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A method to determine rates and patterns of variability in 
ecological communities 

Scott L. Collins, Fiorenza Micheli and Laura Hartt 

Collins, S. L., Micheli, F. and Hartt, L. 2000. A method to determine rates and 
patterns of variability in ecological communities. - Oikos 91: 285-293. 

It is well known that ecological communities are spatially and temporally dynamic. 
Quantifying temporal variability in ecological communities is challenging, however, 
especially for time-series data sets of less than 40 measurement intervals. In this 
paper, we describe a method to quantify temporal variability in multispecies commu- 
nities over time frames of 10-40 measurement intervals. Our approach is a commu- 
nity-level extension of autocorrelation analysis, but we use Euclidean distance to 
measure similarity of community samples at increasing time lags rather than the 
correlation coefficient. Regressing Euclidean distances versus increasing time lags 
yields a measure of the rate and nature of community change over time. We 
demonstrate the method with empirical data sets from shortgrass steppe, old-field 
succession and zooplankton dynamics in lakes, and we investigate properties of the 
analysis using simulation models. Results indicate that time-lag analysis provides a 
useful quantitative measurement of the rate and pattern of temporal dynamics in 
communities over time frames that are too short for more traditional autocorrelation 
approaches. 

S. L. Collins, Dept of Zoology, Univ. of Maryland, College Park, MD 20742, USA 
(present address: Div. of Environmental Biology, Rm. 635, National Science Founda- 
tion, Arlington, VA 22230, USA [scollins@nsf.gov]). - F. Micheli, National Centerfor 
Ecological Analysis and Synthesis, Univ. of California, Santa Barbara, CA 93101, 
USA. - L. Hartt, School of Biological Sciences, Univ. of Kentucky, Lexington, KY 
40506, USA. 

It is well documented that populations and communi- 
ties are spatially and temporally variable (Dutilleul and 
Legendre 1993, Hastings et al. 1993). Variation, how- 
ever, comes in diverse forms, such as cyclic (microtine 
rodents, Bjornstad et al. [1999]), directional (plant suc- 
cession, Myster and Pickett [1994]), stochastic (patch 
dynamics, Glenn and Collins [1990]), or chaotic (preda- 
tor-prey cycles, Schaffer [1985], Hastings et al. [1993]). 
Moreover, mathematical models have shown that dif- 
ferent temporal dynamics are generated by a number of 
underlying mechanisms (May 1973, DeAngelis and Wa- 
terhouse 1987, Tilman and Wedin 1991, Hanski and 
Gyllenberg 1997). Although laboratory experiments 
have yielded patterns that support some theoretical 
predictions derived from these models (e.g., Con- 
stantino et al. 1995, Dennis et al. 1995), our ability to 
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test theoretical predictions in more complex natural 
systems has been limited by a lack of long-term data 
sets (Tilman 1989). 

Investigations of temporal variability in complex nat- 
ural systems have also been limited by the lack of 
adequate statistics to quantify and compare variability 
across communities each comprised of many species 
(Micheli et al. 1999). The metrics and analytical tools 
for describing and comparing temporal variation in 
aggregate community variates, such as total density or 
biomass, are relatively well developed. Commonly used 
variability metrics include the standard deviation or the 
coefficient of variation of the density or biomass time- 
series data (Gaston and McArdle 1994, Doak et al. 
1998). However, it is often critical to quantify temporal 
variation in the relative abundance of species in a 
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community. For example, anthropogenic perturbations, 
such as acidification of lake waters, can cause no 

change in the total biomass of the plankton, but can 
cause dramatic changes in the relative abundance of 
different species (Frost et al. 1995). Community compo- 
sition, and possibly ecological processes, may be altered 

profoundly without detectable changes in aggregate 
community variates (Frost et al. 1995, Micheli et al. 
1999). 

In this paper, we present a novel analytical method 
that can be used to measure the degree of cyclical, 
stochastic, and/or directional patterns in relatively short 
time-series data sets. The analytical approach is related 
to temporal autocorrelation. Our method measures sim- 
ilarity in community composition at increasing time 

lags to determine the degree of temporal variability and 
the potential for clear patterns of change over time. In 
this paper, we describe our analytical approach and 
demonstrate the utility of the method using simulation 
models and empirical data from vegetation in short- 

grass prairie, an old-field successional sere, and 
zooplankton community dynamics in an experimental 
lake. 

Methods 

Analytical approach 

The analytical approach is a straightforward analysis of 
differences in species composition between samples at 

increasing time lags (Fig. 1). The first step in the 

analysis is calculation of a triangular dissimilarity ma- 
trix from the species-by-time rectangular data matrix 
(i.e., species being the variables and samples in time 
being the observations). For community data we rec- 
ommend using Euclidean distance because of the clear 
geometric properties of this metric, although other met- 
rics may be appropriate, as well. Euclidean distance is 
calculated as: 

Distance matrix 
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Fig. 1. Relationship between Euclidean distance resemblance 
matrix and time-lag regression analysis. Cells in the ED matrix 
represent distances between samples over time. Each diagonal 
of the matrix is an increase in the time step used for compari- 
son among all samples. 

S \1/2 

ED = ( (xj'-xik) 2 

where x,i is the abundance of the ith species in the jth 
sample, and xik is the abundance of the ith species in 
the kth sample, and S is the total number of species. As 
used here, samples correspond to measurements of 

community composition over time. Because differences 
are squared, ED emphasizes change in abundant spe- 
cies from one sample to the next (Ludwig and Reynolds 
1988). Other measures of similarity (quantitative, rank 
order, or presence/absence) could be used for time-lag 
analyses depending on the research questions being 
asked and the abundance measurements of the con- 
stituent species. 

Next, the Euclidean distance values are plotted 
against time lag for all lags below the diagonal in the 

triangular resemblance matrix. For example, a data set 
of 10 species sampled over 6 time intervals would have 
five one-year time lags (year 1 vs year 2, year 2 vs year 
3,... year 5 vs year 6), four two-year time lags (year 1 
vs year 3, year 2 vs year 4, etc.) through one six-year 
time lag (year 1 vs year 6), for a total of 15 time lags 
over the entire data set (Fig. 1). Linear and non-linear 
regressions can then be calculated for Euclidean dis- 
tance as a function of the square root of the time lag. 
The square root transformation reduces the probability 
that the smaller number of points at larger time lags 
will bias the analysis. It is important to note that we use 
regression analysis as a means to summarize trends in 

temporal data sets, not as a statistical method to fore- 
cast or model temporal change. Our approach is con- 

ceptually similar to that of Venrick (1990) who used 
Kendall's correlation coefficients (z) between the rank 
order of abundance in samples separated by increasing 
time intervals to describe long-term trends and commu- 
nity persistence of phytoplankton in the central North 
Pacific. Our goal, however, is to demonstrate the ability 
of time-lag analysis to discriminate among different 
patterns of community change (stochastic variation, 
directional change, and cyclical dynamics). 

The time-lag analytical approach can produce a num- 
ber of general theoretical patterns with time-series data 
(Fig. 2). If the regression line is significant, positive, and 
linear, then it implies that the assemblage in question is 
undergoing directional change. If the regression line is 
not significant or the slope is not significantly different 
from zero, then it implies fluctuation or stochastic 
variation over time. If the slope of the line is negative, 
then it implies species composition is converging on a 
community-type characteristic of one of the early sam- 
ple periods. This result might occur when temporal 
change is non-linear as in cyclical dynamics (van der 
Maarel 1988, Turchin 1993, Bjornstad et al. 1999) or 
community resilience following perturbation (e.g., 
Loucks 1970). In general, the slope of the regression 
line indicates the rate and direction of change, and the 
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Fig. 2. Some theoretical possibilities with time-series data. If 
the distance between samples does not change as time-lags 
increase, then the community is considered to be stable. If 
sample distance increases over time, the community is unstable 
and undergoing directional change. If sample distance de- 
creases over time, then the community is unstable and under- 
going convergence. 

regression coefficient is a measure of signal versus 
noise. For example, a significant positive relationship 
(P < 0.01) with a small slope and a small r2 value 
suggests that directional change is occurring, but 
change is slow and stochastic variation between sample 
intervals is high. A steeper slope and larger r2 value 
would indicate a stronger signal of directional change 
and less noise. 

Empirical data and simulations 

To evaluate the utility and some properties of this 
approach, we conducted time-lag analyses on three 

empirical data sets and constructed simulation models 
that reflect some of the general properties of commu- 
nity change shown within those data sets. The first data 
set from shortgrass prairie was used to demonstrate the 
analytic response of vegetation presumed to exhibit 
stochastic variation over time. Species cover values 
were estimated in 25 0.1-m2 permanent quadrats in an 
ungrazed shortgrass prairie in Morton County, KS 
(Glenn and Collins 1992). Vegetation was sampled an- 
nually from 1962 until 1980. Annual cover values were 
determined by averaging species cover in the 25 
quadrats. Given the lack of disturbance in this grass- 
land, the time-lag analysis is predicted to show high 
variation, and little or no slope for the regression. 

A second data set on old-field succession from the 
Hutchinson Memorial Forest (HMF) long-term succes- 
sion experiment (Small et al. 1971, Myster and Pickett 
1988, 1994) was used to test whether a community 
undergoing directional succession (Myster and Pickett 
1988, 1994) shows the expected positive, linear relation- 
ship in the time-lag analysis. Field 1 at HMF was left 

fallow in the autumn of 1957. Forty-eight permanent 
1-m2 quadrats were established in the first year follow- 

ing abandonment. Plant species composition has been 

sampled annually in this old field from 1958 to 1980, 
and every other year thereafter. For this analysis, we 
used the first 20 years of annual data for our time-lag 
analysis. 

The third data set is derived from zooplankton dy- 
namics in Little Rock Lake, Wisconsin (Frost et al. 
1995). In 1984 the two basins of this lake were divided 

by a curtain. After a baseline period, one basin was 
acidified incrementally to a pH of 4.7 over a six-year 
period, and the control basin remained at pH 6.1. After 
the six years, acidification treatments were stopped, and 
the acidified basin was allowed to recover for five years. 
Zooplankton abundances (measured as biomass) were 
sampled over this time period in the treatment and 
control basins (Frost et al. 1995). For the respective 
time-lag analyses, the control basin should show 
stochastic variation (no slope) because it was never 
disturbed, while the treatment basin should show diver- 
gence (positive slope) from the initial community com- 
position during acidification, followed by convergence 
(negative slope) during the recovery phase. 

In addition to the time-series analyses, all three em- 
pirical data sets were subjected to a DCA ordination to 
help visualize general patterns in community change 
over time. Ordinations were performed independently 
on the three species-by-time matrices. In all cases, 
species were deleted if they occurred in less than 10% of 
samples in each time-series data set, and the remaining 
rare species were downweighted to minimize distortion 
in the ordination (Gauch 1982). 

We used simulation models to test some of the basic 
properties of the time-lag analyses. We used a random- 
walk approach to simulate community change in multi- 
dimensional (multispecies) space. This null approach 
assumed that autocorrelated movement along any sin- 
gle axis was independent of movement along any of the 
other axes (Berg 1993). Thus, changes in species abun- 
dances may be autocorrelated over time but are inde- 
pendent of one another. Two versions of the 
random-walk model were constructed, one for stochas- 
tic dynamics and the other for directional change. In 
both versions, the initial community position in Eu- 
clidean space was found by selecting values at random 
from a uniform distribution of starting values along 
each species axis. In the stochastic version, the position 
along each axis was randomly chosen at every time 
step. In the directional version, an attractor was set at 
a random positive distance away from the initial value 
along each axis. Movement along each axis at every 
time step was random but bounded by a percentage of 
the distance between the position and the attractor at 
the previous time step. Both versions assumed a maxi- 
mum time-series length of 20 units, a total of 20 species 
(axes), and 25 replicate communities. The simulations 
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were performed using Matlab (Mathworks 1997). As 
for the empirical data sets, we analyzed the simulation 
outputs by calculating linear regressions of the square 
root of the time lag (independent variable) versus Eu- 
clidean distance (dependent variable). 

Results 

Shortgrass prairie 

The ordination of the shortgrass prairie plant commu- 
nity suggests that this vegetation changes stochastically 
over time. Based on the ordination, community compo- 
sition in 1962 is similar to that in 1980. The time-lag 
analysis supports this conclusion. The slope of the 
regression line is not significantly different from zero 
and the overall regression is not significant, both fac- 
tors indicating stochastic variation over time (Fig. 3A). 

The stochastic model simulations yield comparable 
results in that the regressions are not significant (F- 
statistic ranges from 0.6 to 0.86), with relatively poor 
fits to the predicted lines (r2 < 0.002) and slopes close 
to zero (-0.6 < m < 1.8) (Fig. 4A-C). Increasing the 
bounds for positions at each time step (from 100 to 200 
to 500), analogous to increasing the amount of stochas- 
tic variation possible at each time step, results in higher 
Euclidean distance values but does not change the 
linear relationships appreciably. 

Hutchinson Memorial Forest succession data 

The ordination of HMF data from field 1 exhibits a 
clear pattern of directional change in composition over 
time. This pattern reflects compositional differences as 
the vegetation changes from annuals early in succession 
to dominance by a series of perennial herbaceous spe- 
cies, through the invasion of woody vegetation. Tempo- 

ral variation from year 1 to 2 and from year 2 to 3 is 
very high as the community changes dramatically dur- 

ing the early years of succession (Myster and Pickett 
1988). After this compositional reorganization occurs, 
the trajectory settles into a clear linear trend in the 
ordination. This conspicuous directional change in the 
ordination is reflected in the strong linear and positive 
regression of the time-lag analysis (Fig. 5). The low r2 
(0.05) reflects the uniqueness of vegetation in years one 
and two. When years one and two are removed from 
the regression, the r2 increases dramatically to 0.61. 

The directional change model simulations, likewise, 
produced significant regressions with positive slopes 
and good fits to the predicted lines (r2 > 0.7). In this 
case, the assumption is that the larger the distance 
between the starting point and the attractor the longer 
the successional sequence. The simulations showed that 
increasing the distance to the attractor resulted in larger 
slopes (m increasing from 55.1 to 105.9 to 200.7 for 
10% movement, Fig. 6A, B, D), suggesting that com- 
munity dissimilarity increased as a function of the 
distance to the attractor. For any given distance to the 
attractor, increasing the possible amount of change in 
abundance at each time step also increased the slope 
(from 105.9 to 124.5 for attractor distances up to 200, 
Fig. 6B, C) and the variance, thereby reducing the r2 
from 0.92 to 0.71. Increasing attractor distance also 
resulted in larger Euclidean distances after the first time 
lag (Fig. 6A, B, D). 

Little Rock Lake 

The ordination of compositional trends for the treat- 
ment and control basins of Little Rock Lake clearly 
showed the effects of the experimental acidification. 
The treated half exhibits directional change away from 
the control followed by a recovery phase after the 
cessation of acid additions (Fig. 7A). Zooplankton 
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Fig. 3. (A) Ordination and (B) 
time-lag analysis of community 
dynamics in shortgrass steppe 
vegetation, western Kansas, 
USA. There is no directional 
change over the 18-yr record 

5 of vegetation composition 
despite high year-to-year 
fluctuation in composition. 

4 

288 

Cq 

CO 0S 

OIKOS 91:2 (2000) 



1400 

1200 

1000 

800 - 

Maximum random fluctuation=100 

y=-0.62x+187.6, r2=0.0005, NS 
A 

600 [ 

400 1 

200 - 

0 

1200 - 

o1000 
ru f- 
.s 800 

a) 600 
.0 

3 400 

200 [ 

0 

1200 - 

1000 - 

800 [ 

600 [ 

H~~~~.? 

Maximum random fluctuation=200 
y=-1.99x+369.4, r2=0.0015, NS 

B 

0 0 0 

i I. I*acIU *l I I I I 

? o! o o :0o1 o ' 
0 

I 
? 1 0 1 : 00:0:,O 

0 0 00 

400 - 

200 - 

0 

Maximum random fluctuation=500 
y=1.70x+930.1, r2=0.0002, NS 

I I I 

0 1 2 3 
Time lag (sqrt) 

4 

Fig. 4. Time-lag analysis of simulated data showing stochastic 
community dynamics. Random-walk models were used to 
generate dynamics of communities with 20 species over 20 
time steps. Each point is an average of 25 replicates. Species 
abundances change independently from one time step to the 
next. Maximum variability was constrained to (A) 100, (B) 
200 and (C) 500 abundance units per species at each time 
step. 

communities in the control half of the lake fluctuate 

stochastically over time (Fig. 7B). The time-lag analysis 
captures these dynamics as predicted. Time-lag regres- 
sion analysis of the control half has high variability at 
all time lags, and no significant slope (Fig. 7C). The 
treatment basin, on the other hand, exhibited direc- 
tional change for the early time lags, followed by 
convergence as this lake basin recovered from acidifica- 
tion. The regression is significant and non-linear as 
predicted. 

Discussion 

Analyses of empirical datasets indicate that the time-lag 
method effectively discriminated between stochastic, di- 
rectional and cyclical patterns of community variation 
in complex multispecies assemblages. In addition, simu- 
lation models demonstrated that this method was ro- 
bust over a range of values of the degree and rate of 

community change. We do not intend to provide a 
detailed description of the dynamics of each empirical 
data set because community dynamics in these systems 
have been described elsewhere (e.g., Myster and Pickett 
1988, 1994, Glenn and Collins 1992, Frost et al. 1995). 
Rather, our purpose was to determine if the time-lag 
analytical approach could capture the essence of the 
dynamics in these thoroughly described and somewhat 
predictable systems. If so, we can then use this analysis 
with some confidence when analyzing data sets where 
the patterns of temporal change are less obvious. In 
addition, the method allows a quantitative comparison 
among sets of data (comparison of slopes), along with 
a means to extract general long-term trends in systems 
with high inter-sample variability. 

The time-lag analysis elicited the expected pattern of 

change in each empirical data set. As predicted, 
stochastic variability occurred in the undisturbed short- 
grass steppe vegetation (Fig. 3). The high degree of 
interannual variation in this plant community resulted 
from stochastic immigration and extinction dynamics 
(Glenn and Collins 1992) and interannual variation in 
climate. Indeed, other evidence suggests that shortgrass 
steppe vegetation is highly stable even under heavy 
grazing by domestic cattle (Milchunas et al. 1990, 
1998). More recently, changes in community structure 
in shortgrass steppe vegetation have been reported in 
response to increasing minimum annual temperatures 
(Alward et al. 1999), but such directional changes were 
not evident in our data set. 

Directional change was evident in the old-field suc- 
cession data set, even though initial interannual varia- 
tion was quite high. This reflects the unique starting 
conditions of early successional communities domi- 
nated by many short-lived annual species (Pickett 1982) 
and leads to the caveat that results from time-lag 
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analysis, like other time series analyses, are somewhat 
dependent on initial sample composition. However, by 
year three, stochastic dynamics on this abandoned field 
decreased and a clear pattern of linear, directional 

change in community composition was evident. Overall, 
results from this successional data set demonstrated 
that starting conditions can create non-linear patterns 
and potentially increase temporal heterogeneity in some 
dynamic systems. 

The time-lag analysis of zooplankton composition in 
the treatment and control lake basins documented the 
stochastic annual variation in the control half of the 
lake and the divergence-convergence dynamics in the 
treatment half. This result clearly illustrated that our 
analytical approach can also quantify non-linear trends 
in community dynamics. 

With respect to the model simulations, because the 
random-walk represents a null model where changes in 

species abundances are independent of one another, it 
represents a good first approximation of variation in 
community composition over time. The model output 
clearly shows that the time-lag analysis method effec- 
tively captures community dynamics when those dy- 
namics are believed to be due to stochastic or 
directional processes. Still, the time-lag approach is 
designed to detect patterns in time series data, it does 
not provide a mechanistic understanding of the cause of 
temporal change in a community. 

In all of our empirical cases, the time-lag analysis 
provided a quantitative assessment of change that 
matched the general temporal variation patterns previ- 
ously documented in these communities, and also 
shown less clearly using DCA ordination. This begs the 
question, "Why bother?". However, time-lag analysis 
has several advantages that cannot be derived from a 
perceived understanding of general patterns or using 
standard statistical techniques. First, the analysis can 
be applied to data sets in which the general temporal 
trends are not obvious, and thus it can be used as a 
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diagnostic tool when the particular type of temporal 
variation of a community is not known. Second, this 
method also reduces complex, multivariate changes in a 
suite of species to a simple univariate metric describing 
community change. Third, by comparing slopes, the 
method provides a quantitative measure of the rate of 
change over time that can be used to compare differ- 
ences among data sets. Fourth, by comparing r2 values, 
the analysis yields a measure of stochasticity along with 
a measure of rate of change. In combination, these 
measurements provide strong inference on the nature 
and pattern of temporal variability in multispecies 
communities. 

Results of time-lag analysis of long-term data on 
plant and animal communities from tallgrass prairie 
(Konza Prairie Research Natural Area, KS, USA) illus- 
trate this point. Time-lag analysis was used to quantify 
temporal dynamics of plant, grasshopper, small mam- 
mal, and breeding bird communities in mature tallgrass 
prairie subjected to 1-yr, 4-yr or 20-yr fire frequencies 
(Collins 2000). The time-lag analysis rendered several 
surprising results. First, plant communities subjected to 
annual spring burning exhibited little interannual varia- 
tion and strong directional change over a 15-yr time 
frame. In contrast, unburned sites were highly variable 
from one year to the next and directional change was 
weak. The opposite was expected given the fundamen- 
tal role of fire in maintaining tallgrass ecosystems 
(Daubenmire 1968). Grasshopper, small mammal, and 
breeding bird communities all showed high interannual 
variation and little directional change regardless of 
burning interval. That is, animal community dynamics 
were decoupled from plant community dynamics in this 
tallgrass ecosystem. None of these patterns was evident 
prior to this time-lag analysis (Collins 2000). 

Our analyses were based on relatively straightfor- 
ward patterns of temporal change in different empirical 
data sets. More complex cyclical and non-linear pat- 
terns of change may occur in some communities, and 
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Fig. 6. Time-lag analysis of 
simulated data showing 
directional change. 
Random-walk models were 
used to generate dynamics 
of communities with 20 
species over 20 time steps. 
Each point is an average of 
25 replicates. Species 
abundances change 
independently from one time 
step to the next, but in this 
case directional change is 
generated by constraining 
species to move towards an 
attractor located at 
increasing distances from a 
random starting point. 
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such complexity deserves further exploration with simu- 
lated and empirical data sets. Time-lag analysis is useful 
for determining the rate and pattern of variation, but it 
does not provide a mechanistic understanding of what 
causes change over time in a community. For example, 
random drift rather than successional dynamics could 
cause directional change in a community. Random drift 
may occur in forest communities, for example, if species 
gained or lost some fraction of abundance at each time 
step via gap dynamics and these changes at each time 
step are uncorrelated. In this random walk process, the 
position at time t + 1 is highly correlated with current 
position (time t), but changes are uncorrelated. Over 
time, this could lead to random drift away from the 
starting point that would look like directional change. 
To test whether or not random drift could lead to 
directional change, we simulated drift with three levels 
of proportional change (10%, 25% and 50%) and three 
ranges in species abundance units (0-100, 0-200 and 
0-500 abundance units). For moderate levels of pro- 
portional change regardless of range in abundance val- 
ues we found significant linear regressions with positive 

slopes (r2 > 0.9 in all cases). Thus, time-lag analysis can 
provide a useful measure of change over time and serve 
as a means to derive hypotheses regarding the mecha- 
nisms that produce change in communities. 

In summary, although patterns of directional, cyclical 
and stochastic variation may be predictable in some 
systems prior to quantitative analysis, time-lag analysis 
provides a statistical evaluation of trends in time-series 
data that are not long enough to be subjected to more 
traditional forms of time-series analysis. This is espe- 
cially true given the high levels of inter-annual variabil- 
ity that are inherent in many time-series data sets. The 
overall utility of this approach can only be assessed by 
applying the technique to different data sets collected 
from different systems, at different spatial scales and 
over variable lengths of time. In addition, simulation 
models exploring the trends generated by different 
mechanisms of community change will help establish a 
link between patterns of community variability and 
underlying processes. For example, models could exam- 
ine the patterns generated when species interactions are 
added to our model assuming that species are indepen- 
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Fig. 7. (A) Ordination and time-lag analysis of zooplankton abundances in (B) control and (C) experimentally acidified basins 
of Little Rock Lake, northern Wisconsin, USA. Acid was added to the treatment basin for the first six years of the 11-yr time 
sequence. The control half exhibits stochastic fluctuation during the entire time period, whereas the treatment half exhibits 
directional change during the acidification phase and convergence during the recovery phase. 

dent of each other. Also, simulations may be used to 

compare the effects of different disturbance regimes, by 
varying the magnitude and frequency of perturbations 
imposed on the simulated system. Our preliminary 
analyses suggest, however, that time-lag analysis pro- 
vides a valuable quantitative measurement of the rate 
and pattern of temporal dynamics in communities over 
time frames that are too short for more traditional 
autocorrelation approaches. 
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