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Abstract.—Fishery managers often must make decisions regardless of data availability or completeness of 
scientific understanding. Existing and new legal mandates, such as the requirement to establish Annual Catch 
Limits for each United States fishery by 2011, as well as the ongoing need to improve understanding of fish 
stock dynamics, are driving efforts to develop new, more efficient ways to assess fish stocks when resources 
are insufficient for full stock assessments. Moreover, there is an increasing recognition of the need to assess 
stocks at smaller spatial scales. In December 2008, fishery scientists, fishermen, and managers convened at a 
workshop in Berkeley, California (USA), to discuss such methods. One goal of the workshop was to identify 
methods for estimating potential reference points for managing data-poor fisheries, such as science-based 
overfishing thresholds, allowable biological catch levels, and vulnerability indices. Here we review methods 
presented at the workshop, as well as some promising methods gleaned from the literature, for establishing 
reference points for data-poor situations. We present a new framework to help managers and stakeholders 
consider and choose appropriate analytical methods and alternative management approaches, based on avail-
able data (type, quantity, and quality) and feasibility constraints (scale, value, and implementation costs). We 
highlight limitations and considerations for each method and illustrate the use of our framework by present-
ing case-study examples. Too often, lack of data and/or proper data analysis results in lack of management. 
This status quo, however, poses risks to the economic and biological sustainability of fisheries. Application 
of data-poor methods, while subject to many caveats, can reduce these risks by providing scientific guidance 
for management.

Complex models that require large amounts of data 
are commonly used to inform fishery management 
decisions, such as setting allowable harvest levels or 
determining overfishing thresholds for species or spe-
cies groups. Often, however, fishery managers must 
make such decisions without complex models, due to a 
lack of data quantity, data quality, understanding, tech-
nical capacity, or human capital. In California alone, 
approximately 70% of fished stocks (103 of 149 spe-
cies) lack stock assessments and thus may be defined 
as data-poor fisheries (Botsford and Kilduff 2008).

Many, if not most fisheries in the United States 
and around the world, are data-poor due to lack of 
research funding and lack of support for monitoring 
and analysis.  Many of these fisheries are important 
for economic and food security and/or because they 
affect vulnerable ecosystems or vulnerable stocks. It 
is important to assess and manage them — even when 
few data are available. 

* Corresponding author: khoney@stanford.edu

Fortunately, there are methods for assessing stock 
status and identifying management reference points for 
fisheries that are data-poor. Recently developed meth-
ods can be used to prioritize fisheries for research and 
management, as well as estimate overfishing thresh-
olds, biomass levels, stock status, or catch or effort 
limits with limited information. Existing and new 
legal mandates, such as the requirement to establish 
Annual Catch Limits by 2011 for all targeted stocks in 
the United States, drive efforts to develop new, more 
efficient ways to assess and manage fish stocks when 
full stock assessments are infeasible. There is ongoing 
need to improve understanding of fish stock dynamics,  
given existing resources and information constraints.

When data are insufficient for a conventional stock-
assessment, alternative methods can inform manage-
ment tasks with science-based understanding. Further 
development of alternative assessment methods that 
can extract knowledge from relatively scarce data is 
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one necessary step toward addressing the overall chal-
lenge of managing fisheries. Fishery managers must 
also weigh competing objectives, including the costs 
of management relative to the value of fisheries, in 
order to determine appropriate levels of investments in 
research and analysis.  

When financial resources are scarce (as they often 
are for the management of data-poor stocks), every 
hour and dollar invested in stock management demands 
maximum return on investment. Therefore, managers  
of data-poor fisheries often face additional pressure to 
perform their responsibilities in a cost-efficient manner. 
They must extract as much scientific understanding as 
possible, given scarce data and resources to character-
ize population size, structure, and regional dynamics. 
Then, managers must apply values and control rules 
to manage fishing effort and catch. To achieve success 
within these data and resource constraints, the appro-
priate use of data-poor alternatives requires the deci-
sion maker to know about available options, as well 
as understanding which (if any) alternatives are most 
appropriate for a given fishery and management con-
text. 

In this paper, we present a framework to help man-
agers and stakeholders identify alternative methods for 
assessing stock status and evaluate options for man-
aging data-poor fisheries. We review a variety of data 
analysis methods and reference points for use in data-
poor fisheries, while providing context and case-study 
examples of innovative and alternative approaches. We 
organize this range of data-poor methods in an intui-
tive way, within one framework, in order to make all 
tools and existing alternatives more accessible to fish-
ery managers and stakeholders. Then, we discuss the 
specific needs, caveats, and limitations of each data-
poor method and associated management approaches.

Many fisheries remain unassessed and unmanaged, 
not because they are unimportant economically and 
ecologically, but because insufficient resources and 
data exist to drive a complex stock assessment. Often, 
there is a lack of qualified stock assessment scien-
tists for the work (Berkson et al. 2009).  Therefore, 
our overall intent is to make data-poor methods more 
accessible and provide a framework that managers and 
stakeholders can use to evaluate the data-richness of 
their fisheries, the range of analytical methods avail-
able for assessing stock status, and some of the pros 
and cons of each method. We do not, however, provide 
exhaustive reviews of data-poor methods, so interested 
parties will need to conduct their own careful evalu-
ation of the relevant primary literature on a case-by-
case basis. We hope to stimulate increased develop-
ment and use of data-poor methods, and ultimately the 
assessment and management of more fisheries in order 
to reduce risks to sustainability.

Approach and Key Terms
We reviewed and summarized work presented at the 

“Managing Data-Poor Fisheries: Case Studies, Mod-
els, & Solutions” workshop in Berkeley, California, 
USA (December 1–4, 2008, co-sponsored by the Cali-
fornia Department of Fish and Game and California 
Sea Grant College Program). Then, we augmented 
workshop materials with peer-reviewed literature 
and organized diverse alternative methods into a new 
framework in order to make the variety of data-poor 
methods more accessible to those managing data-poor 
fisheries. 

In reference to data richness, this paper adopts the 
definition of “data-poor” fisheries shown in Text Box 
1, as presented by Bentley and Stokes (2009, this vol-
ume). This definition emphasizes that data-poor fish-
eries can suffer from lack of data as well as from a 
lack of reliable data with adequate and appropriate 
analyses. Thus, data-poor fisheries can include fisher-
ies with copious quantities of data, albeit unreliable or 
under-analyzed due to lack of resources. Transitioning 
from “data-poor” situations towards “data-rich” may 
result from any or all of the following: increasing the 
amount of data collected, improving data quality and 
analysis, or increasing technical capacity.

The term “data poor” is sometimes confounded 
with “small-scale” fisheries. While it is true that many 
small-scale fisheries are data poor, these terms are not 
synonymous. As Text Box 1 emphasizes, we interpret 
“small-scale” to refer exclusively to the size of a fish-
ery (e.g., total landings or commercial value). Fishery 
size is independent of the “data-richness” of a fishery, 
which refers to the quantity and quality of available 
data and information sources. Many small-scale fish-
eries are data-poor because they generate relatively 
low revenues and hence receive low priority for data 
collection and assessment.  Moreover, the fine-scale 
complexity of fish populations may render large-scale 
data collection systems inadequate for smaller scaled 
fisheries. Therefore, even though large amounts of data 
are collected, the fishery remains data-poor.

Fisheries vary tremendously in the kinds, amounts, 
and quality of data available for management. Con-
sequently, fishery managers often classify data-poor 
situations into tiers, based on the severity of data limi-
tations and uncertainty level (Smith et al. 2009, this 
volume). Tiers allow for the adjustment of harvest 
rules in response to data limitations in order to buffer 
against scientific uncertainty. Different tiers have dif-
ferent adjustment factors that coincide with different 
levels of data richness, ranging from data poor (e.g., 
only historical catch) to data rich (e.g., complex stage-
structured models to estimate science-based reference 
points like Bmsy or Fmsy for maximum sustainable yield 
[MSY]). Government policy and management guide-
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lines determine the application of these adjustment 
factors to harvest control rules based on public prefer-
ences and risk tolerances (Goodman et al. 2002; Smith 
et al. 2007; Smith et al. 2009, this volume). 

Within the United States, technical guidelines 
are used to recommend adjustments to management 
goals like MSY, depending on data quality and quan-
tity (Restrepo et al. 1998). To date, the North Pacific 
Fishery Management Council (NPFMC) has rigor-
ously implemented and applied a tiered-management 
approach. The NPFMC approach evaluates data rich-
ness, adjusts harvest control rules commensurate 
with uncertainty, and maintains a buffer between the 
allowable biological catch (ABC) and the overfishing 
limit (OFL, or the upper limit of sustainable harvest 
(Thompson 1997).  For example, in the Alaska crab 
fishery, the NPFMC organizes precautionary manage-
ment into a five-tier system (NOAA Fisheries 2008).  
Other examples exist in Europe, Asia, Africa and 
Australia (O’Boyle 2003; Gonzalez-Laxe 2005; ICES 
2007; Potts et al. 2008; Smith et al. 2009, this volume). 
In this volume, Smith et al. (2009) describe the four-
tier approach used to manage Australia’s Southern and 
Eastern Scalefish and Shark Fisheries (SESSF). 

Within a tiered management context, we define a 
“data-poor method” as a method for informing a con-
trol rule or management action (qualitative or quanti-
tative) that does not involve a full stock assessment. 
When a stock assessment exists for a fishery, then we 
consider this fishery to be data rich or data moderate for 
management. For our purposes in this paper, we define 
a “stock assessment” as a multistage process that uses 
(often sophisticated Bayesian) modeling approaches.  
Various types of data are combined to predict rates of 
change in stock biomass and productivity based on 
information about yield from fisheries and the rates at 

which fish enter the harvestable population (recruit-
ment), grow in size, and exit the population (natural 
and fishing mortality, NRC 1998). Text Box 1 summa-
rizes the multiple steps in the stock assessment process. 
Additionally, many books exist on stock assessment 
techniques that synthesize broadly used techniques 
(Hilborn and Walters 1992; National Research Coun-
cil 1998; Walters and Martell 2004; Hoggarth et al. 
2006).  We intend for this work to be the beginning 
of a synthesis of “data-poor methods” and alternatives 
to multi-staged stock assessment, regardless the exact 
number of tiers or management context. 

A Framework for Existing Data-poor Methods
Our proposed framework organizes data-poor 

methods and matches them to the available data.  We 
build on prior work, which summarizes and catego-
rizes general characteristics of a stock assessment and 
approaches for various stock-assessment techniques 
(Hilborn and Walters 1992; Punt and Hilborn 2001; 
Hilborn 2003; Walters and Martell 2004; Hoggarth 
et al. 2006). Irrespective of data-richness, fisheries 
management involves two basic elements (Punt and 
Hilborn 2001):

(a) Fisheries science — involving data collection 
  and analysis to develop an understanding of fish  
     population dynamics, possible states of nature, envi- 
 ronmental change, and scientific uncertainty  
    analysis.

(b) Fisheries policy and management decision- 
   analysis — involving the evaluation of alternative   
    management strategies in order to gain insight into 
     expected outcomes and trade-offs, assuming defined 
    objectives, rules, and normative values of society.
When these two elements are coupled, better science 
leads to better management actions and outcomes. 

TEXT BOX 1.—Key terms 

alternative method: (see data-poor method). 
conventional method: A management approach, often standard in industrialized commercial fisheries today that synthesizes available data and evaluates 

scientific knowledge with a stock assessment (or other single-species population model) to understand individual stock dynamics and estimate science-
based reference points for a fishery. In response to science-based expectations, trends, and uncertainty, managers adjust fishing pressure for single-
stock management (e.g., with quotas, effort reduction, partial seasonal closures, gear restrictions, and/or other harvest rules and regulations).  

data poor: A condition to describe a fishery that lacks sufficient information to conduct a conventional stock assessment; this includes fisheries with few 
available data, as well as fisheries with copious amounts of data but limited understanding of stock status due to poor data quality or lack of data 
analysis. 

data-poor method (also called “alternative method”): A method for fisheries data analysis and/or for informing a control rule or management action, which 
can be a qualitative or quantitative method, but is not a full, stage-structured stock assessment that requires data-rich or data-moderate conditions. 

data richness: A relative index, combining data type, quantity, and quality, in order to qualitatively measure the amount of information that exists for a 
stock or fishery. 

meta-analysis: A suite of quantitative techniques to statistically combine information across related, but independent, studies that can be field, 
experimental, or other information sources. 

small scale: A small fishery (either in landings or value) that typically employs traditional gear and targets nearshore stocks. Most typically, small-scale 
fisheries harvest inshore stocks, often through traditional, artisanal, and/or subsistence methods without commercial sale or large-scale resale of 
harvest (Berkes et al. 2001). 

stock assessment: A “stock assessment” is a multistage process that uses (often sophisticated Bayesian) modeling approaches to combine various types of 
data and predict rates of change in stock biomass and productivity based on information about yield from fisheries, and the rates at which fish enter the 
harvestable population (recruitment), growth in size, and exit the population (natural and fishing mortality). As defined by (NRC 1998) the multiple 
steps for a stock assessment are: (1) definition of the geographic and biological extent of the stock; (2) choice of data collection procedures and 
collection of data; (3) choice of an assessment model and its parameters and conduct of assessments; (4) specification of performance indicators and 
evaluation of alternative actions; and (5) presentation of results. 
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As Table 1 presents in an easy-to-reference format, 
we suggest a four-step framework for evaluating and 
managing data-poor fisheries: 
Step 1 — Gauge Data-richness.
Step 2 — Data-richness Informs Analytical Options.
Step 3 — Apply Fishery-evaluation Methods:
(ordered from high to low information requirements)

  (i) Sequential trend analysis (index indicators).
 (ii) Vulnerability analysis.
(iii) Extrapolation.

Step 4 — Apply Decision-making Methods:
(ordered from high to low expected practical use for 
data-poor management)

 (i) Decision trees.
(ii) Management Strategy Evaluation.

Given clear objectives and an understanding of 
existing data and methods, fishery managers can garner 
the most possible scientific understanding from avail-
able data. This becomes especially important when 
resources are scarce for science and management. 

Step 1 — Gauge Data-richness
Sources of available information determine the 

universe of options available to a fishery manager. A 
number of other constraints, such as those itemized in 

Table 2, require consideration. These constraints set 
the management context, within which our proposed 
framework operates.

As a general rule of thumb, managers facing data-
poor decisions should first identify and qualitatively 
evaluate all information sources available to them. 
This evaluation of data should be conducted prior to 
choosing a method (or methods) for analyzing infor-
mation (Hilborn and Mangel 1997). Data can then be 
organized in a way that facilitates the choice of appro-
priate analytical methods. 

We recommend the use of a qualitative scorecard to 
assess data-richness by itemizing and organizing all 
available information sources into one intuitive and 
consistent layout for the manager (see sample score-
card, Figure 1). This approach is somewhat analogous 
to the quantitative scorecards used by Hilborn and 
Walters (1992) to assess management performance. 

The example scorecard in Figure 1 presents only a 
part of the spectrum of potential information sources 
that may exist for a fishery classified as data poor. 
Fishery managers should develop their own scorecards 
to meet their needs.  Data quantity and quality should 
both be incorporated into the scorecard since they both 
impact the usefulness of data-poor methods.  Quantity 
can be characterized through simple check marks, with 

Table 1.—Categories of data-poor methods

Table 2.—Data-poor management considerations

 

A manager must consider feasibility constraints and evaluative criteria to appropriately identify and implement assessment methods, 
especially when managing data-poor fisheries. 
Feasibility constraints 
 Scale of the fishery Index of fishery size, based on geographic range and/or economic importance. 

 Stakeholder incentives 
Index to characterize the degree of incentives alignment (between industry profits and 

biological conservation), as well as stakeholder interest and co-management 
capacity. 

 Value-cost of new method Index of cost feasibility (time, money, scalable/replicable), based on the fishery’s 
present condition, existing resources/infrastructure, and specific context. 

Evaluative criteria 

 Nature of data available Ranges from zero to perfect information. 

TABLE 1.—Categories of data-poor methods 
 
We broadly group data-poor methods (i.e., alternative methods) into two general sets or categories to help make the full range of 
evaluation options visible and of use to managers who must manage stocks without the benefit of fishery stock assessments: 

Fishery-Evaluation Methods 
• Less data and resource intensive. 
• Often requires only one or two data types. 
• Data-driven techniques to identify changes, trends, or priorities. 

Types of fishery-evaluation methods: 
  (i) Sequential trend analysis (index indicators). 
 (ii) Vulnerability analysis. 
(iii) Extrapolation. 

Decision-Making Methods 
• More data and resource intensive. 
• Often requires several data types, plus assumptions about how to balance these different data inputs. 
• Creates a framework for decision making. 

Types of decision-making methods:  
 (i) Decision trees. 
(ii) Management strategy evaluation (MSE). 
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increasing check marks representing increasing rich-
ness.  Zero checks indicate low richness, whereas 20 
or more might indicate high richness.  Data quality can 
be assessed with a coarsely-graduated rating system 
(e.g., low-med-high index of relative data quality or 
different marks, such as solid- or X-marks, to indicate 
different levels of data sufficiency).  By evaluating the 
quality of data available, a manager can further gauge 
scientific confidence in trends, information, and deci-
sion based on the data driving the process.  Regardless 
of specific layout, the aim of the scorecard is to pro-
vide an easy way for managers to identify, organize, 
and apply existing knowledge and available informa-
tion for data-poor stocks. 

If spatially explicit data exist, Geographical Infor-
mation Systems (GIS) and other spatial tools can add 
another dimension of data-richness by addressing 
social and spatial complexity. GIS layering can enrich 
understanding by incorporating new or untapped fish-
eries information, such as regional knowledge of catch 
patterns, fleet behavior, habitat distribution, and other 
spatial variables like gear, seasonal, or social conflicts. 
GIS can also be used to explore spatially explicit rela-
tionships between layers and data sets that might affect 
the implementation of a management decision.  Con-
sideration of these elements may be included in a data 
richness scorecard.

Step 2 — Data-richness Informs  
Analytical Options

After managers identify all their data and informa-
tion sources for a given fishery, we recommend iden-
tifying all evaluation methods deemed feasible given 
the specific needs, strengths, and limitations of each 
data-poor method. Managers must recognize how dif-
ferent types and degrees of data-richness lend them-
selves to different evaluative frameworks and methods 
for data-poor fisheries. 

Given the range of data-analysis methods potentially 
available, we grouped data-poor methods into five gen-
eral categories based on shared analytical techniques 
and data requirements. As shown in Table 1, the five 
categories of data-poor methods bin into two distinct 
larger groups: Fishery-Evaluation Methods and Deci-
sion-Making Methods. These two groups of methods 
collectively span a wide range of data-richness levels, 
while paralleling the two-stage management process 
originally proposed by Punt and Hilborn (2001). 

In Figure 1 (Step 2), we connect available data and 
data-richness levels from the scorecard to correspond-
ing information types used as inputs for analysis of 
data-poor stocks. The scientific understanding gener-
ated from Fishery-Evaluation Methods (Step 3) then 
feeds into Decision-making Methods to guide manage-
ment choice and action (Step 4). 

This Step 2 links each of the various information 
types with approaches in the Fishery-Evaluation Meth-
ods currently available to managers.  Using an onion 
analogy, Figure 2 illustrates how available informa-
tion maps to recommended methods of analysis for 
data-poor fisheries. This onion has various layers, with 
each layer corresponding to a different type of infor-
mation from the data-richness scorecard (see Step 1, 
Figure 1). Layers of the onion can be peeled back and 
removed, corresponding to the absence of individual 
types of information for the fishery of interest. The 
onion varies in quality and size for each individual 
fishery, commensurate with combinations of differ-
ent data types, quantities, and qualities. It is rooted in 
the social and political context of the fishery, which 
provides the norms (e.g., social and economic goals, 
regulatory mandates, and risk tolerances) which guide 
the analyses, interpretation, and execution of fishery 
management. In this analogy, a full stock assessment 
requires a whole, large onion with all of the many dif-
ferent layers of fisheries time-series data and life-his-
tory information. Conversely, a data-poor fishery can 
be like a small pearl onion with fewer layers of data 
for consideration. 

Aside from the onion in Figure 2, we list common 
pairings of data layers to guide managers towards the 
most appropriate data-poor methods, based on data 
types and data richness. We show how different layers 
and permutations lend themselves to analysis with dif-
ferent Fishery-Evaluation Methods, further discussed 
in Step 3. Methods that use several time-series layers 
(the outer layers) of the data onion typically provide 
more quantitative scientific knowledge, compared to 
methods that use only life-history or anecdotal infor-
mation (the inner layers). For managers, more layers 
mean greater scientific knowledge, which typically 
translates into increasing scientific certainty and 
decreasing precautionary needs. 

While we illustrate data types and methods as sepa-
rate layers, in fact there is considerable overlap. Data-
poor methods are not always distinct, rarely mutually 
exclusive, and often complementary or nested within 
other methods. Such overlap and complexity con-
founds strict ranking based on data-richness criteria. 
Hence, our proposed framework should be considered 
to be a generalized organization scheme only, for con-
venience and simplicity. 

This general framework should serve as a guiding 
reference to facilitate case-by-case evaluation of data-
poor fisheries. We ask readers to interpret our proposed 
framework, method categories, and nested layers of 
information (Figures 1 and 2) as broad generalizations 
with malleability. Connections and recommendations 
between data-richness and data-poor methods are not 
intended to be immutable, prescriptive linkages. They 
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are intended to guide managers towards methods that 
will help them overcome their data-poor challenges.

Step 3 — Apply Fishery-evaluation Methods
After choosing the most appropriate data-poor 

assessment method(s) given data types and richness, 
Fishery-Evaluation Methods are applied to extract 
as much scientific understanding as possible, given 
available information and resources. In this Step 3, we 
review Fishery-Evaluation Methods, which we divided 
into three general categories:

  (i) Sequential trend analysis (index indicators).
 (ii) Vulnerability analysis.
(iii) Extrapolation.

These are ordered by decreasing data-richness require-
ments (high to low), hence increasing need for man-
agement precaution. The application of Step 3 methods 
is useful for prioritizing fisheries for management and 
research by providing a “first look” at stock status or 
vulnerability to fishing mortality. 

Meta-analysis, a statistical technique used to integrate 
and summarize results from multiple and independent 
studies (see Text Box 1), has potential to enhance the 
above Fishery-Evaluation Methods. Meta-analysis syn-
thesizes available data sets to generate new and inte-
grated results. When applied to fisheries, it is used most 
often to estimate parameters and/or prior probability 
distributions of parameters in a models (NRC 1998). 
The technique is common in stock assessments (Myers 
et al. 1995; Liermann and Hilborn 1997; Dorn 2002; 
Helser and Lai 2004; Helser et al. 2007). 

The feasibility of meta-analysis for data-poor stocks 
may be less obvious because of the need for multiple, 
independent sources of information. Nonetheless, we 
see an important possibility for meta-analysis to esti-
mate life-history parameters or coordinate the incorpo-
ration of data from on-going monitoring programs. For 
example, in the future, we expect that meta-analysis 
of nearshore studies (e.g., marine reserve monitoring) 
can help inform and guide state and federal manage-
ment by developing fine-scale understanding from 
small-scale surveys. Good sources on the technique of 
meta-analysis itself, in addition to the ones above, are 
Gurevitch and Hedges (1999); Hedges et al. (1999); 
Osenberg et al. (1999), and Englund et al. (1999).

Below, we discuss each of the three Fishery-Eval-
uation Methods within our given framework with a  
summary paragraph of the method and example appli-
cations that demonstrate the use of the method.  We 
then review and characterize minimum data needs, 
optimal data needs, and important cautions and cave-
ats for the method.  If available, we include references 
to original publications and peer-reviewed literature 

describing a method’s implementation so interested 
parties can review the method in more depth.  

Fishery-Evaluation Methods — Type 1 
Sequential Trend Analysis  (Index Indicators) 

Sequential analysis comprises a broad suite of tech-
niques used to analyze time series in order to detect 
a trend in a variable (or in various indices) and infer 
changes in the stock or population.  By its nature, 
sequential analyses can encompass a wide range of 
data types and requirements.  Some examples com-
monly used in data-poor fisheries are time series of 
catch statistics, survey/weight/length-based reference 
points, trophic indices, or spawning potential ratio 
(SPR) analogues.  

A technique known as cumulative sum (CUSUM) is 
sometimes used to detect trends and discern significant 
changes (i.e., true positive or negative changes) from 
simple variations away from the mean (Manly and 
MacKenzie 2000; Manly 2001; Scandol 2003; Kelly 
and Codling 2006).  Scandol (2003) demonstrates how 
the CUSUM method can determine if catch is increas-
ing or decreasing from landed catch data only. 

The main advantage of such relatively simple meth-
ods is their use of available or easy-to-collect data (e.g., 
lengths of landed fish as an index for fish stock size).  
The changes measured, however, only reflect relative 
change and not changes in (unknown) absolute values 
of the underlying population. Statistical correlations 
cannot be used to identify the mechanisms driving 
the observed changes.  Therefore, especially for data-
poor stocks, fishery managers must make assumptions 
about what changes in the measured variables mean 
for fish populations.

Sequential Trends Analysis (1a): Environmental  
Proxies

Example technique (see Scorecard 1): biophysi-
cal indicators of fish abundance.—Fish production 
and population abundance can be tightly linked to 
environmental processes. When such coupling exists,  
environmental indicators may be used, with proper 
scaling and lag factors, in order to evaluate the popula-
tion, catch, and/or expected variations and uncertainty 
levels.  Ideal environmental proxies are easy-to-mea-
sure indicators (e.g., salinity, ocean temperature, rain-
fall or fluvial runoff), which consistently and predict-
ably lead to the same population-level response in a 
stock, regardless of other factors. This, however, rarely 
happens in complex marine ecosystems (Beamish and 
Bouillon 1993; Francis and Hare 1994; Polovina et 
al. 1994; Bakun 1996). Consequently, many environ-
mental proxies for fisheries are associated with high 
levels of scientific uncertainty about whether or not an 
expected population-level response will (or will not) 
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Scorecard 1.
	
  

Environmental Proxy — Case-Study Example 
Multivariate El Niño Southern Oscillation (ENSO) Index (MEI) and leopard grouper (Mexico)	
  

	
  
In the Gulf of California, the El Niño Southern Oscillation 
(ENSO) strongly affects the physical environment. Fluctuations in 
this climatic driver can have large effects on the Gulf’s habitats 
and fish populations. Because of the strong influence of ENSO on 
the rocky reef habitat where larval and juvenile leopard grouper 
(Mycteroperca rosacea) live, environmental linkages exist 
between the Multivariate ENSO index (MEI), kelp-bed habitat 
cover, leopard grouper larval recruitment, and leopard grouper 
adult abundance (Aburto-Oropeza et al. 2007).  
	
  
Scientists are now quantifying these relationships and determining 
their predictability, using visual survey data of kelp abundance, 
larval recruitment, and juvenile and adult abundances (Ballantyne 
et al., in review; Aburto-Oropeza et al. 2007). By accounting for 
the MEI index at the time of larval recruitment, model 
performance improves by more accurately predicting the 
abundance of juvenile or adult fish (Ballantyne et al., in review; 
Aburto-Oropeza et al. 2007). Environmental relationships, such as 
the one between fish abundance and the MEI index, can lead to 
general predictions of fishery yield on the basis of juvenile 
abundance, natural mortality, fishing mortality and catchability. 
This MEI example has been confirmed by model testing and 
verification for over a decade, but scientists continue to collect 
data and test models. On-going testing and updating is important 
because environmental relationships that influence fish 
productivity can change over time (e.g., ocean regime shifts).  

Minimum Data Needs:  
• Environmental time series. 
• Abundance index time series (from CPUE or fishery-independent 

surveys, preferably with age-length information to estimate juvenile and 
adult abundances). 

 
Optimal Data Needs:  
• Underlying population model with known life-history data. 
• The longer the time series, the better, especially if data-collection 

protocols remain consistent through time. 
• Tight coupling (i.e., low noise) between environmental time-series data 

and catch/abundance time-series data. 
• Mechanistic understanding of the process(es), which couple 

environmental parameters and fish production. 
 
Cautions and Caveats:  
• Vulnerable to misspecification of variable recruitment typical at low 

population sizes as environmentally driven. 
• Past conditions assumed similar to current and future conditions (i.e., 

unchanged system dynamics). 
• Multi-state systems or changes in system dynamics (e.g., regime shifts) 

can mask or misrepresent trends detected by this method. Said another 
way, the underlying relationship between environmental indices and 
indices can change as a result of regime shifts or oscillation changes in 
systems with multiple states.  

• Relationships should be tested and updated regularly (e.g., annually) as 
new data emerge. 

• Managers still must decide how detected trends affect harvest control 
rules. 	
  

References for environmental proxies: 
(Ballantyne et al., in preparation; Vance et al. 1998; Aburto-Oropeza et al. 2007).	
  

occur, given a detected change in the environment 
(Myers 1998). Another caveat arises from complex 
stock-recruitment relationships, which can obscure 
environmental drivers of population dynamics (Mace 
and Sissenwine 1993). Therefore, environmental prox-
ies can be challenging (if not impossible) to implement 
for management use, especially when it comes to com-
plex stock dynamics (e.g., those with highly variable 
recruitment or at low population sizes). 

This method should not be a long-term replacement 
for direct monitoring of fishing effort and its effects.  
In some cases where abundance and life-history transi-
tions (e.g., ontogenetic migrations) relate to environ-
mental cues (e.g., salinity, temperature, fluvial runoff), 
environmental proxies can provide important informa-
tion for management action. This is the case for some 
shrimp fisheries, where environmental factors influ-
ence season opening, closing, and closed areas (Vance 
et al. 1998).

Some environmental proxies examine food web 
dynamics by evaluating a fishery’s overall Mean 
Trophic Index (MTI), defined as the average trophic 
level of a region’s entire landed catch (Pauly et al. 
1998; Pauly and Palomares 2005).  As with other index 
methods based on statistical correlations, environmen-
tal proxies provide little (if any) mechanistic insight as 
to why or how change occurs at the population-level of 
interest to fishery managers.

Sequential Trends Analysis (1b): Per-recruit Methods

Example technique (see Scorecard 2): fractional 
change in lifetime egg production.—Frequently, 
long-term time series lack catch-at-age data or even 
aggregated catch data. Yet, species-specific estimates 
of demographic properties may be available, such as 
growth, mortality, and maturity.  Coupled with yield- 
and biomass-per-recruit models, these life-history 
traits allow the estimation of optimal fishing mortality 
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Per-Recruit Method — Case-Study Example 
Stocks with “medium” quality data, including many temperate rocky reef fishes  
(e.g., Pacific rockfish, USA) and tropical reef fishes (e.g., Emperor red snapper, Seychelles, Africa) 

 
Many reef fishes fit a description of “medium” data 
richness with quality time-series data, so per-recruit 
methods are viable management options (Grandcourt et al. 
2008). O’Farrell and Botsford (2005, 2006) applied these 
methods to rocky reef fish in nearshore California waters. 
Per-recruit methods can also apply to tropical reef fish and 
other stocks. 
 
Reef fisheries are important resources and protein sources 
for many developing countries, regardless of whether or not 
a commercial industry exists. In many such fisheries, for 
example the Seychelles fishery for Emperor red snapper 
(Lutjanus sebae) in East Africa, scientific support for 
managers is lacking or nonexistent. Often, however, fishery 
managers can access basic life-history information. They 
also have time-series data from reef surveys or local catch. 
Relative measures (no absolute numbers) can be sufficient 
to detect a time-series trend and gauge population stock, 
structure, or change over space and/or time (Grandcourt et 
al. 2008).  

Minimum Data Needs:  
• Life-history data: 

o Mortality estimate. 
o Age-length relationship (e.g., von-Bertalanffy growth estimate). 
o Length-egg production relationship. 

• Size-frequency distribution of virgin conditions (estimated from MPAs or 
other unfished areas, the earliest period of fishing exploitation known, or 
models). 

• Size-frequency distribution of a recent population state. 
 
Optimal Data Needs:  
• Detailed knowledge of life-history parameters (ideally, informed with 

fishery-independent sources) to increase accuracy and confidence in model 
estimates and stock productivity. 

• Known size-frequency distribution of unfished state. 
 
Cautions and Caveats:  
• Outputs sensitive to life-history assumptions (e.g., mortality particularly 

difficult to estimate). 
• Uses the earliest catch distribution as an estimate of the unfished state. 
• Past conditions should be similar to current and future.  
• Managers still must decide how detected trends affect harvest control rules. 

References for FLEP:  
(O’Farrell and Botsford 2005, 2006; Grandcourt et al. 2008). 
 

Scorecard 2.

(F) and enable fishery managers to re-examine harvest 
targets with Yield-Per-Recruit (YPR), Spawning Stock 
Biomass Per Recruit (SSBPR), and in-season deple-
tion metrics.  Estimates of percentage of lifetime egg 
production (LEP), or egg production per recruit, can 
be used as a limit reference point in order to maintain 
a stock’s persistence by maintaining the stock’s repro-
ductive capacity.  Fractional change in lifetime egg 
production (FLEP) provides a less data-intensive alter-
native to spawning potential ratio (SPR) and SSBPR 
estimates.  O’Farrell and Botsford (2005, 2006) con-
vincingly show how nearshore species with length-
frequency data, including Pacific rockfish (Sebastes 
spp.) along the U.S. West Coast, are good candidates 
for FLEP and per-recruit methods.  Similar time-series 
information is also available for many tropical reef 
species that are classified as data-poor.

FLEP can be calculated using two size-frequency 
distributions — one from an unfished or early exploited 
state and the current one — with an age-length rela-
tionship (e.g., von Bertalanffy growth curve), a length-
egg production relationship, and some estimate of 
mortality (M).  If local management efforts include 
no-take marine reserves, these populations may serve 

as an appropriate proxy for an unfished state after 
populations have achieved a steady state inside the no-
fishing area (Wendt and Starr 2009, this volume). LEP 
is calculated as the sum across size classes of each size 
class’s abundance and fecundity. The fractional change 
can be determined as the ratio of the LEP of the recent 
catch-size distribution to the LEP of an unfished or 
early fishery state (see equation 4, O’Farrell and Bots-
ford 2005). 

Using this method, fishery managers still must make 
assumptions about what such a trend means for a given 
stock. Per-recruit methods rely on data correlations, so 
they offer little or no understanding into mechanistic 
processes that underlie trends and detected change.  
The length and quality (consistency) of time-series data 
strongly affects the value of this data-poor method. 
Per-recruit methods are most useful if the historical 
time series  is reasonably expected to represent current 
and future conditions. If fisheries have been strongly 
affected by changes in fleet dynamics, oceanographic 
regimes, and/or climate change, then managers should 
proceed with caution when using this tool.  It is impor-
tant to avoid blindly applying such methods across 
time-series data that sample across heterogeneous peri-
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ods with different environmental conditions. In these 
cases, fishery managers will need to use more sophisti-
cated statistical techniques to filter data, appropriately 
parse time-series, and/or correct for biases.

Sequential Trends Analysis (1c): Population and 
Length-Based Indices

Example technique (see Scorecard 3): In-season 
depletion estimator.—The depletion estimator can be 
used to calculate near-real time stock abundance by 
analyzing in-season declines in CPUE, thus allowing 
management to adjust harvest rules (e.g., TAC) within 
the season.  It can also be used as an alternative harvest 
rule when predicting pre-season abundance proves 
infeasible, so a seasonal TAC cannot be set. Using in-
season statistics on the fishery’s catch (e.g., by week) 
and estimates of the species growth, recruitment, and 
survival parameters, the depletion estimator compares 
CPUE and abundance estimates to provide a near real-
time abundance level (see Equations 2 and 3; Maunder 
2010, this volume).  Compared to conventional stock 
assessment abundance estimates, the depletion estima-
tor is accurate (less than 15% error; Maunder 2010, this 
volume), even though it only uses data from a year’s 
first quarter. To correctly estimate biomass, however, 
the method requires up-to-date catch knowledge, as 
well as confident estimates of life-history characteristics 
(e.g., growth, recruitment, survival).

Example technique (see Scorecard 4): An-index-
method (AIM).—An-Index-Method (AIM) is used to 
explore relationships between catch statistics and stock 
abundance indices in order to estimate the scaling fac-
tor known as the catchability coefficient.  AIM is a rela-
tively new method, developed by Rago (2008) and the 
NOAA Fisheries Northeast Fisheries Science Center in 
Woods Hole, Massachusetts. It assumes a linear model 
of population growth to characterize stock response 
to different levels of fishing mortality. With an esti-
mated catchability coefficient and the index of relative 
exploitation (i.e., catch/survey biomass), a manager 
can use catch data to infer stock status and estimate a 
relative mortality rate at which the population is likely 
to be stable.  This method and AIM performance, when 
compared to the outputs and expectations of data-rich 
stock assessments, correctly tracks population trends 
but is still susceptible to misspecifying stock status 
(Rago 2008; Miller et al. 2009).

Population and length-based methods are analogous 
in many ways to per-recruit methods (discussed in the 
previous section), without additional assumptions or 
explicit estimates of fecundity and reproduction. This 
reserves AIM and similar length-based methods for 
stocks with medium-quality time-series information 
and data richness.  These methods rely on two assump-

tions: (i) that the historical time series will represent 
present and future conditions; and (ii) that the model 
appropriately captures underlying population dynam-
ics with linear assumptions.  As is true with other index 
methods, the length and quality (consistency) of time-
series data strongly affect the value of this data-poor 
method.

Example technique:  Depletion-corrected average 
catch (DCAC).—The depletion-corrected average 
catch (DCAC) by MacCall (2009, available from the 
NOAA Fisheries Toolbox http://nft.nefsc.noaa.gov) is 
an easy-to-use method that uses only catch time-series 
data, supplemented by educated guesses of a few sup-
plementary parameters. Therefore, it is likely of prac-
tical use for many data-poor fisheries on long-lived 
species (e.g., natural mortality, M < 0.2). The abil-
ity of this method to identify sustainable yields from 
simple data input makes DCAC highly attractive for 
use, especially as a first-step estimate for an allowable 
catch level and/or in complement with other data-poor 
methods (discussed in this section, or in combination 
with the Decision-Making Methods of Step 4). 

It has long been recognized that a simple average 
catch taken during some time period is probably sus-
tainable if the underlying abundance has not changed. 
DCAC uses the potential-yield fishery model to extend 
this simple concept to situations where the underlying 
abundance is suspected to have changed. From his-
torical catch records (or estimates) over a prolonged 
period, preferably 10 years or more, DCAC estimates 
two categories of fisheries yield: (1) a “sustainable 
yield component” and (2) an “unsustainable windfall 
component” associated with the one-time reduction in 
biomass as the stock transitions from higher abundance 
at the beginning of the time period to lower abundance 
at the end. In addition, this method can also correct for 
the less common case of an increasing biomass trend. 

Inputs for DCAC are historical catch time series, 
and imprecise probability distributions of M, the ratio 
of FMSY to M (typically in the range of 0.8 to 1.0), 
and the suspected relative change in abundance from 
the beginning to the end of the catch series (deltaB, 
which  can be zero). The output from DCAC is a prob-
ability distribution of sustainable yield, after windfall 
harvest, which is expected to prevent over- fishing 
(MacCall 2009). The NOAA Fisheries Toolbox has a 
user-friendly DCAC software program, complete with 
Monte Carlo estimates of precision and available for 
public download at: http://nft.nefsc.noaa.gov. 

 Fishery-evaluation Methods — Type 2
 Vulnerability Analysis 

A variety of methods make use of general life- 
history characteristics and general species understand-
ing to evaluate possible stock responses to fishing 
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Population and Length-Based Indices  — Case-Study Example (within-season) 
In-Season Depletion Estimator:  Stocks Driven by Variable Recruitment  
(e.g., salmonids, squids, and yellowfin tuna) 

 
Many species have highly uncertain abundance 
estimates due to natural variability in annual 
recruitment, so new recruits sometimes comprise a 
substantial portion of total stock abundance. 
Frequently, this occurs for short-lived, fast-
growing species and for species with highly 
variable and stochastic recruitment dynamics. Such 
stocks include salmonids, squids and fast-growing 
tuna.  
 
Several decades ago, Walters and Buckingham 
(1975) proposed quantitative methods for in-
season adjustments for the management of British 
Columbia salmon (Oncorhynchus spp.). Since 
then, these ideas have been refined and 
implemented for in-season management. 
Successful examples include fisheries for Alaska 
salmon (Walters 1996; Hilborn 2006) and Falkland 
Islands’ squid (Loligo gahi; McAllister et al. 2004; 
Roa-Ureta and Arkhipkin 2006). Within this 
volume, Maunder (2010) presents a depletion 
estimator, using growth, recruitment, and survival 
estimates of eastern Pacific yellowfin tuna 
(Thunnus albacares) with in-season data to guide 
within-season management. 

Minimum Data Needs:  
• Life-history data. 
• In-season catch time series (e.g., hourly, daily, or weekly data, depending on 

management goals and resources). 
 
Optimal	
  Data	
  Needs:	
  	
  
• In-season CPUE or effort time series, at frequent intervals, using consistent 

data-collection protocols.  
• Detailed life-history knowledge to correspond with the resolution of data 

collected. 
 
Cautions and Caveats:  
• CPUE does not always track actual population because of effort creep, 

targeting behavior of fishermen, and/or stock dynamics. 
• Use with caution for schooling species or aggregate spawners. 
• Within-season comparisons assume consistency across a fishing season: 

o Method may not be appropriate (requires correction) for fisheries 
with effort or regulatory changes within one fishing season. 

o Method may not be appropriate (requires correction) if anomalous 
conditions differentially impact different times within one season 
(e.g., algal blooms or hypoxic zones). 

• Managers still must decide how detected trends affect harvest control rules. 

References for depletion estimator for in-season management: 
(Hilborn and Walters 1992; Maunder 2010, this volume). 

 

Scorecard 3.

pressure.  Knowledge of basic vital statistics (e.g., sur-
vival, growth, intrinsic rate of increase, age of matu-
rity, fecundity) can inform simple population dynamic 
models and fishery management models in a heuristic 
— albeit imperfect — way (Winemiller and Rose 1992; 
Alonzo and Mangel 2005; Winemiller 2005).  Musick 
(1999b) identifies intrinsic rate of increase and age at 
maturity as two key traits, which strongly influence 
degree of vulnerability.  Such life-history parameters 
can be used to assess species vulnerability and priori-
tize stocks for research and management (Winemiller 
and Rose 1992).

Example technique (see Scorecard 5): Productivity 
and susceptibility analysis of vulnerability.—The Pro-
ductivity and Susceptibility Analysis of vulnerability 
(PSA) method is used to assess a stock’s vulnerability 
to overfishing, based on relative scores derived from 
life-history characteristics — “productivity” — and 
species’ responses to fishing pressure — “susceptibil-

ity.” Productivity, which represents the potential for 
rapid stock growth, is ranked semi-quantitatively from 
low to high on the basis of the stock’s intrinsic rate 
of increase (r), von Bertalanffy growth coefficient (k), 
natural mortality rate (M), mean age at maturity, and 
other metrics (Patrick et al. 2009; Field et al. 2010, 
this volume).  The low to high scores of susceptibil-
ity refer to overall impacts of fishing on the stock’s 
abundance and habitat. Susceptibility scores are based 
on the expected fishing mortality rate, discard mortal-
ity, and behavioral responses (e.g., schooling) that can 
make a stock more or less vulnerable to fishing effort.  
Table 1 of Field et al. (2010, this volume) provides a 
systematic framework for applying the PSA method to 
a multi-species fishery or stock-specific fishery with a 
high diversity of bycatch.  This method can be used to 
make a preliminary characterization of overall risk of 
overfishing. It offers a way to evaluate multiple bycatch 
stocks and identify species of priority or for protec-
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tion (Simpendorfer et al. 2008).  Patrick et al. (2009) 
demonstrate the application of the PSA method for six 
federally managed fisheries in the United States. 

The American Fisheries Society’s (AFS) extinc-
tion risk criteria (i.e., endangered, threatened, vulner-
able) are based on similar principles as the productiv-
ity analysis in the PSA (Musick 1999a; Musick et al. 
2000).  It uses many of the same productivity param-
eters, such as intrinsic rate of increase (r), von Berta-
lanffy coefficient (k), fecundity (Fec), age at maturity 
(Tmat), and maximum age (Tmax) to determine a spe-
cies productivity level (e.g., high, med, low, very low; 
see Table 3, Musick 1999a).  Thus when a species is 
thought to be at risk by expert opinion or due to drastic 
decline, the productivity ranking of the species is first 
assessed (Musick 1999a).  This productivity ranking 
provides a qualitative decline threshold that describes 
the degree of decline the stock can likely withstand 
(Musick 1999a).  If the observed decline rate exceeds 
the suggested threshold based on the stock’s productiv-
ity characteristics, the stock’s vulnerability status may 

be upgraded to threatened or endangered.  It is impor-
tant to note, however, that results from this data-poor 
method provide only a relative measure. This method 
does not generate absolute numbers or index estimates 
of stock size, but estimates population extinction risk 
relative to other species.

As with all models, the outputs and management 
recommendations from a life-history vulnerability 
analysis can only be as good as the life-history science 
and data inputs into the analysis (Hilborn and Mangel 
1997). Therefore, managers should be confident of the 
life-history parameters used, and check assumptions 
that life-history data from laboratories and/or other 
geographic regions will hold true across space and/or 
time for the region and stock of interest to the fishery 
manager (Cope 2006). This is not necessarily the case 
and the failure of this assumption can, of course, lead 
to misspecification of stock status, productivity, and 
vulnerability (e.g., West Coast rockfish species; Clark 
1991, 1993, 1999)

Scorecard 4.

Population and Length-Based Indices  — Case-Study Example 
AIM: Atlantic Northeast groundfish (USA) 

 
AIM estimates biological reference points, using a linear 
model of population growth to fit a time-series 
relationship between catch data (fishery-dependent data) 
and a relative abundance index (from CPUE or fishery- 
independent data). If the underlying population model is 
valid, AIM enables managers to identify levels of relative 
fishing mortality that will achieve a stable or targeted 
stock size. This data-poor method continues to undergo 
additional peer review (Palmer 2008; Miller et al. 2009). 
To date, it has been applied to U.S. Atlantic stocks, such 
as haddock (Melanogrammus aeglefinus). The New 
England groundfish case study demonstrates the 
application of AIM to stock complexes where certain 
species may be overlooked and unassessed, despite the 
large amounts of data and stock assessments focused on a 
few well-studied species in the same complex.  

Minimum Data Needs:  
• Life-history data. 
• Catch time series. 
• Abundance index time series (from CPUE or fishery 

independent surveys). 
 
Optimal Data Needs:  
• Detailed population data and length-age information, in order 

to calibrate the AIM index with independent quantitative 
assessments. 

 
Cautions and Caveats:  
• Underlying linear model assumptions are not appropriate for 

all stocks. 
• Susceptible to problems with misspecification (i.e., use of 

catch series from long overfished periods, recruitment pulses, 
or noisy data), resulting in bias. 
• Past conditions should be similar to current and future 

conditions.  
• Managers still must decide how detected trends affect harvest 

control rules. 
References for AIM:  
(Palmer 2008; Rago 2008; Miller et al. 2009). 
AIM model downloadable from NOAA Fisheries Toolbox Version 3.0, 2008.  
AIM Internet address: http://nft.nefsc.noaa.gov/AIM.html. 
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Scorecard 5.

Fishery-evaluation Methods — Type 3
Extrapolation (“Robin Hood” Management) 

When virtually no data are available for a stock or 
specific species in a specific region, then managers may 
need to rely on extrapolation methods to inform deci-
sions. Frequently, low-value stocks are subject to such 
data constraints. This method is termed the “Robin 
Hood” approach in Australia because it “steals” infor-
mation and scientific understanding in data-rich fisher-
ies to “give” inferences to the data-poor fisheries (see 
Scorecard 6; Smith et al. 2009, this volume). 

Even with zero-available scientific data for a given 
fishery, managers still have access to information from: 
(1) the local knowledge of the fishers and resource 
users; and/or (2) scientific research and ecosystem 
understanding from “sister” systems thought to be 
similar.  Extrapolation from similar systems or related 
“sister” species may offer an informed starting point 

from which managers can build precautionary man-
agement.  In these situations, life-history characteris-
tics, potentially sustainable harvest levels, spawning 
behavior, and other information can be gleaned from 
nearby stocks, systems, or related species. 

All extrapolation methods require the very careful 
testing of assumptions. As previously noted, it is not 
necessarily the case that life-history data from labo-
ratories and/or other geographic regions will hold true 
across space and/or time (see PSA discussion, above). 
The assumption that data-poor stocks behave like data-
rich stocks has been proven wrong in the past, resulting 
in unintentional overfishing (e.g., West Coast rockfish 
species; Clark 1991, 1993, 1999). Due to uncertainty 
from the extrapolation of scientific information with 
“Robin Hood” methods, fishery managers should con-
sider building in a precautionary buffer.   

Productivity & Susceptibility Analysis — Case-Study Example  
Bycatch and Other Species of Low Value or Low Priority to Management  
(e.g., Atlantic pelagic sharks and rays, USA) 

 
Bycatch species are all too often unassessed. Given some 
basic life history and fishing mortality estimates, 
however, methods like Productivity and Susceptibility 
Analysis (PSA) can estimate individual species 
vulnerability to fishing pressure, relative to other species. 
By simultaneously accounting for estimated stock 
productivity and stock susceptibility to fishing effort, PSA 
produces estimates of overexploitation risk. Target and 
nontarget species can all be evaluated. Therefore, PSA 
can be a good choice for managers with bycatch concerns 
(e.g., in fisheries that are managed to protect weak stocks 
or stock complexes mixed with productive stocks).   
 
A recent evaluation of Atlantic pelagic sharks and rays 
shows the advantage of life-history vulnerability analyses 
when managing bycatch species. Simpfendorfer et al. 
(2008) assess the risk of overexploitation for 
elasmobranchs caught as bycatch in the Atlantic 
swordfish fishery (longline). To evaluate population 
vulnerability, they used multivariate statistics to analyze 
information using three primary data metrics: (1) 
Ecological Risk Assessment, (2) the inflection point of 
the population growth curve (a proxy for Bmsy), and (3) 
the World Conservation Union (IUCN) Red List status 
(Simpfendorfer et al. 2008). Integrated results provide a 
relative measure of overexploitation risk for each 
nontarget species of management concern. 

Minimum Data Needs:  
• Life-history data to estimate stock productivity.  

o Typically, done with estimates of von Bertalanffy growth 
coefficient, natural mortality rate, and mean age at 50% 
maturity. 

• Fishing mortality data to estimate stock susceptibility.  
o Typically, done with estimates of the catchability coefficient 

and bycatch rates, which may be affected by fleet dynamics 
and/or fish behavior like schooling. 

 
Optimal Data Needs:  
• Detailed and accurate knowledge of life-history parameters to increase 
accuracy and confidence in model estimates of stock productivity. 
• Detailed and accurate knowledge of fishing mortality. 
• Multiple independent data sources and/or expert knowledge to 
corroborate estimates for calculated parameters (see above). 

 
Cautions and Caveats:  
• Only assesses expected, relative vulnerability to fishing pressure (not 
absolute population numbers). 
• Will not specify harvest guidelines (i.e., Total Allowable Catch [TAC] 
or target catch limits). 
• Managers still must decide how detected trends affect harvest control 
rules. 

References for PSA: 
(Simpfendorfer et al. 2008; Patrick et al. 2009; Field et al. 2010, this volume) 
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Extrapolation Method — Case-Study Example  
Species of Low Value or Low Priority to Management (e.g., trochus fishery, Vanuatu, Pacific Islands)  

 
An example of the extrapolation method comes from the Pacific 
Islands country of Vanuatu, where a sea snail — the trochus 
(Trochus niloticus) — is fished. Despite its “data-less” status, for 
years Vanuatu officials have successfully managed the trochus 
fishery for years (Johannes 1998). To do this, fishery officials use 
generalized growth rates determined by the government. The fishery 
managers emphasize one central principle: trochus stocks should be 
harvested about once every three years (Johannes 1998). After 
successes in villages that initially implemented this three-year rule, 
neighboring villages extrapolated this control rule for managing 
their own local stocks (Johannes 1998). Ultimately, many 
communities implemented similar control rules based on 
generalized growth knowledge for stocks beyond the Trochidae 
family, including octopus, lobster and other species (Johannes 
1998).   
 
While the lack of explicit conservation goals in such traditional 
management systems has been criticized, more recent empirical 
evaluations suggest that the application of traditional knowledge, 
marine tenure, and other traditional management techniques can 
result in sustainable conservation outcomes (Cinner et al. 2005a, 
2005b). 

Minimum Data Needs:  
• Anecdotal observations or related “sister” species 
and systems with similar characteristics that are 
known. 

 
Optimal Data Needs:  
• The more information from sources above, the better. 
• Life-history data to supplement observations and test 
underlying assumptions in the extrapolations. 

 
Cautions and Caveats:  
• Large scientific and management uncertainty. 
• Risk of misspecifying stock status, vulnerability, 
sustainable harvest levels; this risk can be potentially 
serious and lead to overfishing, especially (e.g., if the 
data-poor stock of interest is less productive than its 
data-rich “sister” species; Clark 1991, 1993, 1999). 
• Not a replacement for quantitative management. 
• Managers still must decide how detected trends 
affect harvest control rules. 

References for extrapolation and “Robin Hood” methods: 
(Johannes 1998; Prince 2010, this volume; Smith et al. 2009, this volume). 
 

Scorecard 6.

Step 4—Apply Decision-making Methods
In the previous steps of our framework, managers 

select and apply as many Fishery-Evaluation Tools as 
deemed appropriate, based on the data richness, avail-
able resources, and fishery context. Here, in Step 4, 
we review two general categories of Decision-Making 
Methods available to evaluate alternative management 
options, trade-offs, and expected outcomes without a 
full stock assessment:

 (i) Decision trees.
(ii) Management Strategy Evaluations (MSEs).

These are decision-making tools that combine scientific 
knowledge with management knowledge (and value 
judgments), in order to identify preferable actions or 
recommendations for a fishery. Both decision trees and 
MSEs use multistage frameworks to arrive at conclu-
sions about stock status, harvest recommendations, 
and/or alternative control rules. Often, several differ-

ent outputs from several different Fishery-Evaluation 
Methods (Step 3) serve as inputs into Decision-Mak-
ing Methods (Step 4, see Figure 1). In comparison to 
methods previously reviewed, these Step 4 methods 
typically require greater information inputs and tech-
nical resources, including greater human capital. 

These methods are highly flexible. They are fully 
capable of incorporating diverse sources and types of 
information to generate new understanding and man-
agement guidance from limited information. 

Below, we introduce each of these two Decision-
Making Methods with a summary paragraph and an 
example application. We reference case-study exam-
ples to show how each method can be applied, while 
briefly reviewing minimum data requirements, optimal 
data needs, and important cautions and caveats for the 
method within our example context.  We include ref-
erences to original publications and peer-reviewed  
literature describing a method’s implementation, so 
interested parties can review this method in more depth.
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Decision-making Methods — Type 1  
Decision Trees (Analytical Approach)

Decision trees provide a systematic, hierarchical 
framework for decision-making that scales to any 
spatial, temporal, or management context in order to 
address a specific question. A decision tree may be 
customized to meet virtually any need. 

In this volume, other authors propose several inno-
vative decision trees. Their uses include: identification 
of reference points based on stock characteristics and 
vulnerability (Cope and Punt 2009, this volume); fos-
tering fine-scale, transparent, and local management 
(Prince 2010, this volume); and estimating and refin-
ing an appropriate Total Allowable Catch (TAC) level 
(Wilson et al. 2010, this volume). These examples are 
discussed further below.

Given only available catch records and trends, man-
agers of data-poor fisheries can use this information to 
infer stock change. This generally works well for high-
value species because their catch records tend to have 
detailed information of good quality. Fishery scientists 
have previously suggested index-based management 
approaches for high-value stocks, including Atlan-
tic cod (Gadus morhua, Froese 2004), white grou-
per (Epinephelus aeneus, Froese 2004), and blacktip 
abalone (Haliotis rubra, Prince 2010, this volume). 
When the resolution of data collection corresponds to 
an appropriate scale for management decisions, then 
trend changes in fisheries data can feed into decision-
tree approaches to inform management choice.

When developing or using decision trees, fishery 
managers must know their data sources and how infor-
mation is logged and recorded. Importantly, catch data 
are often aggregated over space and time at a scale that 
may not necessarily match biological processes and 
mechanisms of change. In these cases, the decision-
tree approach may fail to detect trends and can mask 
underlying uncertainties.    

Example technique: Length-based reference points 
set by decision tree.—A length-based decision tree 
allows for the interpretation of easy to collect catch-
length data to provide indicators of stock status and 
the fishery’s sustainability. Froese (2004) outlined 
a simple way to characterize fisheries at low risk of 
growth or recruitment overfishing based on catch–
length data: (1) catch-length compositions consisting 
solely of mature individuals (Pmature or Pmat); (2) catch-
length compositions consisting largely of fish of the 
size at which the highest yield from a cohort occurs  
(Poptimal or Popt); and (3) catch-length compositions to 
conserve megaspawners that are large, highly fecund 
individuals (Pmegaspawners or Pmega). Cope and Punt 
(2009, this volume; see Case-Study Example, p. 175) 
extend the method by examining its sensitivity to life 
history traits, recruitment patterns, and fishery selec-

tivity (i.e., what fraction of each length class is taken 
by the fishery). They establish a critical link between 
the identification of trends and the design of harvest 
control rules with a decision tree.  

Using a simulation model based on West Coast 
groundfish population dynamics and data, Cope and 
Punt found that overfishing could occur using Fro-
ese’s guidelines under some scenarios, depending on 
assumptions of life-history traits and fishery selectiv-
ity. According to simulation runs, even when Pmat and 
Popt are very low, fishing can be sustainable. Simula-
tions also suggest that major stock decline could result 
even when Popt = 1 is the ideal situation for a fishery.  
The Cope and Punt decision tree interprets catch-
length data and stock status, using a new parameter 
Pobj (the sum of Pmat, Popt, and Pmega, see Figure 10 in 
Cope and Punt 2009, this volume). This decision tree 
can be applied even if direct information on mortality, 
fishery selectivity, and recruitment is lacking.  While 
this provides a flexible management tool, the authors 
are careful to point out a number of caveats concern-
ing the use of Pmat and Popt with this method (Cope and 
Punt 2009, this volume). 

Example technique: marine reserve-based deci-
sion tree.—This decision tree by Wilson et al. (2010, 
this volume; see Case Study Example p. 176) makes 
use of data from no-take marine reserves to improve 
assessments of stock status. It provides an alternative 
method to set and refine a TAC by comparing CPUE 
and the size structures of a species inside and outside 
reserves. This method assumes reserve conditions are a 
proxy for natural abundance or as conservation targets 
for management. Since it uses inside/outside reserve 
comparisons, this method requires survey sites with 
comparable habitat both inside and outside reserve 
boundaries. As is true for any method that assumes 
reserves are a baseline or proxy for unfished condi-
tions, the amount of movement and mixing of species 
across reserve boundaries is an important source of 
uncertainty.

 This decision tree is designed for the analysis of 
data collected on relatively small scales, in order to 
develop TAC levels at those local scales.  The initial 
TAC estimate is calculated from the slope of the line 
connecting current CPUE to a target CPUE level.  Fur-
ther branches in the decision tree allow the user to 
update and adjust the TAC by determining whether 
CPUE or size distributions of the fished population are 
above or below an expected level (e.g., as observed 
within the reserve) for an unfished, equilibrium popu-
lation.  Because this method is intended to be updated 
regularly by incorporating new and easy-to-acquire 
data (e.g., CPUE trends and size), the reserve-based 
decision tree is naturally dynamic and adaptable to 
changing environmental or biological conditions.  
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Length-Based Decision Tree — Case-Study Example 
Australia’s Eastern Tuna and Billfish Fishery  
Australia’s Eastern Tuna and Billfish Fishery (ETBF) is a high-
value but low-information fishery for bigeye and yellowfin 
stocks near Tasmania (Prince 2010, this volume). Regional data 
exist, particularly fishery-dependent time series, but information 
is insufficient for a stock assessment. ETBF data-poor challenges 
arise from unresolved population structure and resulting 
implications for quantitative stock assessment techniques, since 
the population connectivity is unknown between tuna stocks in 
the Tasman Sea and the Western Central Pacific Ocean (Prince 
2010, this volume).  
 
A decision-tree approach to management is appropriate for this 
kind of fishery, especially if used in conjunction with other data-
poor methods. For example, CUSUM and other Fishery-
Evaluation methods (see Step 3) can be used to verify the 
statistical significance of detected change in time-series data. 
 
To develop a formal harvest policy for ETBF under Australia’s 
Harvest Strategy Guidelines (DAFF 2007), fishery managers 
adopted an innovative empirical strategy for regional stock 
management in the Tasman Sea (Prince 2010, this volume). They 
use regional fisheries data as “local” indicators for stock status. 
Time-series data from regional fleet effort, landings, and length 
distributions of catch are quantitative inputs into a decision tree, 
designed to inform ETBF management in a manner responsive to 
local change in stock status and fishing trends. Inputs are size-
based indicators of stock status with a determined level of 
Spawning Potential Ratio (SPR)* for local stocks. Then, relative 
to local SPR, managers can evaluate and adjust the proportion of 
the catch comprised of “mature” (small), “optimum” (medium), 
and “megaspawner” (large) fish. Using detected trends over 
time, this decision tree organizes information and frames 
expected outcomes to recommend action for local management. 

 
Minimum Data Needs:  
• Life-history data. 
• Catch time series. 
• Length-age data for catch size distribution to estimate: 

o Size-frequency distribution of virgin conditions (i.e., 
unfished state).  

o Size-frequency distribution for the fished population. 
 
Optimal Data Needs:  
• Detailed knowledge of life-history parameters (ideally, informed with 

fishery-independent sources) to increase accuracy and confidence in 
model estimates and stock productivity. 

• Scientific knowledge of critical size classes with detailed length-age data 
(e.g., length at maturity, megaspawning size). 

• Known size-frequency distribution of unfished state. 
 
Cautions and Caveats:  
• Depletion of megaspawners from fishing can falsely suggest the fishery 

is catching “optimum” (medium) individuals. 
• May not be appropriate for stocks with low steepness** because of little 

difference between “mature” (small) and “optimum” (medium) 
individuals. 

• Simple assessment methods like this (based on maintaining conservative 
levels of spawning biomass, SPR*) are helpful, but do not directly 
translate to harvest control rules. 

• The accuracy and statistical power of decision-tree outputs depends 
strongly on the quality of data inputs and underlying model assumptions. 

*SPR is the number of eggs that could be produced by an average recruit in a fished stock, divided by the number of eggs that could be 
produced by an average recruit in an unfished stock. 
**Steepness is conventionally defined as the proportion of unfished recruitment produced by 20% of unfished spawning biomass. 
References for length-based reference points set by decision tree: 
(Froese 2004; Cope and Punt 2009, this volume). 
 
Comparisons of fish density inside and outside 

reserves might also be used to inform season length 
and other effort controls through a reserve-based “den-
sity-ratio” method (Babcock and MacCall, in review).  
Currently in California, researchers, fishermen, and 
stakeholders are engaged in collaborative efforts to 
test, implement, and expand this method (Wilson et al. 
2010, this volume). Other collaborative efforts, such as 
the California Collaborative Fisheries Research Pro-
gram, also gather fishery-independent data to monitor 
populations and assess marine reserve performance 
across a broad range of species across 250 coastal 
miles (see Wendt and Starr 2009, this volume). As 
California continues to develop its statewide network 
of marine reserves and other types of marine managed 
areas under the Marine Life Protection Act, expansion 
opportunities seem likely for data-collection (and anal-
ysis) efforts like those of the California Collaborative 
Fisheries Research Program. Such efforts appear well 
poised for future integration with innovative data-poor 
methods, particularly methods that rely on marine-
reserve monitoring data to infer conditions about an 
unfished population state (e.g., the “density-ratio” 
method or the decision tree by Wilson et al. 2010, this 
volume).

Decision-making Methods — Type 2 
Management Strategy Evaluation  
(Simulation Approach)

Management Strategy Evaluation (MSE) is a gen-
eral modeling framework designed for the probabilis-
tic evaluation of the performance of alternative man-
agement strategies for pursuing different management 
objectives. This approach promotes a high degree of 
flexibility. It simulates the fishery’s response to differ-
ent management strategies (e.g., different TAC levels, 
seasonal closures, or other effort reductions). Assum-
ing sufficient and quality data exist, MSE proves use-
ful for assessing the effectiveness of diverse policy 
options. Given a single set of objective function(s) and 
modeling assumptions, the method informs the choice 
of the optimal management decision.

MSE offers a strategic approach to organize infor-
mation within one model, often made with linked sub-
models to collectively and systematically evaluate the 
system as one whole. Using any variety of predefined 
metric(s) and goal(s), managers can explore various 
management options and expected outcomes with 
MSE — whether biological, economic, and/or social 
outcomes of interest. It uses and integrates numer-
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MPA-Based Decision Tree — Case-Study Example 
Nearshore stick fishery in Southern California (USA) 
The California stick fishery is a part of California’s 
nearshore finfish fishery (further discussed below, see box 
with the MSE case-study example). The stick fishery in 
Southern California targets cabezon (Scorpaenichthys 
marmoratus) and grass rockfish (Sebastes rastrelliger), 
using selective “stick” gear that minimizes bycatch of 
nontarget species. In the Santa Barbara Channel Islands 
region, local fishermen and researchers are collaborating to 
collect spatially explicit data, inside and outside of marine 
reserves (Wilson et al. 2010, this volume). Currently, they 
are evaluating the management potential for establishing an 
experimental program for the Santa Barbara Channel 
Islands, based on a framework using an innovative marine 
reserve-based decision tree (Wilson et al. 2010, this 
volume). 
 
This decision tree uses a data-driven model that is spatially 
scale-less and based on length-age catch data, inside and 
outside of the reserves (Wilson et al. 2010, this volume). 
The reserve-based decision tree is integrated within a MSE 
simulation, so it responds dynamically to simulated 
changes in environmental conditions. For the basic decision 
tree, data inputs are life-history parameters: species growth 
rates, size/age at maturity, fecundity at age, and selectivity 
to fishing. Conditions inside the reserves serve as a proxy 
for virgin conditions and are used to estimate unfished 
biomass. This decision tree uses similar size-based criteria 
and spawning biomass targets, as described above (see 
previous scorecard with the decision-tree case-study 
example, highlighting Prince 2010, this volume). Time 
series of individual length data are compared with current 
catch and effort data. Using these relationships, the 
decision-tree makes recommended harvest adjustments, 
either up or down, to maintain the spawning biomass and 
stock at specified levels (Wilson et al. 2010, this volume). 

(for this MPA-based decision tree) 
Minimum Data Needs:  
• Life-history data. 
• CPUE time series. 
• Length-age data, inside/outside MPAs, to estimate: 

o Size-frequency distribution of virgin conditions (i.e., unfished 
state). If estimated from MPAs, this often requires 5 to 10 years 
(minimum) of data without fishing, although it varies widely by 
species and species-specific life histories. In the absence of no-
take MPAs, models can estimate virgin conditions. 

o Size-frequency distribution for the fished population. 
• Environmental time series. 
 
Optimal Data Needs:  
• The longer the time series for inside/outside reserves, the better, because 

it improves virgin estimates. 
• Detailed knowledge of life-history parameters (ideally, informed with 

fishery-independent sources) to increase accuracy and confidence in 
model estimates. 

• Scientific knowledge of critical size classes with detailed length-age data 
(e.g., length at maturity, mega-spawning size). 

• Known size-frequency distribution of unfished state. 
 
Cautions and Caveats:  
• Assumes reserve conditions as an appropriate proxy for the unfished 

state. 
• Requires enforcement of reserves. 
• Interpretation of CPUE can be difficult, if standardized methods are not 

used inside/outside reserves. 
• Depletion of megaspawners from fishing can falsely suggest the fishery 

is catching “optimum” (medium) individuals. 
• May not be appropriate for stocks with low steepness** because of the 

lack of contrast between “mature” (small) and “optimum” (medium) 
individuals. 

• Simple assessment frameworks, like this (based on maintaining 
conservative levels of spawning biomass, SPR*) are helpful, but do not 
directly inform harvest control rules. 

• The accuracy and statistical power of decision-tree outputs depends 
strongly on the quality of data inputs and underlying model assumptions. 

• Outputs from combined methods, such as a decision tree and MSE (as 
used here), are powerful but fairly data intensive. This decision-tree-
MSE approach is suited for “data-medium” and “data-rich” fisheries. It 
is not recommended for “data-poor” stocks on the low end of the data-
richness spectrum. 

*SPR is the number of eggs that could be produced by an average recruit in a fished stock, divided by the number of eggs that could be 
produced by an average recruit in an unfished stock. 
**Steepness is conventionally defined as the proportion of unfished recruitment produced by 20% of unfished spawning biomass. 
References for MPA-based decision tree:  
(Prince 2010, this volume; Wilson et al. 2010, this volume). 
 

ous data inputs, ranging from biological to socioeco-
nomic criteria along the entire data-richness spectrum. 
Depending on model design, it can simulate various 
system attributes including stock status, fleet dynam-
ics, and/or socioeconomic utility. For example, in a 
minimal case, the model may only simulate stock sta-
tus or socioeconomic utility.  MSE modelers, however, 
can also incorporate other data types like environmen-
tal factors and indices to increase model realism and 
further test policy alternatives with added context. This 
amalgamation of diverse datasets under a single mod-
eling framework provides valuable understanding of 
various tradeoffs and indirect effects that exist within 
management objectives (Aranda and Motos 2006).

Because of the breadth of the MSE method, its 
value can only be realized if management objectives 

are clear and performance metrics are well defined 
(Punt et al. 2001).  This is critical to the system-
atic evaluation and relative weighting of alternative  
scenarios and hypotheses (Punt et al. 2001).  The 
assessment of the fishery’s performance in achiev-
ing predetermined target goals is measured through 
metrics most appropriate for the established goal; for 
example, stock status for biological criteria or industry 
value for socioeconomic criteria. Clearly defined goals 
and their metrics allow for the use of MSE to test the 
robustness of the management system to uncertainty 
(Aranda and Motos 2006).  

The application of MSE spans the spectrum of data-
poor to data-rich fisheries but it is effort- and resource-
intensive. The complexity of MSE can be limiting, 
since simulation-focus requires specialized expertise 
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in modeling (Aranda and Motos 2006). MSE synthe-
sis is particularly challenging, yet fruitful, for complex 
fisheries like multi-species fisheries or those with het-
erogeneous socioeconomic objectives (see case-study 
example box). Nonetheless, Butterworth et al. (2010, 
this volume) successfully applied the method in a data-
poor situation with only a time series of mean-catch 
length. Outputs improve with greater data quantity and 
quality (i.e., data richness), yet MSE still has potential 
use as a method for data-poor fisheries (Butterworth et 
al. 2010, this volume).  

 Example technique: MSE Monte Carlo simulation.—
Quantitative fishery scientists have long used MSE 
approaches, often incorporating Monte Carlo simula-
tion (Southward 1968; Hilborn 1979; Punt et al. 2001).  
Monte Carlo methods are computational algorithms, 
using repeated random sampling to simulate proba-
bilistic outcomes, which can be used to evaluate the 
stock’s, as well as the system’s, responses to manage-
ment actions. In practice, managers have used MSE 
for over a decade in Australia’s fisheries, guiding 
quota management decisions in a multi-species fishery 
with a multi-sector trawl fleet (Punt et al. 2001). More 
recently, Butterworth et al. (2010, this volume) apply 
MSE to develop management decision rules with lim-
ited empirical information for the Patagonian toothfish 
fishery in the sub-Antarctic. MSE also seems appropri-
ate for California’s nearshore finfish fishery (see Case-
Study Example p. 178).

MSE is of particular use for systems that are data 
medium or data rich and of high value or political 
interest, yet the fishery dynamics are too complex and 
challenging for managers to evaluate with back-of-the-
envelope techniques. For example, consider a multi-
species fishery. Some stocks (regardless of scale) fall 
lower than others on the data-richness spectrum because 
not all species are an equal focus of fishery dependent 
and independent studies (CDFG 2002). Even for the 
most data-poor stocks, however, some fishery depen-
dent and independent biological data likely exist. In 
addition, socioeconomic data from industry, research, 
and monitoring efforts likely exists for associated ports 
(CDFG 2002; 2007; 2008). Evaluated independently, 
this available information may not appropriately or 
sufficiently address management goals. Often, for 
un-assessed species, existing data are limited by the 
small-scale, short-term scope of scientific efforts. Data 
may not easily scale up or translate into coast-wide 
understanding of a stock, which is most relevant for 
federal or state management. By integrating all these 
various types of data considerations — across species 
and across scales — within one coherent framework, 
MSE methods have the potential to assimilate and 
evaluate multiple considerations to inform and guide 
management decisions. One critical challenge for such 
MSE application, however, involves unresolved stock 

structure at the local or regional scale, which poten-
tially impacts data quality and techniques for quanti-
tative stock assessment at the larger coast-wide scale 
(Wendt and Starr 2009, this volume).

Discussion
Many fisheries can be thought of as data poor, and 

many remain under-managed or not managed at all 
due to lack of data, assessment, and analysis. Conven-
tional stock assessments require large amounts of data 
and are conducted at large scales.  New methods are 
required to more simply and quickly assess stock sta-
tus and develop management reference points, given 
data and resource limitations. This is especially appar-
ent at smaller scales in data-poor fisheries (Fujita et 
al. 2010). 

In the United States and globally, impending dead-
lines exist to end overfishing. For example (under the 
reauthorized U.S. Magnuson-Stevens Act of 2006), 
National Standard 1 (NS1) guidelines and regulatory 
revisions establish Annual Catch Limits and bring new 
priority and attention to data-poor methods and man-
agement. Federal Fishery Management Plans (FMPs) 
cover nearly all managed species in the United States, 
at least as part of a FMP species complex.  Still, how-
ever, many landed species remain un-assessed. The 
pertinence of improved data-poor assessment and 
management to fisheries is clear.

 As managers move forward to achieve NS1 man-
dates and end overfishing, they can combine the meth-
ods presented in this review with available information 
and resources to improve assessment and outcomes for 
data-poor stocks. Data-poor methods are likely to be 
most informative when used in complement with each 
other, as well as with on-going data analysis and (re)
evaluation.  The robustness of results from individual 
methods increases when information is evaluated by 
different means and subsequent results corroborate 
each another. This is especially true if each of the data-
poor methods draws on different information sources 
(independent or quasi-independent data sources).

Looking to the future, we anticipate the increased use 
of flexible decision trees to make informed decisions 
with limited information (Prince 2010, this volume; 
Wilson et al. 2010, this volume). Decision trees are 
simple, adaptable, and transparent. They step the user 
through a sequence of logical steps, based on explicit 
assumptions to generate knowledge and/or manage-
ment recommendations. They can be used to organize 
and evaluate fisheries information that otherwise might 
not be used by managers. Arguably most importantly, 
decision trees are tractable. They use data, resources, 
and technical capacity frequently available to fishery 
managers — even those of data-poor fisheries. 

MSE is a powerful method for testing different 
expected outcomes and management strategies. It also 
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holds promise for the quantitative testing and evalu-
ation of expected performance by various data-poor 
methods (qualitatively reviewed here). MSE applica-
tion to data-poor fisheries is most appropriate for the 
high end of the data-richness spectrum, particularly 
where multiple sources of high quality information 
exist but lack integration and holistic evaluation. It 
requires significant data, time, and specialized model-
ing expertise, often unavailable for data-poor fisheries. 
Therefore, for many data-poor managers with scarce 
resources, simulation-modeling techniques like MSE 
will be intractable. 

When considering any of these methods, particularly 
MSE for data-poor fisheries, it is critical that manag-
ers remember that the use of sparse and/or inaccurate 
information as inputs for data-demanding methods will 
mislead. For data-poor fisheries, if employing MSE, 
we suggest using it in tandem with other methods 
and heuristic approaches like decision trees,  to help 
check and ground-truth MSE outputs. This can help 
identify and avoid wildly erroneous expectations for 

Management Strategy Evaluation (MSE) — Case-Study Example  
California’s nearshore finfish fishery (USA) 
California’s nearshore finfish fishery is a multi-species 
fishery with 19 nearshore species, collectively managed by 
a complex process with overlapping jurisdictions between 
federal and state regulatory agencies (Weber and Heneman 
2000). The Marine Life Management Act (MLMA) of 
1999 is a precautionary law to manage state fisheries and 
achieve multiple objectives, including: conservation, 
habitat protection, the prevention of overfishing and the 
rebuilding of depressed stocks. Current regulatory efforts 
use total allowable catch (TAC), limited entry, trip limits, 
gear restrictions, fish-size limits, seasonal closures and area 
closures (e.g., no-take marine reserves). Most stocks, 
however, are data-poor; only five species in this fishery are 
formally assessed with a stock assessment (CDFG 2002; 
Field et al. 2010, this volume). Regulatory consequences of 
data-poor status are large cuts in allowable catch (Kaufman 
et al. 2004). This approach to precautionary management 
makes California’s nearshore finfish fishery of great 
political interest. 
 
For unassessed species, several data-poor methods are 
available for use by California fishery managers (see Field 
et al. 2010, this volume). With minimal information, data-
poor methods rely on general life-history understanding to 
inform vulnerability assessments and extrapolation 
methods (see Life-History Vulnerability Analyses in the 
Fishery-evaluation Methods section, above). On the other 
side of the “data-richness” spectrum, a limited number of 
nearshore species have full stock assessments. Given the 
uneven distribution of data and information constraints, a 
MSE provides a method to organize and synthesize the 
multi-species and patchy data-rich information.  
 
Recently, such a MSE effort was initiated for nearshore 
fisheries management in Port Orford, Oregon (see Bloeser 
et al. 2010, this volume). In the future, outputs will likely 
help to define priorities and guide management decisions. 

(for this example MSE application) 
Minimum Data Needs:  
• Life-history data. 
• Catch time series. 
• Length-age data for catch size distribution to estimate: 

o Size-frequency distribution of virgin conditions (i.e., unfished state).  
o Size-frequency distribution for the fished population. 

• Defined goals and objective functions (with known constraints and metrics to 
evaluate success, whether defined by biological, social and/or economic goals). 
• Clear rules about how these various goals and objective functions interact. This 

requires some understanding of regulatory options, societal preferences and/or 
regulatory priorities to define acceptable trade-offs and recognize unacceptable 
outcomes. 

 
Optimal Data Needs:  
• Detailed knowledge of life-history parameters (ideally, informed with fishery-

independent sources) to increase accuracy and confidence in model estimates 
and stock productivity. 
• Detailed socioeconomic knowledge, potentially with high-resolution, spatial 

data. 
• The more data and longer the time series, the better, especially if data-

collection protocols remain consistent through time. 
• The higher the quality of input data, the better. 
 
Cautions and Caveats:  
• The statistical power of MSE outputs depends strongly on the quality of data 

inputs and underlying model assumptions. 
• Choice about objective function(s) and evaluation criteria drive outcomes. 
• MSE outputs rely on multiple sub-model assumptions and assumptions about 

sub-model integration, which potentially compounds modeling errors and 
uncertainty. 
• Assumptions about how to link MSE sub-models with one another are 

critically important, but potentially hidden from view. Be wary of “black box” 
outputs. 
• MSE is powerful but data intensive. It requires careful design and appropriate 

development to individually match the MSE with stock characteristics, fishery 
context and management goals. 
• MSE is suited for “data-medium” and “data-rich” fisheries, yet often limited by 

the method’s need for large time investment and highly skilled technical work. 
It is not recommended for “data-poor” stocks on the low end of the data-
richness spectrum. 

References for MSE: 
(Sainsbury et al. 2000; Gunderson et al. 2008; Bentley and Stokes 2009, this volume; Butterworth et al. 2010, this volume; Dewees 2010, this 
volume; Dichmont and Brown 2010, this volume; Smith et al. 2009, this volume). 
 
 data-poor stocks, if and when managers explore data-

poor fisheries with MSE simulation. The simultaneous 
use of multiple, alternative data-poor methods allows 
managers to contextualize model outputs and gain 
understanding about the robustness of these different 
approaches. This can be done with formal analysis of 
alternative models and sensitivity analysis (Hilborn 
and Mangel 1997; Walters and Martell 2004).

It is important to note that risks and limitations are 
givens with these methods, due to the inherent scien-
tific uncertainty and data constraints in managing fish 
stocks.  Thus, it is important for fishery managers to 
think about how to best pair the available data with 
appropriate methods that can make the most use of the 
data, given management goals.  This coupling of data 
with optimal methods requires science-based recom-
mendations on appropriate assessment methods.  In 
the absence of scientific advisers, the presented frame-
work should help decision makers and stakeholders 
organize scientific information and identify available 
alternatives.
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Overall, the framework we present should aid anyone 
interested in assessing local stocks and/or improving 
the scientific basis for fisheries management, regard-
less of the amount of data available. Both managers 
and stakeholders can benefit from the application of 
data-poor methods, and from the framework we pro-
vide here to pair methods with fishery goals and avail-
able data.  With better knowledge of the methods and 
their respective data requirements, stakeholders can 
actively drive research and better engage in manage-
ment. Recently, this engagement has expanded with 
growing cooperative efforts, such as fishery indepen-
dent data collection for marine-reserve monitoring for 
stock assessments, Marine Stewardship Certification, 
and FMP development (e.g., California’s abalone, lob-
ster, and urchin fisheries). Ultimately, such efforts will 
help to overcome the barriers of inadequate resources, 
lack of sensitivity to scale, and lack of information 
flow between managers and stakeholders.

Conclusion
On-going collection of high quality data, combined 

with appropriate and comprehensive data analysis, are 
the ideal solutions to the dilemma of data-poor fisher-
ies management.  In the absence of sufficient resources 
to collect and analyze more fisheries data, however, 
responsible fishing practices and management are still 
required. Such challenges seem particularly common 
and acute in low-value fisheries, many of which are 
also small-scale fisheries, which do not generate suf-
ficient revenue to justify large, costly data acquisition 
programs.  

Data-poor and small-scale fisheries need not be 
ignored.  New methods are available for extracting 
more useful information from scant data.  Data-poor 
methods include trend analysis of indicators, vulnera-
bility analysis, extrapolation, decision trees, and MSE 
methods, as summarized in Tables 3 and 4 (see pp. 183, 
184). Each makes valuable contributions to overcom-
ing different fishery management challenges. Trend 
analysis and extrapolation methods, such as DCAC 
(see our page 165 and MacCall 2009) can provide a 
“first look” at stock status from extremely limited data. 
For new and emerging fisheries, vulnerability analy-
ses and extrapolation can yield information useful for 
prioritizing research and management efforts. Deci-
sion trees and MSE facilitate the systematic evaluation 
of available data and management options. None are 
mutually exclusive, as all five of these general catego-
ries may be used together in synergistic and comple-
mentary ways.

We see our work as a step toward organizing exist-
ing information and resources, with a target audience 
of fishery managers and stakeholders, to improve man-
agement choices given limited information. On-going 

collaborative partnerships can extend this effort by 
making information on data-poor alternatives more 
accessible to a larger audience of stakeholders, includ-
ing fishermen themselves. 

Ignorance in fisheries management is not bliss, but 
a risk.  Data-poor methods can reduce our ignorance 
given what we know now, even if that is relatively little. 
Their appropriate application reduces the risks of over-
fishing, fishery collapse, and lost economic yields. This 
improves prospects for biological sustainability and 
economic viability in all fisheries — large and small, 
data poor and data rich.
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