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Human impact on biodiversity usually is measured by reduction in species abundance or richness. Just as
important, but much more difficult to discern, is the anthropogenic elimination of ecological interactions.
Here we report on the persistence of a long ecological interaction chain linking diverse food webs and
habitats in the near-pristine portions of a remote Pacific atoll. Using biogeochemical assays, animal
tracking, and field surveys we show that seabirds roosting on native trees fertilize soils, increasing coastal
nutrients and the abundance of plankton, thus attracting manta rays to native forest coastlines. Partnered
observations conducted in regions of this atoll where native trees have been replaced by human propagated
palms reveal that this complex interaction chain linking trees to mantas readily breaks down. Taken together
these findings provide a compelling example of how anthropogenic disturbance may be contributing to
widespread reductions in ecological interaction chain length, thereby isolating and simplifying ecosystems.

F rom sea to land, from land to sea; And heave round earth, a living chain of interwoven agency. Goethe’s
Faust1

The chains of interactions that weave together the constituents of ecosystems are critical to their functioning.
Such interaction chains include both trophic (e.g. consumption of prey by predators), informational (e.g. beha-
vioral interactions), and abiotic (e.g. physical transport of nutrients across ecosystem boundaries) linkages that
assemble both vertically (e.g. from top to bottom of food webs) and horizontally (e.g. across the boundaries of
multiple food webs and habitats).

Alteration or elimination of any of the links in an ecological interaction chain can have deleterious and
destabilizing effects on community and ecosystem functioning2–5. Some of these effects are direct, while others
reach indirectly across ecosystems (e.g. change at one node in a chain influences another node via intermediary
transmitter nodes6–7). There are many means by which human disturbance can negatively impact the integrity of
ecological interaction chains. Species removals, species introductions, habitat conversions, pollution, and climate
change can all change or abolish species interactions4,8–11. Given the sensitivity of these ecological links to
anthropogenic change, we hypothesized that ecosystems more insulated from human influence may retain longer
chains of ecological interactions that host linkages that bind these ecosystems closer together.

We conducted a focused empirical examination of this hypothesis by investigating the effects of anthropogenic
disturbance on ecological interaction chain length at Palmyra Atoll, an especially remote collection of coral islets
in the tropical central Pacific. The ecosystems of Palmyra have been much less impacted anthropogenically than
many inhabited or heavily used coastal and island regions, but are by no means completely ‘‘pristine’’12. Palmyra’s
forests in particular have been altered by intermittent human activities. Historically large and contiguous patches
of native forest, comprised principally of the native trees Pisonia grandis and Tournefortia argentea, have been
threatened by the human-facilitated expansion of the coconut palm (Cocos nucifera)13,14. This type of anthro-
pogenic disturbance activity is especially common in the tropics where palms of various species are aggressively
cultivated for oil production at the expense of native forests15,16. Today, Palmyra’s forests are fractured into
discrete patches of well conserved native forest surrounded by dense stands of coconut palm17 (Supplementary
Fig. S1 and S2 online). This mosaic of recently disturbed habitats intermingled with generally more intact habitats
provides a rare opportunity to test (by contrasting patterns in native and palm forests, Figure 1A) if and how
human disturbance impacts interaction chain length.
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Results
We initiated this comparison by examining how seabird utilization
of forest canopies (e.g. as nesting and roosting habitat) differs in
patches classified as either native or palm forest. Surveys of seabirds
indicate that they show a strong preference for the complex and
stable canopies of native forests, and a strong aversion for the simple
and mobile canopies of palm forests. Resultant densities of seabirds
in native forests are 4.8 times higher than palm forests (Figure 1B,
Table 1). These divergent patterns of bird use have important effects
on forest biogeochemistry. Soils in native forests are significantly
elevated in plant available nitrogen– the likely limiting nutrient in
this ecosystem (5.1 times higher than palm forests; Figure 1C, Table
1). It has been previously established that these changes in soil prop-
erties were caused by the importation and concentration of oceanic-
derived nutrients in preferred nesting/roosting areas (e.g. guano) by
these wide-ranging birds18 and that these changes do not pre-date
forest alteration14. Plants resident in native forests capitalize on these
elevated nutrient levels, as is reflected by increased levels of foliar
nitrogen in these sites (Figure 1D).

The influence of birds on forests extends beyond the boundaries of
the terrestrial ecosystem. Water running off nutrient rich native
forest islets into the marine environment carries with it 26.5 times
higher loads of nitrogenous compounds than runoff from palm for-
ests (Figure 1E). Data from moored, in-situ, phytoplankton growth
chambers showed that relative changes in chlorophyll a (Chl a) were
significantly higher in growth chambers situated along native forest
coastlines, suggesting that nutrient additions in these zones may
stimulate phytoplankton productivity (Table 1). In these same waters

adjacent to native forests zooplankton are greater in biomass
(Figure 1F) and certain zooplankton taxa (Copepoda) are larger
(Table 1). Differences in the foraging ecology and behavior of a large
and conspicuous obligate plankton consumer, the giant manta ray
(Manta birostris), were also detected in native forest regions. In
extensive visual surveys of mantas we documented that they are
significantly more abundant along native forest coastlines than along
palm forest coasts with similar bathymetry and morphology
(Figure 1G; Supplementary Fig. S3 online). As a supplement to these
visual surveys of mantas, we electronically tagged three adult indivi-
duals and tracked their movements. Tracking data showed the same
pattern as visual surveys: mantas can and do range across the entire
lagoon basin - but when they elect to use coastlines, tagged animals
exclusively selected areas near native forests. We observed 86.4%,
78.4%, and 43.9% overlap of individual manta core use areas with
native forest coastline. No overlap was observed by these any of these
animals with palm forest coastline.

The elevated nitrogen (N) isotope levels of seabird-derived nutri-
ents (which result from the high trophic position of these predators)
provide a convenient means for examining whether this complex
string of ecological connections are causally connected to one
another19,20. Consistent with the hypothesis that manta rays are inter-
actively linked to native forests via changes triggered by alterations in
forest and seabird communities, we measured significantly higher
d15N levels (indicative of utilization of seabird derived nutrients) at
five key nodes in this long-range interaction chain (Figure 1;
Table 2). The strength of this seabird isotope signal attenuates with
increasing distance from the origin of this interaction chain (forests),

Figure 1 | Description of a long interaction chain linking forests to manta rays. This chain is retained in less disturbed native forest but its integrity is

compromised in human-altered palm forest. Bar graphs comparing processes in native (N) and palm (P) forests (mean 6 SE) indicate that reductions in

native tree abundance (A) reduce seabird abundance (B), which diminish the contribution of seabird derived nutrient subsidies to terrestrial ecosystems

(C,D), which severely impair the movement of nutrients to the marine environment (E), reducing zooplankton abundance (F), and ultimately

eliminating manta ray (Manta birostris) utilization of native forest coastlines (G). Delta values depict the difference between mean d15N of native forest

and palm forest material (Dd15N 5 d15NN 2 d15NP). Positive delta values measured at multiple points along this lengthy interaction chain reveal that taxa

in native forest zones are causally linked to one another via dependency upon isotopically elevated seabird derived nutrients.
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as would be expected as a result of dilution in these aquatic systems,
but is still discernable along native forest coastlines all the way out to
zooplankton.

Discussion
Ecological interaction chains in the native forests of Palmyra connect
processes in these forests to the ecology of manta rays through a
diverse series of trophic, non-trophic (behavioral), and physical
mechanisms. Native trees provide needed nesting/roosting habitat
for seabirds and thus help to maintain high local abundances of sea-
birds. These seabirds vector large quantities of marine-derived mate-
rials into the nutrient impoverished atoll terrestrial communities
defining biogeochemical patterns of both plants and soils in native
forest areas. Many of the nutrients concentrated in these native forests
are returned to the adjacent oligotrophic ocean waters via rain and
tidal vectoring. Sampling of the plankton communities directly along
these native forest coastlines revealed that phytoplankton are more
productive, zooplankton are more abundant, and key zooplankton
taxa achieve larger sizes. The most parsimonious explanation for these
observed patterns in the plankton is that they are responding to the
forest-facilitated, seabird-vectored nutrient additions. The last key
observation that we made in these native forest associated habitats
was that manta rays, which feed exclusively on plankton, were more
abundant and active along these plankton rich native forest coasts.
While manta rays are wide ranging animals, this attraction to and
persistence along these native forest coasts represents an important
and unexpected link between their foraging ecology and forest
dynamics. The detectable presence of seabird-derived d15N materials
in terrestrial, intertidal, subtidal, and pelagic organisms situated along
this interaction pathway provides compelling support that this is
indeed a unified long chain of dependant interactions. Sampling of
other potential N sources in this system has revealed no evidence of

alternative allochthonous or autochthonous origin materials which
could have otherwise created these d15N patterns14.

This series of connections defines one of the longest ecological
interaction chains yet observed in nature20–23. Other work has
demonstrated that the majority of species involved in ecological
interactions are only two links apart24. The interaction chain linking
trees to manta rays in Palmyra’s native forests is at least five linkages
long. The circuitous architecture of this particular interaction chain
is as noteworthy as its length. This interaction presents an interesting
route through which oceans affect change on land, and changes on
land can feed back to influence ecological processes in the oceans
(Figure 1). Reports of unidirectional transboundary ecological con-
nections have garnered much attention25,26 – but this example of a
complex bi-directional interaction adds to our understanding of the
degree to which ecosystems can be interconnected. This interaction
includes an interesting mix of both top-down (i.e. loss of birds affects
plant and soil ecology) and bottom-up ecological effects (i.e.
increases in bird-derived nutrients appears to increase plankton
abundance). Instances of complex top-down and bottom-up inter-
actions may be quite common in nature, but good empirical exam-
ples of these dynamics are as yet still emerging27.

We posit that this long interaction chain present in and near the
native forests of Palmyra is maintained by the relative lack of human
disturbance in the better protected parts of this unusually remote site.
Data collected from our altered palm sites support this conclusion by
demonstrating that forest alteration severely degrades the efficacy of
this series of interactions (Figure 1). The corruption of these inter-
actions very likely has a major negative affect upon the strength of the
cross-taxonomic and cross-system connections that they supported.
Observations from other systems suggest that many complex eco-
logical interaction chains and associated sources of connectivity
may be similarly vulnerable to anthropogenic perturbation. The

Table 1 | Comparisons of processes in less disturbed native forests to those in more altered palm forests. Paired comparisons (pooled and
analyzed by date) were made for all responses that were sampled repeatedly over time *. Na represents the total number of measurements
conducted. Nb, (unpaired comparisons only) represents the number of replicates included in all statistical analyses after measurements were
pooled at the level of transect for analysis. Nc (paired comparisons only) represents the number of temporal comparisons included in
analyses where repeated sampling was conducted of over time. Data collection was distributed equally between native and palm forests

Native forests Palm forests

Mean (6 SE) Mean (6 SE) t or W{ (df) P Na Nb Nc

% cover native trees 83.6 (6 2.0) 20.5 (6 9.6) 10.6 (8) ,0.0001 10 10 -
Bird biomass (g m21 coastline) 515.7 (6 60.2) 107.1 (6 22.8) 9.5 (8) ,0.0001 46 10 -
Soil nitrogen (NO3

2 and NH4
1; mg/g) 201.5 (6 63.0) 39.7 (6 10.5) 3.6 (23) ,0.001 25 25 -

% foliar nitrogen 3.7 (6 0.2) 2.5 (6 0.4) 3.0 (12) 0.01 14 14 -
Runoff water nitrogen (NO3

2; ppm) * 0.18 (6 0.1) 0.01 (6 0.001) 4.1 (7) ,0.01 51 - 8
% change in Chl a * 372.5 (6 96.3) 291.9 (6 102.1) 5.0 (4) ,0.01 47 - 5
Zooplankton biomass (g m23) * 0.13 (6 0.04) 0.04 (6 0.01) 4.0 (7) ,0.01 77 - 8
Copepod length (mm) * 1.03 (6 0.03) 0.97 (6 0.03) 2.2 (8) 0.06 4,970 9
No. individual mantas (survey min21) *{ 0.07 (6 0.02) 0 (6 0) 105 ,0.01 196 - 21

Table 2 | Comparisons of the d15N of materials associated with native and palm forests. Differences in zooplankton d15N were evaluated
using paired comparisons (pooled by date; indicated with *) owing to their rapid turnover. All other parameters were compared using
unpaired tests. Na represents the total number of measurements conducted. Nb (zooplankton only) denotes the number of temporal
comparisons conducted. Sampling was evenly split between native and palm forest sites

Native forests
Mean (6 SE)

Palm forests
Mean (6 SE) t, (df) P Na; Nb

Soils 16.6 (6 0.9) 10.4 (6 1.1) 4.4 (16) ,0.001 18
Tree leaves (T. argentea) 15.4 (6 1.3) 8.3 (6 2.3) 2.6 (12) 0.01 14
Intertidal clams (Macoma dispar) 11.0 (6 0.9) 5.9 (6 0.6) 4.6 (11) 0.01 13
Subtidal sponges (Spirastrella sp.) 11.0 (6 0.1) 10.4 (6 0.2) 2.4 (31) 0.02 46
Zooplankton* 11.3 (6 0.2) 10.9 (6 0.2) 3.0 (5) 0.03 46; 6
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introduction of non-native predators to Aleutian Islands caused the
disintegration of ecologically important sea to land nutrient connec-
tions20. Intense increases in nutrient inputs associated with human
sewage and agriculture contributed to the collapse of the biologically,
structurally, and interactively complex coral reef communities in
Kaneohe Bay, Hawaii28. Overfishing of salmon in the Pacific
Northwest USA compromised the transfer of nutrients from marine
to freshwater ecosystems affecting terrestrial plant and animal com-
munities in a variety of ways26,29.

While numerous other such examples exist, anthropogenic dis-
turbances should not universally be expected to cause contractions in
ecological interaction chain length or reductions in system connec-
tivity. The character of the disturbance in question as well as the
properties of the recipient system will both determine the final effects
that human change has on networks of ecological interactions.
However, because many sources of anthropogenic change have the
effect of rapidly altering the overall and relative abundance of par-
ticular species, directly removing species, introducing species foreign
to established ecological interaction networks, eliminating habitat,
and changing the physical and chemical properties of local environ-
ments – we argue that human-induced constrictions or eliminations
of ecological interaction series are likely to have occurred and be
occurring much more commonly than is presently appreciated.

Recognizing the effects on anthropogenic activities on ecological
interaction chains is more difficult than documenting more tangible
disturbance effects (e.g. species extinctions or introductions) because
interactions between species and ecosystems do not fossilize and
leave little material evidence behind to chronicle their disappearance.
However, observations made in more-intact ecosystems, such as
those reported herein, help bring these losses in interaction chain
length to light and highlight the implications that this type of envir-
onmental change may be having upon ecosystem connectedness.
Sustained investigation of our remaining uniquely pristine environ-
ments will help to extend our understanding of the ubiquity and
importance of this intangible, but potentially important type of shift-
ing baseline.

Methods
Study Site. Data collection took place at Palmyra Atoll (5u 529 N, 162u 049 W;
principally in the eastern lagoon basin) from 2009–2010. Palmyra is located in the
Northern Line Islands in the central Pacific. The 12 km long atoll is composed of a
series of small islets that are all composed of coral-derived materials. Islets encircle an
interior saltwater lagoon system. The lagoons of Palmyra have been characterized as
having a well-mixed surface layer that is dynamically influenced by the wind and tides
which overlays a relatively static and stabile deep water pool30. Palmyra is presently
protected as a National Wildlife Refuge by the United States Fish and Wildlife Service.

Experimental procedures and field measurements. We established ten spatially
independent, 240 m transects in lagoons of the atoll running parallel to islet coastlines
(Supplementary Fig. S4 online). Transects were spaced approximately 500 m apart
from one another. These transects defined the areas where all sampling for this project
was conducted. The forest type associated with each transect was determined from
satellite images by analyzing tree canopy cover (ArcGISv.10; Google Earth Pro) in a
20 m swath of coastline enclosed within a 200 m radius area extending from each
transect midpoint. These dimensions were selected so as include sections of forest that
might be reasonably assumed to influence lagoon transects (e.g. via runoff). The
diagnostic morphology of C. nucifera canopies enables accurate classifications to be
made of forest type from satellite imagery (Supplementary Fig. S2 online). Transects
were defined as either ‘‘native forest’’ when native tree cover (i.e. P. grandis, T.
argentea, and Scaevola sericea; n 5 5) was .75%; or ‘‘palm forest’’ when native tree
cover was ,75% (i.e. predominantly C. nucifera; n 5 5); these classifications
constructed following natural breaking points observed in frequency distribution
histograms of C. nucifera abundance31. While individual native trees were present in
transects classified as palm forest, their abundance was (in aggregate) approximately
four times lower than in native forest transects (Fig. 1A). The precise distribution of
forest composition in all transects is depicted in Supplementary Table S1 online. All
transects are located on sites that share a common geologic origin, are composed of
largely the same base substrate type, are exposed to the same climatic forces, and are
the same elevation14. Measurements of the surface seawater temperature and salinity
reveal that differences in both factors between native and palm forests were
significant, but extremely small; and that variation was greater within sites than
between sites (Supplementary Methods S1 online). There is no known pattern that
explains the proliferation of palms at certain sites and it is presumed that their current

distribution is the result of anthropogenic forest alternation, dispersal subsequent to
these disturbances, and endogenous ecological processes that control tree
establishment17.

Biomass of birds m21 was calculated by counting seabirds on foot and boat along
10 m swaths of transect associated coastline and multiplying bird abundance by
species specific mass conversion factors32. We measured biologically relevant nitro-
gen compounds in soils (plant available NO3

2 and NH4
1, mg g21), plant leaves (%N),

and runoff water (NO3
2, ppm) in native and palm forest coastal zones associated with

transects. Replicate surface soil (0–15 cm depth) and leaf samples (mature, nonse-
nescent leaves in full sun from T. argentea) were collected on all transects. Sieved soils
were KCl extracted and analyzed using a discrete analyzer (Westco SmartChem
2000). Leaf samples (washed, dried, and milled) were analyzed on an elemental
analyzer (Carlo-Erba). Runoff water was collected in acid washed containers at high
water line during high tide or after a rain event on transects. All water samples were
collected within 30 min of one another. Water was frozen and analyzed on the
discrete analyzer (WestCo). Zooplankton communities and manta abundance were
sampled in surface waters along all lagoon transects. Zooplankton was collected in
timed tows using 350mm mesh nets. We estimated zooplankton biomass (total dry
weight; standardized by flow volume) and mean size of the most abundant
zooplankton taxa (copepods, species pooled; subsampled at 5% dilution) in each tow.
Observers in anchored boats measured manta abundance along all transects using
surface point counts (10 m radius; 10 min; total 196 surveys conducted).

We tagged 3 mantas encountered during haphazard lagoon searches with acoustic
transmitters (Vemco) and followed each continuously for 48 h. Two of these indi-
viduals were tagged outside of established tracking areas along palm forest coastlines
and one individual was tagged in a native forest transect. Positional data is obtained
using this technology by following animals in a small vessel using a hydrophone and
recording their location with GPS every 5 minutes33. This permits high precision
determinations of animal location (5–15 m error). These tracking data were used to
establish each manta’s core use area (defined by convention as their 50% kernel
utilization distribution, KUD)34. We then examined overlap between 50% KUD areas
and 100 m wide buffers drawn along the contours of all lagoon transects. Animal
movement outside of an area of this size was assumed to be unrelated to coastal
features.

Relative changes in Chl a concentrations (used as a proxy for primary productivity)
were monitored on a subset of transects by entraining known quantities of phyto-
plankton in transparent acrylic growth chambers fitted with 1mm, 142 mm diameter
polycarbonate membranes35. Percent changes in Chl a were fluorometrically deter-
mined36 relative to starting concentrations after 3 days. Replicate temporal mea-
surements were made during the duration of the study of runoff water, zooplankton
biomass/size, manta visual surveys, and Chl a concentrations (Table 1).

Isotopic analysis. To examine whether mechanistic ties existed between the
components in this proposed interaction chain, we measured the d15N isotope values
of soils, tree leaves (T. argentea), intertidal clams (Macoma dispar), subtidal sponges
(Spirastrella sp.), and zooplankton in both native and palm forests transects/coastal
areas (Thermo Finnigan Delta-plus IRMS/Carlo Erba elemental analyzer).
Comparisons of manta ray d15N could not be conducted given their rarity of mantas
along palm forest coastal transects (Fig. 1G). Sample sizes for each taxa measured
were contingent on sampling regime and subject availability (Table 2). Isotopic
sampling was distributed evenly across our ten forest transects.

Data analysis. Statistical comparisons between data collected in both forest types
were made in Program R37. All samples that were measured repeatedly over time were
compared using paired (by date) t-tests as these measures were subject to high
temporal variability. Other response variables were compared using Welch t-tests or,
when assumptions for parametric tests were not met, Wilcoxon nonparametric tests
(manta point count surveys only).
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