c). These increases

exhibited by nocturnal fish were significantly greater than the

abundance increases shown by diurnal species (density: N vs D,

W = 2191, P,0.0001; biomass: N vs D, W = 2175, P,0.0001) but

only significantly different (post-correction) from cathemeral

species in the case of biomass (density: N vs C, W = 253,

P = 0.035; biomass: N vs C, W = 258, P = 0.022). Abundance

increases in cathemeral species between Tabuaeran and Palmyra

were intermediate to nocturnal and diurnal species, and always

significantly higher than the diurnal increase (density: C vs D,

W = 1023, P = 0.043; biomass: C vs D, W = 980, P = 0.025).

Presence/absence data summarized from these fish surveys

Temporal Niche Expansion Following Predator Loss

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38871



conveyed a similar conclusion. Nocturnal fish were sighted in

considerably more surveys at Tabuaeran than Palmyra (Fig 1b;

W = 49, P,0.001). Cathemeral species were also sighted at higher

frequencies at Tabuaeran (W = 115, P = 0.02) but diurnal species

were not different between atolls (W = 10196 P = 0.87).

We observed a significant positive relationship between eye

diameter: SL ratios and the density effect size response of

nocturnal reef fish species. This observed relationship indicates

that the most dark adapted species, which are expected to be more

vulnerable to daytime active predators, showed the strongest

increases in abundance at Tabuaeran (Fig 2). No such relation-

ships were found when comparisons were made only with diurnal

or cathemeral species (Fig 2). When the same regression was run

for all fish without regard to diel class, a significant but less positive

relationship was observed (R2 = 0.12, P,0.0001).

Discussion

Our observations suggest that reductions in predator density in

coral reef ecosystems can facilitate the temporal niche expansion

of prey species. While these conclusions are drawn from the study

of only two systems, the resultant observations are quite

compelling. At our Tabuaeran Atoll study sites where fishers have

depleted large diurnal and cathemeral predatory fish, we observed

strong increases in the daytime density, biomass, and sighting

frequencies of nocturnal prey fish compared to our sites at Palmyra

Atoll where daytime predators remained naturally abundant (Fig. 1

and 3). Diurnal or cathemeral prey fish species also appeared to

benefit and increase in abundance (density and biomass) at

Tabuaeran where predators were fewer – but these increases were

not nearly as dramatic as the increases observed for nocturnal prey

guilds. We suggest that the most parsimonious explanation for this

pronounced response by nocturnal prey fish is that the removal of

large daytime active predators on the fished reefs of Tabuaeran

allowed nocturnal prey fish in this system to increase during

portions of the day when they are normally highly vulnerable to

such predators.

Without data on the abundance of nocturnal prey fish at

Tabuaeran during the periods prior to the depletion of its large

predators, or the capacity to engineer exclosure manipulations

large enough to meaningfully capture large scale interactions

between reef predators and nocturnal prey fish, we cannot directly

identify the mechanisms that have caused the stark differences in

nocturnal prey fish abundance on Tabuaeran’s predator depau-

perate reefs. However, a predatory release explanation for these

shifts is well supported by the relationships observed between

degree of specialization for nocturnal living by prey fish (as proxied

by eye diameter: SL values) and the effect sizes of their abundance

responses to predator reductions. If risk of predation from daytime

predators is indeed playing an important role in constricting the

diel niches of nocturnal fishes at these sites, we would expect the

nocturnal species that are most vulnerable to daytime predators

(i.e. those that are particularly specialized for nocturnal living) to

Figure 1. Effect size plots representing differences in the density (A) and biomass (C) of nocturnal, diurnal, and cathemeral prey
fish on reefs at predator-depleted Tabuaeran Atoll relative to predator-heavy Palmyra Atoll. Positive values represent increases at
Tabuaeran. Percentage of surveys (B) in which nocturnal prey fish were sighted at Palmyra and Tabuaeran. Comparisons of the biomass of all large
($10 kg) diurnal and cathemeral piscivorous predators (D) at both atolls. All values are mean, 61 SE. Surveys marked with the same letters in each
species grouping are not significantly different (after post-hoc correction).
doi:10.1371/journal.pone.0038871.g001
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show the strongest responses when these predators are reduced in

number. This was indeed what was observed: nocturnal prey fish

species that were highly adapted to functioning at night and

presumably most at risk to predation during the daytime (i.e. fish

with large eye diameter: SL values) showed the strongest positive

responses to the predator reductions at Tabuaeran (Fig 2). Other

alternative explanations for these observed changes in nocturnal

fish abundance are less well supported. The species richness of reef

fish communities at our predator rich and predator depleted reefs

was largely the same, obviating concerns that naturally varying

differences in fish diversity generated this pattern. Furthermore,

the oceanographic similarity of these atolls [13] provides little

reason to believe that the quantity or timing of delivery of

nocturnal fish prey (e.g. plankton) would systematically differ in

such a way as to affect the temporality of their foraging. It is

possible that resource competition within temporal feeding guilds

may have played some role in creating the patterns we observed

(e.g. nocturnal prey become more abundant in the absence of large

predators and must begin feeding during the day to cope with

density mediated increases in competition from other nocturnal

fish). However, changes in competitive regimes seem unlikely to be

the primary driver for the patterns we observed in daytime

abundance of nocturnal fish at Tabuaeran, given the specifically

pronounced responses of fish species with large eye diameter: SL

ratios.

There is no reason to believe that nocturnal fishes are the only

taxa whose temporal niche space would be affected by the removal

of reef predators at Tabuaeran. Observations made in this same

archipelago have demonstrated that diurnal prey fish undergo

dramatic shifts in behavior (i.e. excursion distance) in the

environments where predation risk is minimized [22,23]. Further

investigation (e.g. night surveys of diurnal fish) will be required to

determine whether other diel fish guilds or other reef taxa have

undergone shifts similar to those observed in nocturnal fish

assemblages.

It is not possible to determine conclusively whether the changes

we observed in the nocturnal fish communities of Tabuaeran were

principally the result of alterations in their abundance or their

behavior. Nocturnal fish cannot be counted effectively using non-

destructive methods while in diurnal refuges [24] and safety

regulations prevent nighttime diving at Palmyra. These limitations

impeded our ability to collect data on the ‘‘actual’’ abundances of

nocturnal fishes at Palmyra and Tabuaeran that could be used to

identify the mechanistic origins of this change. However, either a

numerical or behavioral response by these nocturnal assemblages

would be biologically interesting.

Determining the ecological consequences of these diurnal

increases in the abundance of nocturnal predators will require

gathering more data on the foraging efficiency of these nighttime

feeders. The fish species with large eye: SL ratios, which showed

the strongest increases in abundance on predator depleted reefs,

are also likely to be the poorest daytime foragers given the

physiology of their vision. These taxa may be weak competitors

with more light-adapted diurnal species feeding on similar prey.

Future research will help resolve how the dynamics of both

competition and resource availability in this reef system may be

altered by these increases in the abundance of nocturnal

consumers.

Rapid changes in patterns of diel partitioning following

disruptions in predator regimes have been observed in mammals

[25,26], invertebrates [27–30], and freshwater fishes [6,31,32].

Temporal niche shifts have not, however, been previously reported

for coral reef fish, nor have they ever been observed to advance so

synchronously across multiple taxa as they did in this system. In

fact, with the exception of the few above examples, rapid changes

in diel behavior following predator manipulation are very rare

Figure 2. Effect sizes of reef fish density regressed against the ratio of fish eye diameter to standard length (SL). Large effect size
values represent strong increases in density at predator impoverished Tabuaeran Atoll. Nocturnal, diurnal and cathemeral are segregated in the plot.
Fish with large eye diameter: SL are thought to be increasingly well adapted for functioning at night. The most dark adapted fish showed the
strongest responses to predator depletions. There was no significant relationship between effect size response and eye diameter: SL for diurnal or
cathemeral fishes.
doi:10.1371/journal.pone.0038871.g002
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[33] – a somewhat curious observation given the frequency and

intensity of modern anthropogenic alterations to predation risk

regimes [8,34]. Why then do the effects that we observed at

Tabuaeran appear to be so rare elsewhere? There are at least four

non-mutually exclusive explanations for why we do not see more

examples of temporal niche shifts in a world where large predators

have been removed from numerous ecosystems. First, the traits

required to successfully undergo shifts in diel activity rhythms may,

in some taxa, be deeply entrenched phylogenetically and resistant

to rapid evolution [35]. Second, these types of shifts may be

widespread, but taking place at such slow rates that they have

escaped the notice of researchers. Third, alterations in the diel

behavior of prey may not be recognizable because of the global

rarity of less-disturbed, predator rich systems that are required to

recognize such change. Lastly, it is quite possible that in many

instances humans functionally replace the non-human predators

they extirpate [36] and continue to enforce existing patterns of diel

partitioning by hunting the prey of these depleted predators

themselves.

The possibility that changes to predation regimes can alter well-

established patterns of temporal partitioning raises many interest-

ing questions. Do prey and competitors respond to these rapid

shifts in temporal niche space, causing evolutionarily significant

temporal cascades in ecosystems [37]? Do changes in physiology

track these observed changes in temporal partitioning by

predators? Can these contemporary changes in diel activity help

explain historical patterns of temporal niche evolution (e.g. the

rapid expansions in reef fish nocturnality in the Eocene [38])?

Answering these types of questions will shed more light on the

ecological and evolutionary significance of these first observed

steps out of the darkness by nocturnal prey.

Future research on the effects of predators on the temporal

ecology of prey will be necessary to examine the geographic and

taxonomic ubiquity of the trends we report herein. Developing this

line of research is critically important given the rapidity and

severity by which humans are depleting predator populations in

both marine and terrestrial environments [8,9,39]. These com-

pelling first observations from our study sites at Palmyra and

Tabuaeran suggest that anthropogenic change may be affecting

elements of ecology as foundational as diel activity patterns and

thus challenge us to expand the scope at which we consider how

humans may be altering communities.

Supporting Information

Dataset S1 Temporal niche classifications of the fishes
at predator rich Palmyra and predator depauperate
Tabuaeran Atolls. Comparisons of the density and biomass of

Figure 3. Examples of two species of nocturnal reef fish surveyed in this study: Myripristis berndti (A) and Priacanthus hamrur (B). The
large eye to body length ratios of these two species (M. berndti: 0.15; P. hamrur: 0.11) give evidence of their nocturnal lifestyle. Like many nocturnal
fish, M. berndti and P. hamrur both dramatically increased in abundance at Tabuaeran where large daytime active predators were less abundant.
Example diurnal fish Chlorurus sordidus (C) and Epibulus insidiator (D) exhibit the smaller eye to body length ratios (C. sordidus: 0.05; E. insidiator: 0.05)
that are more characteristic of diurnal reef fish. These species were among the diurnal prey fish taxa whose abundance showed negative or weak
responses to predator depletion.
doi:10.1371/journal.pone.0038871.g003
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these fish species, as conducted using effect size measurements, are

also reported.

(DOC)

Text S1 Mechanics of Cohen’s D effect size measure-
ments used to compare the density and biomass of fish
species on the reefs of Palmyra and Tabuaeran.
(DOCX)
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