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Eutrophication, Fisheries, and
Consumer-Resource Dynamics
in Marine Pelagic Ecosystems

Fiorenza Micheli*

Anthropogenic nutrient enrichment and fishing influence marine ecosystems
worldwide by altering resource availability and food-web structure. Meta-
analyses of 47 marine mesocosm experiments manipulating nutrients and
consumers, and of time series data of nutrients, plankton, and fishes from 20
natural marine systems, revealed that nutrients generally enhance phytoplank-
ton biomass and carnivores depress herbivore biomass. However, resource and
consumer effects attenuate through marine pelagic food webs, resulting in a
weak coupling between phytoplankton and herbivores. Despite substantial
physical and biological variability in marine pelagic ecosystems, alterations of
resource availability and consumers result in general patterns of community
change.

Increased nutrient loadings and fisheries ex-
ploitation are major human perturbations to
marine ecosystems worldwide (1). Alteration
of resource availability represents a “bottom-
up” perturbation of marine ecosystems, where-
as removal of consumer biomass through
fishing represents a “top-down” disturbance.
An understanding of how bottom-up and top-
down processes influence the dynamics of
marine communities is necessary for effec-
tive management of marine ecosystems in the
face of environmental variability and multi-
ple human impacts. However, it is difficult to
determine the effects of resource availability
and food-web interactions in open (pelagic),
highly variable marine systems; most propo-
sitions are based on anecdotal evidence from
catastrophic events such as El Niño years (2),
fishery collapses (3), and the introduction of
exotic species (4). To determine how marine
pelagic ecosystems respond to variation in
the quantity of resources and consumers, I
conducted meta-analyses of data from a va-
riety of experimental and natural systems and
examined whether changes in the abundance
of consumers (pelagic zooplanktivorous fish)
cascade down marine food webs to affect

lower trophic levels, and whether changes in
nutrient availability and primary productivity
cascade up marine food webs to affect higher
trophic levels.

To address these questions, I assembled
data from experimental manipulations con-
ducted in marine mesocosms and from long-
term monitoring of open marine ecosystems.
Experiments conducted in mesocosms elimi-
nate open-system dynamics but represent
controlled alterations of nutrient availability
and food-web structure. In contrast, long-
term monitoring of open marine systems doc-
uments patterns at realistic spatial and tem-
poral scales. The first data set comprised
phytoplankton and mesozooplankton (mostly
herbivorous copepod crustaceans larger than
150 to 300 mm) data from marine mesocosm
experiments where nutrient availability was
manipulated by adding N compounds, or
where food-web structure was manipulated
by adding or removing zooplanktivorous fish
or invertebrates (5). The second data set con-
sisted of time series (7 to 45 years) of N
availability (measured as the annual loading
or as the average N concentration during winter
months), primary productivity, and the bio-
mass of phytoplankton, mesozooplankton,
and pelagic zooplanktivorous fish for 20 open
marine ecosystems (6).

For the mesocosm experiments, I quanti-
fied responses of phytoplankton and mesozoo-
plankton to nutrient and food-web manipula-

tions by using the natural logarithm of the
ratio between the mean value of the variable
in mesocosms with carnivores (zooplanktivo-
rous fish or invertebrates) or nutrients (inor-
ganic N compounds) added and in unmanip-
ulated, control mesocosms (7). Zooplankti-
vores caused significant decreases in meso-
zooplankton biomass, both in mesocosms
with no N added (Fig. 1A) and in mesocosms
enriched with N (Fig. 1B). Zooplanktivores
caused an increase in phytoplankton biomass,
but this trend was statistically significant only
in systems that were also enriched with N
(Fig. 1, A and B). Nitrogen addition caused
similar and significant increases in phyto-
plankton biomass in mesocosms containing
two (phytoplankton and zooplankton; Fig. 1C)
or three trophic levels (phytoplankton, zoo-
plankton, and zooplanktivores; Fig. 1D). Un-
der either food-web configuration, nutrient
addition did not affect mesozooplankton bio-
mass (Fig. 1, C and D). The effects of the
manipulations were not significantly correlat-
ed with either experiment duration or meso-
cosm size in zooplanktivore-manipulation ex-
periments (8), and the effects were only weak-
ly correlated with duration but not with size in
nutrient-manipulation experiments (9). There-
fore, these results are unlikely to be biased by
the short duration or small mesocosm sizes
used in most experiments.

For the 20 open marine ecosystems, I
examined the cross-correlation between time
series of nutrients, productivity, and biomass
of different trophic levels using Spearman
rank correlation (10). Theoretical models ex-
ploring the relations among resource avail-
ability, food-web structure, and biomass of
different trophic levels predict patterns of
biomass accrual along productivity gradients
at equilibrium, that is, after transient effects
have disappeared (11, 12). Because seasonal
events such as upwelling and sudden increas-
es in fish density from immigration or spring
reproduction are transient effects, I used year-
ly values of productivity and biomass to
approximate equilibrium conditions. Year-to-
year fluctuations in mesozooplankton bio-
mass were negatively correlated with zoo-
planktivorous fish (r 5 20.22; 95% confi-
dence limits 5 20.31 and 20.12; N 5 19),
indicating that fish predation may control
mesozooplankton biomass. In contrast, the
correlation between mesozooplankton and
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phytoplankton was not significant (r 5
20.07; 95% confidence limits 5 20.15 and
0.01; N 5 19). This result may indicate that
mesozooplankton does not control phyto-
plankton biomass, although a nonsignificant
correlation could arise through mechanisms
other than uncoupling between trophic levels.
Negative correlations between zooplanktivo-
rous fish and mesozooplankton and between
mesozooplankton and phytoplankton were
found in six systems, but they were not sta-
tistically significant (significance level a 5
0.05) except for the correlation between
zooplanktivores and mesozooplankton in one
system, the subarctic Pacific (13). Thus, in
pelagic marine ecosystems alterations of con-
sumer abundance can cascade down food
webs to affect phytoplankton biomass, but
this effect is uncommon. Similarly, effects of
changes in N availability and primary pro-
ductivity rarely cascade upward to affect bio-
mass of marine pelagic consumers. In gener-
al, N availability and primary productivity
were positively correlated with phytoplank-
ton biomass (Fig. 2). Correlations of nutrients
and productivity with mesozooplankton and
zooplanktivore biomass were not significant
and showed no overall trend (Fig. 2). Posi-
tive, although nonsignificant, correlations be-
tween primary productivity and biomass of
all trophic levels were found only in two
systems (14).

Meta-analyses of data from mesocosm ex-
periments and natural marine ecosystems in-
dicated that pelagic marine food webs are

characterized by bottom-up control of prima-
ry producers (phytoplankton) through N avail-
ability and top-down control of herbivores
(mesozooplankton) through predation by car-
nivores (zooplanktivorous fish). Both analy-
ses indicated a weak coupling between pri-
mary producers and herbivores. Zooplankti-
vores tend to decrease mesozooplankton
abundance, but the mesozooplankton com-
monly has no effect on the phytoplankton
(Fig. 1). Conversely, increased N availability
enhances primary producers but does not en-
hance the mesozooplankton (Figs. 1 and 2).
In general, the effects of consumer-resource
interactions do not cascade upward or down-
ward through marine pelagic food webs.

The effects of carnivores (zooplanktivo-
rous fish) on herbivores (mesozooplankton)
and of nutrients on plants (phytoplankton),
and the loose coupling between herbivores
and plants, are pervasive. These patterns were
observed at vastly different spatial (meso-
cosms to open ocean systems) and temporal
scales (days to decades) and are similar to
those found in syntheses of data from fresh-
water systems (15). The generality of these
patterns indicates that similar mechanisms
may underlie the dynamics of closed (fresh-
water) and open (marine) aquatic systems.
Open, highly variable systems such as marine
pelagic ecosystems may be regulated by local
biological interactions similar to those occur-
ring within naturally closed lake ecosystems
or experimentally enclosed marine and fresh-
water systems.

There are at least three biological mecha-
nisms that might account for the observed
weak coupling between primary producers
and herbivores. First, coupling between tro-
phic levels may be dampened by species
interactions within the zooplankton; interfer-
ence among zooplankton species may limit
their population growth and hinder their top-

down effects on the phytoplankton (12). The
trophic level abstraction used in many theo-
retical and empirical studies ignores the com-
plexity of species interactions and thus may
inadequately describe real food webs. Sec-
ond, the efficiency of the transfer of primary
productivity to higher trophic levels and the
impact of herbivores on primary producers
may depend on food quality, particularly the
proportion of edible and inedible algae within
the phytoplankton (16). Increased proportions
of inedible algae frequently accompany in-
creased productivity caused by anthropogenic
nutrient enrichment (17). Finally, in open ma-
rine systems, advection or loss of nutrients
and individuals from the focal system may
dampen effects of local biological interac-
tions and lead to an uncoupling between ad-
jacent trophic levels (18). These mechanisms
might act jointly to weaken primary producer-
herbivore coupling in marine pelagic food
webs.

These results have implications for man-
agement of marine ecosystems. First, the
generality of a weak coupling of N loading
and phytoplankton productivity with higher
trophic levels (Figs. 1 and 2) implies that
anthropogenic nutrient loading to coastal
waters is unlikely to result in increased fish
biomass, regardless of local physical and
biological conditions and of the magnitude
of nutrient enrichment. Phytoplankton pro-
duction resulting from increased nutrient
loading may be recycled within the plank-
ton by microorganisms (19) or be lost from
pelagic marine food webs when detritus
settles to the ocean floor (20). Second,
fluctuations in stocks of planktivorous pe-
lagic fishes commonly affect zooplankton
communities but rarely cascade through
marine pelagic food webs to affect phyto-
plankton biomass. Thus, pelagic fisheries
are expected to influence other ecosystem
components, not directly targeted by the
fishery, by affecting zooplankton biomass
and food availability for other carnivores.
However, it is unlikely that manipulations
of marine food webs similar to those pro-
posed for lakes (21) could be effective in
controlling the response of primary produc-
ers to nutrient enrichment in coastal waters.
Improved understanding of consumer-re-
source dynamics is critical both to predict
the consequences of multiple anthropogenic
perturbations to aquatic ecosystems and to de-
velop sustainable management practices.
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Kuosa, O. Setälä, S. Tanskanen, East. Coast. Shelf Sci.
46, 65 (1998); P. Olsson, E. Graneli, P. Carlsson, P.
Abreu, J. Exp. Mar. Biol. Ecol. 158, 249 (1992); H. W.
Paerl, J. Rudek, M. A. Mallin, Mar. Biol. 107, 247
(1990); J. L. Pinckney, H. W. Paerl, E. Haugen, P. A.
Tester, Mar. Ecol. Prog. Ser., in press; B. Riemann,
T. G. Nielsen, S. J. Horsted, P. K. Bjørnsen, J. Pock-
Steen, ibid. 48, 205 (1988); B. Riemann et al., ibid. 65,
159 (1990); S. Schulz, G. Bruel, A. Irmisch, Limno-
logica 20, 89 (1990); N. C. Sonntag and T. R. Parsons,
J. Plankton Res. 1, 85 (1979); A. Uitto, S. Kaitala, H.
Kuosa, R. Pajuniemi, Aqua Fenn. 25, 23 (1995).

6. The time series data sets consisted of yearly or
summer averages of nutrients, productivity, or bio-
mass. Time series ranged from 7 to 45 years and had
been gathered between 1948 and 1994 in 16 coastal
areas from the Baltic Sea (nine areas: Arkona Sea,
Great Belt, Bornholm Sea, Gotland Sea, Archipelago
Sea, Gulf of Riga, Kattegat, Mecklenburg Bay, and
Oresund), the North Sea (four areas: Skagerrak, Ger-
man Bight, Southern Bight, and Northumberland
Coast), the English Channel (off Plymouth, UK), the
middle Adriatic Sea, and the Gulf of Thailand and four
offshore areas from the Peruvian and the California
upwelling systems, the Gulf of Alaska (ocean station
P), and the subarctic Pacific (south of the Aleutian
Islands). All systems are subject to intense human
disturbance through fishing and anthropogenic nutri-
ent loadings to the coastal systems. Data were ex-
tracted from tables or digitized from figures pub-
lished in the following papers and reports: L. Anders-
son and L. Rydberg, East. Coast. Shelf Sci. 26, 559
(1988); M. C. Austen et al., J. Mar. Biol. Assoc. UK 71,
179 (1991); G. T. Boalch, D. S. Harbour, E. I. Butler,
ibid. 58, 943 (1978); E. Bonsdorff, E. M. Blomqvist, J.
Mattila, A. Norkko, Oceanol. Acta 20, 319 (1997);
R. D. Brodeur et al., Calif. Coop. Ocean. Fish. Investig.
Rep. 37, 80 (1996); R. Millán-Núñez, S. Alvarez-Bor-
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