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Abstract. As resource management and conservation efforts move toward multi-sector,
ecosystem-based approaches, we need methods for comparing the varying responses of
ecosystems to the impacts of human activities in order to prioritize management efforts,
allocate limited resources, and understand cumulative effects. Given the number and variety of
human activities affecting ecosystems, relatively few empirical studies are adequately
comprehensive to inform these decisions. Consequently, management often turns to expert
judgment for information. Drawing on methods from decision science, we offer a method for
eliciting expert judgment to (1) quantitatively estimate the relative vulnerability of ecosystems
to stressors, (2) help prioritize the management of stressors across multiple ecosystems, (3)
evaluate how experts give weight to different criteria to characterize vulnerability of
ecosystems to anthropogenic stressors, and (4) identify key knowledge gaps. We applied this
method to the California Current region in order to evaluate the relative vulnerability of 19
marine ecosystems to 53 stressors associated with human activities, based on surveys from 107
experts. When judging the relative vulnerability of ecosystems to stressors, we found that
experts primarily considered two criteria: the ecosystem’s resistance to the stressor and the
number of species or trophic levels affected. Four intertidal ecosystems (mudflat, beach, salt
marsh, and rocky intertidal) were judged most vulnerable to the suite of human activities
evaluated here. The highest vulnerability rankings for coastal ecosystems were invasive
species, ocean acidification, sea temperature change, sea level rise, and habitat alteration from
coastal engineering, while offshore ecosystems were assessed to be most vulnerable to ocean
acidification, demersal destructive fishing, and shipwrecks. These results provide a
quantitative, transparent, and repeatable assessment of relative vulnerability across
ecosystems to any ongoing or emerging human activity. Combining these results with data
on the spatial distribution and intensity of human activities provides a systematic foundation
for ecosystem-based management.

Key words: anthropogenic impact; coastal and offshore ecosystems; ecological recovery; ecosystem-
based management; ecosystem stressor; ecosystem vulnerability; human impact; resilience; threat assessment.

INTRODUCTION

Conservation and management efforts must prioritize

where to spend resources on mitigating impacts of

human activities on the environment. This need has

become increasingly apparent in the California Current,

a region that stretches roughly from the United States–

Canada border to central Baja California, Mexico, due

to both increasing human population size (and associ-

ated environmental impacts) and increased political will

and funding for improving ocean management. Recent

efforts to address human impacts to the marine

ecosystems of this region include the West Coast

Governors’ Agreement on Ocean Health, California

Ocean Protection Council (OPC), and Marine Life

Protection Act (MLPA) Initiative, as well as Oregon’s
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Ocean Policy Advisory Council (OPAC), and

Washington’s Puget Sound Partnership, State Oceans

Caucus (SOC), and Ocean Policy Advisory Group.

The process of assessing threats to species and the

environment and prioritizing actions to mitigate them

has a long history. Many methods have been developed

by academics, agencies, and conservation NGOs;

indeed entire journals and agencies are dedicated to

the topic. In the United States, relevant legislation

includes the Coastal Zone Management Act, National

Environmental Protection Act, Endangered Species

Act, Marine Mammal Protection Act, and National

Marine Sanctuary Act. All require evaluating the

potential negative impacts to species and ecosystems

from stressors associated with human activities.

Together, these methods have been the focus of

thousands of research projects, analyses, and reports

(e.g., Smit and Spaling 1995, Council on Environmental

Quality 1997, Wilcove et al. 1998). Analogous efforts

have been conducted by regional and global conserva-

tion organizations such as World Wildlife Fund’s

ecoregional plans (Olson and Dinerstein 1998) and

Conservation International’s biodiversity hotspots

(Myers et al. 2000).

Nonetheless, despite mandates for comparing impacts

from multiple stressors, these efforts have largely

focused on specific ecosystems, species, or issues. This

focus limits their ability to inform the emerging demand

for cross-ecosystem, cross-sector comparisons of eco-

system–stressor interactions that are necessary for

ecosystem-based management (EBM; Spaling and Smit

1993, Council on Environmental Quality 1997, U.S.

Environmental Protection Agency 1999, Crowder et al.

2006). Indeed, a key challenge for such efforts is that

most marine ecosystems are subjected to many different

human activities, making it difficult to disentangle the

unique contribution and relative importance of each,

especially when each ecosystem likely responds differ-

ently to the stressors associated with each activity

(Halpern et al. 2007). What is needed, then, is a method

for assessing vulnerability that is at the ecosystem scale

and can directly compare across multiple stressors and

multiple ecosystems.

Unfortunately, the methods and metrics to quantify

ecosystem vulnerability to stressors that have been

developed for a single issue, such as pollution, do not

provide a means to compare levels of ecosystem

vulnerability to stressors across a diversity of issues or

ecosystem types. For example, ecotoxicology emerged as

a field primarily in order to evaluate how water quality

affects species and communities, yet these tools cannot

be generalized to other issues. In marine systems,

comparative evaluations have tended to focus on

particular species (e.g., fish stocks, marine mammals,

sea turtles) or issues (e.g., water quality, fishing, habitat

loss) where a common currency, such as population size,

toxin load, or habitat area can be used to quantify

effects. There are notable exceptions, such as the recent

rezoning process on the Great Barrier Reef Marine Park

(Fernandes et al. 2005) and The Nature Conservancy

and World Wildlife Fund’s marine ecoregional assess-

ment processes.

There is growing consensus that ecological vulnera-

bility is a function of exposure, sensitivity, and resilience

to stressors (Metzger et al. 2005, Millennium Ecosystem

Assessment 2005). This shared framework creates the

opportunity to inform and guide ecosystem-based

management (EBM) through the integration of specific

knowledge about vulnerability into an overall assess-

ment of how human activities affect the marine

ecosystems within a region. Ideally, assessments of

overall vulnerability would be based on empirical data

quantifying the expected impact of each stressor on each

ecosystem. However, such data are available for only a

fraction of the stressor–ecosystem combinations

(Halpern et al. 2007).

Because of the lack of comprehensive empirical

information on ecosystem–stressor interactions, expert

interpretation and synthesis are needed to make existing

research directly useful to management. The complexity

of these processes is a common challenge in other fields

such as engineering, sociology, and economics, where

expert judgment is often used to predict failure in

complex machines (e.g., nuclear power reactors) and

understand societies that defy controlled experiments

(Morgan and Henrion 1990, Morgan et al. 2000,

Fischhoff et al. 2006, O’Hagan et al. 2006). Halpern et

al. (2007) presented results from applying a recently

developed method for eliciting expert judgments on the

vulnerability of marine ecosystems to anthropogenic

stressors. In a quantitative model, experts estimated

values of five components of ecosystem vulnerability:

spatial scale, frequency, trophic impact, percentage

change (resistance), and recovery time. The five compo-

nents, called vulnerability criteria, were based on metrics

of exposure and sensitivity to stressors (Table 1).

Because ecological vulnerability is a fairly abstract

concept, structuring the collection of expert knowledge

on vulnerability into these five more concrete factors

creates more consistency and transparency to the use of

expert opinion. The values for the five criteria are then

combined to create a single score, which expresses the

relative vulnerability of each ecosystem to each stressor.

These quantitative vulnerability scores can be used to

rank stressors or rank ecosystems to guide management

or conservation priorities in mitigating human impacts.

Rather than seeking group consensus, assessments are

based on the distributions of expert judgments, allowing

users to see the range of opinion.

The Halpern et al. (2007) method has two important

shortcomings that are now addressed in this study. First,

the five vulnerability criteria were weighted equally when

combined into a single score. However, it is possible that

experts are more concerned with one criterion, such as

recovery time, than another, such as frequency of

exposure, when judging what makes an ecosystem
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vulnerable to a stressor. Although equal weights often

approximate more complex weighting schemes (Dawes

1979, Camerer 1981, Dawes et al. 1989), the stakes are

high enough in marine resource management to assess

weights empirically. Second, experts assessed their

uncertainty with verbal quantifiers having no clear

quantitative equivalent. Without a more explicit repre-

sentation of uncertainty, policy makers cannot know

how much faith to place in the judgments, and scientists

cannot fairly evaluate their predictions (Morgan and

Henrion 1990, O’Hagan et al. 2006, Fischhoff 2009).

Our work here takes advantage of a long history in

the decision sciences of assessing how to set priorities

(e.g., rank threats) when data are scarce and uncertainty

exists by using the best available scientific judgments

(e.g., Morgan and Henrion 1990, Fischhoff 2005, Willis

et al. 2005). Basic research in human judgment has

documented many ways in which unaided judgments

(e.g., off-the-cuff assessments such as simply listing the

rankings of threats) can produce results that do not

stand up to more careful validation (Payne et al. 1992,

Lichtenstein and Slovic 2006). One common approach

to aid the elicitation of expert judgment is to use discrete

choice tasks to help experts summarize their beliefs

(Cooke and Goossens 2004). Here we apply one such

approach based on ranking hypothetical scenarios of

human impact to determine the relative importance of

the five vulnerability criteria to expert judgment on how

human activities in the California Current affect 19

different marine ecosystems. Variants on this approach

have been used to assess risks in other complex

uncertain situations where empirical knowledge is

limited, such as complex engineered systems and disaster

management (Cooke and Goossens 2004).

In this study we elicited judgments from scientific

experts who study marine ecosystems within the

California Current region in order to develop a deeper

understanding of marine ecosystem vulnerability to a

diversity of anthropogenic stressors. Even in this data-

rich part of the world, critical and numerous gaps in

empirical research remain, and our methods help fill

these gaps in a low-cost, repeatable, and transparent

manner. Our approach generates a matrix of relative

vulnerability scores for every stressor-by-ecosystem

combination that can be useful for management

decisions and tools requiring detailed quantitative data

about multiple human uses of the oceans at regional

scales. Elsewhere, we use results from this study to

inform a concurrent project mapping human activities

across ecosystems in order to identify areas of particu-

larly high or low cumulative impact (Halpern et al.

2009). In addition to informing management efforts

dealing with these specific stressors within the California

Current, we hope to demonstrate the utility of methods

that can be applied elsewhere in the world.

METHODS

Generating a matrix of vulnerability scores for all

ecosystem–stressor combinations requires three compo-

nents: (1) a comprehensive list of the relevant ecosystems

and human stressors for the region, (2) estimated values

for the five vulnerability criteria for every stressor–

ecosystem combination, and (3) the weights determining

how to combine the criteria values into a single score.

For the first component, ecosystem and stressor lists

were based on a previous list (Halpern et al. 2007), and

refined with input from two experts on California

Current ecosystems (M. Beck of The Nature

Conservancy and M. Ruckelshaus of NOAA Fisheries

Service, personal communications). We included 19

distinct ecosystem types and 53 anthropogenic stressors.

We acknowledge that there are additional historical

stressors that humans have not imposed upon the system

within the past five years, and some of these stressors

have had a lasting effect on the system through to the

present day. We ignored these historical stressors and

focused only on present-day stressors, which the system

has been exposed to within the past five years. To achieve

the second and third components, we designed an expert

survey focused on estimating the values for the five

vulnerability criteria and eliciting their relative impor-

tance in judging vulnerability using a discrete choice

approach (Appendix A). The five vulnerability criteria

were developed previously (Halpern et al. 2007) in a

workshop of conservation scientists and ecologists to

represent whole-ecosystem vulnerability to a stressor

(Table 1; see Appendix A, Part III, for more detailed

criteria definitions). We use these same five criteria, but

resistance is now defined as a continuous variable (i.e.,

percentage change). Criteria values take into account

TABLE 1. Description of the five vulnerability criteria used to evaluate ecosystem vulnerability to each stressor.

Vulnerability
criterion Description

Spatial scale The spatial scale (km2) at which a single act of an activity impacts the ecosystem, both directly
and indirectly.

Frequency The mean annual frequency (days per year) of the activity at a particular location within a given region.
Trophic impact The primary extent of marine life affected by an activity within a given ecosystem and region.
Percentage change The degree to which the species, trophic level(s), or entire ecosystem’s ‘‘natural’’ state is impacted

by the activity.
Recovery time The mean time (in years) required for the affected species, trophic level(s), or entire community to return

to its former, ‘‘natural’’ state following disturbance by a particular activity.
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both direct effects (e.g., species mortality) and indirect

ones (e.g., loss of nursery habitats). The mathematical
basis for deriving the vulnerability model and the process

of determining the criterion weights using a discrete
choice survey are described in the next section.

Multi-criteria decision model

The vulnerability model treats vulnerability as a
weighted sum of the five criteria (Table 1) represented

mathematically as

Vulnerabilityðstressor i; ecosystem jÞ ¼
X

k¼1;...;5

WkSj
i;k ð1Þ

where Sj
i;k is the value of stressor i on criterion k in

ecosystem j, andWk is the weight assigned to criterion k,
such that Wk�0, Rk¼1,. . .,5 Wk ¼ 1. The coefficients, or

weights, are normalized so that they sum to unity. The
weights are assumed to be the same for all ecosystems

and stressors under consideration. This assumption
allows for a single model to be applied to all

ecosystem–stressor combinations, in turn allowing for
direct comparison among them. While many mathemat-

ical models exist for combining the weights to create a
single value (e.g., linear, logarithmic, polynomial),

because environmental vulnerability is expected to be
monotonic for all criteria (i.e., higher values denote

greater impacts) it can be reasonably approximated by a
simple linear model with positive coefficients.

To derive the relative weightsWk of each vulnerability

criterion we used a type of discrete choice task in which
the expert is presented with a list of scenarios of

anthropogenic stressors in a hypothetical region and

ecosystem type (Table 2; see Part III of the survey

instrument in Appendix A). Each scenario represents a
different stressor, and hypothetical but realistic values

for the five criteria are provided next to each scenario

name. The expert must rank the top five scenarios that

they judge to produce the largest negative human impact
at the ecosystem level. The choice of five here is

unrelated to the fact that there are five vulnerability

factors; it is simply a large enough number to provide
necessary data on the expert’s decision-making process.

Ranking the remaining scenarios is not only cognitively

challenging but also unnecessary for the statistical
analysis (Coombs 1964, Fischhoff 2005, Lichtenstein

and Slovic 2006). The data on the expert’s rankings are

used in a statistical technique called ‘‘probabilistic
inversion’’ (explained below) to derive the relative

weights (summing to one) of the five criteria (Cooke

and Goossens 2004, Fischhoff 2005, Du et al. 2006,
Neslo 2008; see Analyses section below).

The derivation of the model weights uses a multi-

criteria decision model (MCDM), a type of random

utility model common to economic theory of utility. The
MCDM treats the vulnerability criteria weights as

random variables whose joint distribution is chosen to

represent a population of experts, from which the
elicited experts may be regarded as a random sample.

Thus, the confidence intervals on the estimated weights

reflect disagreement among the experts. To determine
the joint distribution over the weights, we used

probabilistic inversion, which inverts a mathematical

model at a distribution or set of distributions and is

analogous to maximum likelihood estimate methods.

TABLE 2. In Part III of the survey, each respondent received either a coastal or offshore version of the table below with 30
hypothetical scenarios (only a subset is presented here). All criteria values were identical between the coastal and offshore
versions, but some scenario names were different.

Coastal Offshore
Spatial

extent (km2)
Frequency
(no./yr)�

Trophic impact
(level 1–4)

Percentage
change

Recovery
time (yr)

Aquaculture: marine
plant

Aquaculture: finfish
(predators)

2 360 1 20 1

Aquaculture: shellfish Shipping: commercial,
cruise, ferry

5 360 1 5 0.1

Climate change: sea level rise 10 000 1/2 2 20 5
Climate change: sea temperature change 50 000 1 3 25 50

Climate change: UV change 10 000 1/10 1 5 1

Coastal engineering:
habitat alteration

Ocean mining: sand,
minerals, etc.

1 1 4 75 25

Direct human impact:
trampling

Disease/pathogens 150 360 2 35 25

Fishing: demersal destructive 8 1/20 4 10 0.5
Fishing: demersal nondestructive low bycatch 0.1 1/20 1 10 0.5

Fishing: nondestructive
artisanal�

Fishing: demersal
nondestructive high
bycatch

1 1/20 1 50 1

Notes: Survey respondents were asked to rank the five hypothetical scenarios with the greatest impact based upon the
vulnerability measures provided in the table. Respondents were also asked to not limit their ranking to a particular region and
ecosystem, in contrast to the ‘‘stated ranks’’ activity, because the numbers represent a hypothetical coastal or offshore ecosystem in
a hypothetical region.

� Fractions such as 1/2, 1/10, and 1/20 signify once every 2, 10, and 20 years.
� Artisanal refers to fishing practices such as traditional fishing on a small-scale, often subsistence or small-scale commercial

fishing.
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Conceptually, the process returns values for the weights

that reflect the importance of each weight in the expert’s

decision-making. For instance, if scenarios with large

values for recovery time tend to be given high rankings,

recovery time would get a large weight, and if trophic

impact values show no relationship to the rankings,

trophic impact would get a small weight.

Operationally and more accurately, probabilistic

inversion finds a distribution for a function that maps

onto the target distribution for the set of five vulnerabil-

ity weights. Thus, given potential weights, we may define

a function using Eq. 1 that says, in effect, ‘‘scenario 20 is

ranked first, scenario 7 is ranked second,’’ and so forth.

Our expert elicitation data might in turn indicate, for

example, ‘‘10% of the experts ranked scenario 20 first,

35% ranked scenario 7 second . . ..’’ We search for a

distribution over the weights that, when pushed through

our function, realizes these probabilities. We assume that

each expert’s ranking is determined by Eq. 1 but with

weights Wk that are specific to that expert. The expert

population is represented as a distribution over possible

weight variables (W1, . . . ,W5). This distribution should

be such that, continuing the above example, when

sampled a large number of times, scenario 7 comes in

second place 35% of the time. This correspondence must

hold for all scenarios and all rank positions, from first

ranked to fifth ranked. Scenarios with both low and high

values for each criterion must be included to properly test

their relationships to the rankings. Consequently, we

chose criteria values for the 30 scenarios to capture the

full range of possible combinations. The method used

here to search for this distribution is based on the

iterative proportional fitting algorithm, which finds a

constrained maximum likelihood estimate of a joint

distribution based on the sorts of constraints discussed

previously (Csiszar 1975, Kurowicka and Cooke 2006).

Analyses were conducted with a program scripted in Cþ
because no software currently exists for these analyses;

one could use other programs separately for the MCDM

and probabilistic inversion.

Random utility models allow for internal validation

of the model, providing a more explicit and quantitative

representation of uncertainty. Validation is based on (1)

the number of inconsistencies, defined as cases where a

hypothetical scenario (ecosystem–stressor combination)

with lower scores on all five criteria is ranked as a

greater stressor than a scenario with higher values on all

five criteria, and (2) the ability of a model built with a

subset of the expert discrete choice data to predict the

remaining scenario rank orders.

The survey instrument

In May 2007, a preliminary draft of the survey

instrument was tested and revised based on input from a

sample group of seven experts, none of whom partici-

pated in the final survey. The revised survey (see

Appendix A) was then provided to respondents for

completion by hand, phone, online, or in-person

interview from June to October 2007. We asked experts

to focus on one or more of six subregions, delineated to

represent jurisdictional and biogeographic regions, and

one or more of 19 marine ecosystem types (see Appendix

A, Part I). The subregions are Washington, Oregon,

northern California (San Francisco and north), central

California (south of San Francisco to Point

Conception), southern California (south of Point

Conception), and Baja California, Mexico (north of

Punta Eugenia). Respondents could expand or narrow

their focal subregion(s) and ecosystem(s) in different

parts of the survey.

The survey had four parts. In Part I, participants

provided biographical information, such as professional

affiliation(s) (academic, agency, non-governmental or-

ganization, or private company), age, and years of

scientific experience within each ecosystem and within

each geographic subregion. These data were used to test

for possible drivers (i.e., bias) of expert judgment. In

Part II, participants reviewed the list of 53 stressors,

divided into 22 categories, and ranked the five stressors

with the greatest negative impact on their chosen

ecosystem and subregion. The 53 stressors were the

same on every survey, but the order of the list was

randomized by category to minimize potential order

biases. Respondents could add or revise stressors. These

‘‘stated rankings’’ were obtained so that we could assess

(1) whether we had captured all important stressors, and

(2) whether the rankings would come out differently

when simply stating them directly (i.e., unaided judg-

ments), with no information on vulnerability criteria

values and no statistical framework, in comparison to

the process of deriving rankings with the MCDM. Part

III elicited expert rankings for an individual’s top five

hypothetical scenarios where criteria values were sup-

plied for example stressors (Table 2), providing the

information necessary for the random utility model to

derive the weights in Eq. 1. Labels such as ‘‘dredging’’ or

‘‘recreational fishing’’ were provided for the 30 scenar-

ios, even though the values were hypothetical, to provide

examples. In order to test the influence of the scenario

names on the ranking process, we produced two versions

of Part III, one for offshore ecosystems and one for

coastal ecosystems, such that eight of the 30 scenarios

had different labels but identical criteria values. We used

these two expert groups (i.e., offshore and coastal) to

compare if weighting values differed by system.

Part IV provided participants with default vulnera-

bility criteria estimates for each stressor affecting their

chosen ecosystem, based on values from a global survey

(Halpern et al. 2007) or our own judgment (when a

stressor was not in the global survey). Stressors not

thought to exist or to have no relevant impact in that

ecosystem were assigned zero for all vulnerability

criteria. Participants then used their judgment to accept

or revise each estimate, or indicate that they did not

know what it should be. These data were used to

estimate values for Sj
i;k in the vulnerability model.
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Survey respondent pool

For inclusion in the potential respondent pool, we

identified scientific experts with personal experience in

marine science, conservation, management, or policy

within the California Current and affiliated with

academic institutions, governmental agencies, non-gov-

ernmental organizations (NGO), or private environ-

mental consulting firms (most scientific experts fall

within these four affiliations). Potential respondents

were identified via web-based searches using ecosystems,

stressors, and locations as key words, based on our

knowledge of the field and literature, and by requesting

that respondents identify other experts possibly missing

from our original list. Invitations were sent to 525

people, including 27 based in organizations located

outside of the California Current (in Australia, Canada,

mainland Mexico, and Baja California Sur, Panama,

and Spain). One hundred fifty-five invitees self-identified

themselves as non-experts (i.e., inappropriate or mis-

taken contacts), resulting in 370 potential expert

respondents (see Table 3 for expert attributes). An

additional 130 of these never responded so it is unclear

whether they received the invitation or were truly

appropriate experts, leaving a pool of 240 confirmed

potential experts.

Analyses

Producing vulnerability criteria weights.—Prior to all

analyses, scale and frequency measures were trans-

formed (i.e., scale ¼ ln[scale 3 100] and frequency ¼
ln[frequency 3 360]) to produce positive values on

roughly equivalent scales as the other three criteria. This

rescaling helps avoid a single criterion driving results

simply because it has higher values from which to

choose. For each hypothetical scenario in Part III, we

calculated the percentage of experts who ranked the

scenario first, second, third, fourth, and fifth, and then

used probabilistic inversion to calculate the weights that

best reproduced these observed percentages. Results

were compared for model runs using the first ranking,

the first two rankings, the first three rankings, and the

first four rankings in order to evaluate if the number of

ranks used affected the weighting values. We calculated

these weights for all respondents (N ¼ 102; five experts

did not fill out this part of the survey), and for coastal

(N¼ 66) and offshore (N¼ 36) versions of the survey to

evaluate if system (coastal vs. offshore) affected weight

values.

To test the validity of our multidimensional vulner-

ability model we first assessed the degree to which our

five vulnerability criteria capture the factors experts use

to rank vulnerability. To do this we compared the

number of inconsistencies in scenario rankings (e.g., a

case where a scenario with high values for all

vulnerability criteria and one with low values are both

ranked highly) with the number of inconsistencies

generated by a null hypothesis that experts rank

scenarios randomly without regard for the criteria

values. If more inconsistencies emerge than would be

expected at random, either experts used criteria beyond

the five provided and/or experts did not understand or

correctly execute the task. This method is one way to

quantify the uncertainty in expert judgment using a

measure of internal validity. We also used criteria

weights from the model based on the first four ranked

scenarios to predict experts’ fifth-ranked scenario and

compared these to actual fifth ranks from expert

judgment to assess how well our model captured expert

judgment.

Ecosystem vulnerability scores.—Vulnerability criteria

values from Part IV were averaged across replicates (i.e.,

surveys completed by participants) for each ecosystem

to estimate Sj
i;k and combined with the weightsWk in Eq.

1 to produce a vulnerability score for each stressor-by-

ecosystem combination. We also calculated an overall

average score for each stressor from the average scores

for the 19 ecosystems and an average ecosystem

vulnerability score from the scores for the 53 stressors

for each ecosystem and used these averages to compare

among subregions and between coastal and offshore

ecosystems. We were unable to rigorously test whether

ecosystem vulnerability scores differed by subregion

because this test requires the sample size for an

ecosystem to be large in all six subregions and in no

case did this occur. However, sample size was large

enough for 17 ecosystem–subregion comparisons (see

Table 4 for specific pairwise comparisons) to allow for a

partial test of subregional differences. To compare

vulnerability scores between subregions for a given

ecosystem we (1) averaged stressor vulnerability scores

across respondents within a single subregion (instead of

lumping subregions), (2) used two-tailed paired-sample t

tests to test for significant differences across subregions,

and (3) used correlations to measure the strength of

simple linear relationships between ranking values for

subregions for the full set of stressors. Stressors were

TABLE 3. Number of survey responders and nonresponders per affiliation and gender category.

Category

Affiliation Gender

TotalAcademic Agency NGO Private Male Female

Nonresponders 120 94 49 0 192 71 263
Responders 56 33 16 2 80 27 107

Total 176 127 65 2 272 98 370
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excluded from individual surveys when one or more of

the vulnerability criteria were not provided or when a

subregion had only a single response for the stressor

(e.g., some respondents did not fill in values for all 53

stressors).

Potential respondent bias.—We used chi-square tests

to evaluate potential differences between responders and

nonresponders based on gender or affiliation. Within the

responder group, we examined possible differences in

experts’ assessment of criteria values (Part IV) based on

demographic information collected in Part I, using

ANOVA (for affiliation), t test (for gender), and least-

squares regression (for years of experience). For these

tests we averaged all criteria values from all stressors,

transformed, as described previously, for each respon-

dent. Seven experts did not complete this section,

resulting in a sample size of 95.

Comparing directly stated and modeled ranks.—We

also compared experts’ directly stated ranks, collected in

Part II, to the ranks produced by the model using

Spearman’s rank correlation analysis. Because ecologi-

cal vulnerability to stressors is a fairly abstract concept,

we expected little consistency in top rankings from Part

II across experts, and substantial deviation of these

rankings from those generated by the statistical model,

which breaks down the abstract concept into more

concrete, specific subcomponents that are each quanti-

fied separately. To rank directly stated responses, we

counted how often each stressor was among experts’ top

five ranks regardless of ecosystem. This method was

chosen over a strict average rank because it is less

sensitive to unusually high rankings. We used average

ranks to break ties.

RESULTS

Survey pool

Out of the 240 confirmed potential expert respon-

dents, 107 responded (45% response rate) by completing

one or more surveys (N ¼ 160 surveys). Respondents

were from academic institutions (52%), government

agencies (31%), NGOs (15%), and private consulting

firms (2%), and included 80 males (75%) and 27 females

(25%; Table 3). Thirty-nine respondents (36%) filled out

more than one survey, 49 surveys addressed more than

one subregion (mean¼ 1.6 6 0.1 subregions; maximum

¼ 6), and nine surveys addressed more than one

ecosystem (mean ¼ 1.1 6 0.1 ecosystems; maximum ¼
9). One survey was eliminated due to unclear responses.

The completed surveys covered 95 of the 120 possible

ecosystem-by-subregion combinations, with 1–13 sur-

veys per combination (see Appendix B). As no expert

evaluated vents/seeps, this ecosystem was excluded from

all analyses. Respondents’ maximum reported years of

experience within the marine ecosystems or subregions

averaged 18.6 6 1.1 years. On average, respondents had

14.4 6 0.9 years of experience within their chosen

ecosystem and 13.9 6 0.6 years of experience within

their chosen subregion (see Appendix C for average

years of experience per ecosystem per subregion).

Additionally, offshore ecosystems tended to be evaluat-

ed by fewer experts (3.2 6 1.0 experts) than coastal

ecosystems (7.2 6 1.4 experts). Of the 263 potential

respondents who did not complete a survey, 130 never

responded (after at least three reminders), 115 did not

respond after initially accepting the invitation (and after

at least three reminders), 12 declined but gave no reason,

and six declined because they did not feel comfortable

filling out the survey.

Potential survey bias

Affiliation and gender did not significantly differ

between invited experts who completed the survey

(responders) and those who did not (nonresponders:

affiliation, v2¼ 6.75, df¼ 3, P¼ 0.08; gender, v2¼ 0.121,

df¼ 1, P¼ 0.728; Table 3). The marginal significance for

affiliation is due to the higher rate of response from

academic experts. Vulnerability criteria values Sj
i;k (Part

IV) showed no significant differences associated with

affiliation (ANOVA, F3,93 ¼ 0.36, P ¼ 0.78), gender (t

test, t¼ 1.86, P¼ 0.07), or years of experience (bivariate

linear regression, R2 ¼ 0, P ¼ 0.88). The marginally

significant result for gender reflected a single extreme

outlier; when removed, gender showed no trend (t ¼
�0.058; P ¼ 0.95).

TABLE 4. Subregional comparisons of four ecosystems (kelp
forest, rocky intertidal, rocky reef, and seagrass) based on
linear correlations of all stressor values and two-tailed
paired-sample t tests.

Ecosystem
and subregional
comparison N Correlation t P

Kelp forest

CCA vs. SCA 49 0.60 �1.05 0.30

Rocky intertidal

WA vs. OR 33 0.90 7.30 ,0.0001
WA vs. CCA 23 0.72 1.94 0.07
WA vs. SCA 45 0.87 5.02 ,0.0001
WA vs. BCA 27 0.86 5.57 ,0.0001
OR vs. CCA 20 0.75 1.39 0.18
OR vs. SCA 33 0.93 �1.98 0.06
OR vs. BCA 23 0.95 0.03 0.98
CCA vs. SCA 24 0.75 �1.78 0.09
CCA vs. BCA 14 0.62 �0.93 0.37
SCA vs. BCA 29 0.89 �1.19 0.25

Rocky reef

OR vs. CCA 8 0.79 �2.75 0.03
OR vs. SCA 17 0.71 �1.02 0.32
CCA vs. SCA 4 0.96 �0.18 0.87

Seagrass

NCA vs. SCA 19 0.77 2.03 0.06
NCA vs. BCA 14 0.36 �3.03 0.01
SCA vs. BCA 39 0.35 �5.18 ,0.0001

Notes: Sample sizes (N ), correlation coefficients, t ratios, and
P values are shown. Abbreviations for subregions: WA
(Washington), OR (Oregon), NCA (northern California),
CCA (central California), SCA (southern California), and
BCA (Baja California, Mexico).
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Vulnerability criteria weights and model validation

The MCDM produced highly uneven weightings for

the five vulnerability criteria. Percentage change in

biomass (resistance) and trophic impact together ex-

plained 89% of the overall weights of ecosystem

vulnerability (66.5% and 22.1%, respectively). Recovery

time had a small contribution to the overall vulnerability

score (Table 5). These weights were highly consistent

regardless of the number of ranks used to develop the

model (one, two, three, or four). Using the top four

ranks produced good predictions of the stressor ranked

fifth by the experts; the frequency of each scenario being

predicted to be fifth was highly similar to the frequency

of experts selecting it as their fifth-ranked scenario (mean

difference 0.001 6 0.01 SE). Furthermore, there were

significantly fewer inconsistencies than expected by

random. Twenty-three of the 30 scenarios could produce

inconsistencies (i.e., ranking one of these scenarios

higher than the other seven would be ‘‘inconsistent’’).

Of the 102 experts only 15 chose one of these inconsistent

scenarios as rank 1. The probability of observing so few

inconsistencies is extraordinarily low (7 3 10�40),

suggesting that experts generally understood the ranking

task.

Vulnerability scores

Vulnerability scores for all ecosystem–stressor com-

binations are provided in Table 6. Sample sizes for the

criteria values used to produce these scores ranged from

zero to 17. Across all values that experts assigned to the

five criteria, 25.5% were marked zero (i.e., stressor was

not a threat to the ecosystem), 21.0% marked ‘‘don’t

know,’’ 12.9% left blank, and 0.3% marked ‘‘disagree’’

(i.e., experts disagreed but did not provide an alternate

value). If a stressor–ecosystem combination had no

expert responses, we used default criteria values from

previous analyses (Halpern et al. 2007). There is a

significant relationship between mean sample size and

mean vulnerability score per ecosystem (linear regres-

sion: R2¼ 0.30, P¼ 0.02), suggesting that low response

rates for some ecosystems may have resulted in lower

vulnerability scores. However, this relationship has a

low R2 and is not significant when ecosystems with a

mean sample size of less than four (Table 6) are

excluded (R2¼ 0.02, P¼ 0.76). Stressors were evaluated

by 88.9 6 0.6 experts, on average.

Ocean acidification in soft slope, hard slope, and in

hard deep ecosystems had the highest vulnerability score

observed (3.4) and scores for this stressor exceeded 1.2
for all ecosystems (Table 6). On average, scores were

greater in coastal than offshore ecosystems, most

notably higher (.1.0 difference) for sea level rise, UV

change, altered flow dynamics, habitat alteration, and

invasive species. Only demersal destructive fishing was

notably higher in offshore ecosystems. Coastal ecosys-
tems were judged most vulnerable to (in decreasing

order) invasive species, ocean acidification, sea temper-

ature change, sea level rise, and habitat alteration from

coastal engineering; while the stressors with the highest

scores for offshore ecosystems were (in decreasing order)
ocean acidification, demersal destructive fishing, ship-

wrecks, military activity, and lost fishing gear (Table 6).

On average, coastal ecosystems were judged to have

some degree of vulnerability (scores . 0.0) to nearly all

of the 53 stressors evaluated here (43.7 6 2.2 stressors),
while offshore ecosystems were estimated to be vulner-

able to less than half of the stressors (24.6 6 3.7

stressors).

There were over 30 additional stressors that experts

felt were not appropriately captured by our 53 stressors

(see Appendix D). Some of these include alteration of
tributaries and watersheds, altered oceanographic re-

gimes (e.g., wind, circulation, or upwelling) due to

climate change, global temperature change (not just sea

temperature change), non-toxic algal blooms, illegal

harvesting (poaching or harvesting by the public), kelp
harvesting, wave energy development, and oil explora-

tion and drilling (as distinguished from oil rigs and

ocean mining).

Subregional comparisons

Overall, the four middle subregions (Oregon and the
three California subregions) had no significant differ-

ences in vulnerability scores for the ecosystems for which

comparisons could be made, except for the central

California and Oregon rocky reef ecosystem comparison

(Table 4). For the one ecosystem for which comparisons

TABLE 5. Mean weighting values for vulnerability criteria based on model results from the first stressor, and the first two, three,
and four stressors ranked.

Model
No. top

ranks included
Spatial

extent (km2)
Frequency
(no./yr)

Trophic impact
(level 1–4)

Change
(%)

Recovery
time (yr)

Combined 1 0.033 0.053 0.201 0.692 0.020
2 0.067 0.089 0.299 0.532 0.014
3 0.073 0.044 0.198 0.672 0.014

�4� 0.061 6 0.008 0.046 6 0.007 0.221 6 0.022 0.665 6 0.029 0.008 6 0.001
Coastal 4 0.072 0.046 0.226 0.650 0.006
Offshore 4 0.055 0.057 0.250 0.624 0.015

Notes: All surveys were included in the ‘‘combined’’ models; results of separate model runs for ‘‘offshore’’ or ‘‘coastal’’ ecosystem
surveys are shown only for the first four stressors ranked. The second column gives the number of top stressor ranks used to
calculate the model. Standard error (6SE) is given for the combined model using the first four stressors ranked.

� Model used for subsequent analyses.
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TABLE 6. Vulnerability scores for 53 stressors in 19 ecosystems.

Stressors

Coastal ecosystems Offshore ecosystems

KF RR SG Shl SR BE MF RI SM SSh SSl SD HSh

Aquaculture: finfish (herbivores) 0 0 0 0 0 0 0 0 0 0 0 0 0
Aquaculture: finfish (predators) 0.2 1.0 0.3 0 0 0 0 0.2 0 0.9 0.5 0 0.7
Aquaculture: marine plant 0 0 0.4 0 0 0 0.3 0.8 0.4 0 0 0 0
Aquaculture: shellfish 0.4 0.5 1.6 0.5 1.5 0 1.1 1.0 0.9 0.2 0 0 0
Benthic structures (e.g., oil rigs) 1.6 1.7 1.6 1.4 2.0 1.4 2.4 0.9 1.8 2.2 1.4 0.4 2.4
Climate change: ocean acidific. 2.0 2.2 2.1 1.2 2.5 1.8 2.4 3.1 2.4 2.6 3.4 2.5 2.7
Climate change: sea level rise 1.8 1.5 1.9 0 2.2 1.7 1.9 2.7 2.5 0 0 0 0
Climate change: sea temp. change 2.9 2.2 1.9 0 2.2 1.7 1.8 2.7 1.8 1.7 0.6 0.5 1.9
Climate change: UV change 1.6 1.7 1.5 0 1.8 1.8 1.7 2.3 1.9 0 0 0 0
Coastal engineer.: alt. flow dynam. 1.2 0.7 1.1 0.6 2.4 1.3 2.0 1.5 2.5 0.2 0 0 0
Coastal engineer.: habitat alteration 1.4 1.1 1.6 0.6 2.4 1.3 2.1 1.7 2.7 0.2 0 0 0
Direct human impact: trampling 0.1 0.2 0.8 0.3 0 1.7 0.3 1.6 1.0 0.1 0 0 0
Disease/pathogens 1.0 1.0 0.9 0 1.5 1.1 1.1 1.1 0.8 0.9 0 0 1.1
Dredging 0.1 0.2 1.7 0.5 2.2 1.6 1.7 0.2 1.3 0.6 0 0 0
Fishing: aquarium 0.7 0.7 0.1 0 0 0 0.1 0.6 0.1 0.2 0 0 0
Fishing: demersal destructive 0.3 1.2 0.2 1.2 0 0.9 1.1 0.7 0.3 2.0 2.3 2.2 1.6
Fishing: demrs. non-des. high byc. 1.2 1.3 0.6 0.6 0.8 1.3 0.9 0.4 1.0 1.3 1.3 1.3 1.3
Fishing: demrs. non-des. low byc. 1.2 1.2 0.5 0.4 1.6 0.8 0.7 0.4 0.8 0.8 0.9 0.8 1.1
Fishing: destructive artisanal 0.2 0.1 0.2 0 1.5 0.8 0 0.7 0.8 0 0 0 0
Fishing: non-destructive artisanal 0.2 0.3 0.4 0.2 0.9 0.7 0.6 0.8 0.6 0.2 0 0 0
Fishing: pelagic high bycatch 0.3 0.9 0 0 0 0 0 0.2 0.6 0.2 0 0.1 0
Fishing: pelagic low bycatch 0.2 0.8 0 0 0 0 0 0 0.4 0.3 0.3 0 0
Fishing: recreational 1.5 1.4 0.9 0.8 0.9 1.0 1.1 1.2 1.0 0.4 0 0.8 1.2
Freshwater input: decrease 0.2 0.1 0.6 0 0 0.6 1.1 0.8 1.5 0 0 0 0
Freshwater input: increase 0.8 1.0 0.8 0 0.8 0.9 1.2 1.1 1.4 0 0 0 0.8
Invasive species 2.4 1.8 1.7 1.3 2.1 3.2 3.0 2.6 2.0 0.7 0 1.1 1.5
Marine component of forestry 0 0 0.5 0 1.1 0.6 0.7 0.5 0.9 0.3 0 0 0
Military activity 1.0 0.3 0.8 0.6 0 1.4 0.8 0.4 0 1.3 1.2 1.2 1.3
Nutrient input: causing HABs 1.1 1.3 1.1 0.5 2.1 1.7 1.7 1.1 1.4 1.1 0 0 1.4
Nutrient input: causing hyp. zones 1.0 1.2 0.9 0.4 2.2 1.5 1.6 0.8 1.4 1.5 0 0 1.8
Nutrient input: into eutrophic water 0.9 1.0 0.9 0.3 2.2 1.5 1.0 0.9 0.9 1.0 0 0 1.2
Nutrient input: into meso. water 1.2 0.9 0.9 0.3 2.2 1.1 1.2 1.0 1.5 0.8 0 0 1.3
Ocean dumping: lost fishing gear 1.1 1.1 0.9 0.4 0.5 1.5 1.4 1.0 1.2 1.2 1.3 1.2 1.2
Ocean dumping: marine debris 0.8 0.9 0.6 0.4 0.6 1.0 1.0 0.9 1.0 0.8 0.9 0.8 1.0
Ocean dumping: ship wrecks 1.7 2.1 1.5 1.0 2.3 1.6 2.3 1.5 0 1.8 1.6 1.3 2.4
Ocean dumping: toxic materials 0.9 1.0 1.1 0.5 1.7 1.4 1.5 0.9 1.4 1.1 1.1 1.1 1.1
Ocean mining (sand, minerals, etc.) 0.1 0 0.5 0 0 1.1 0 0.1 0 1.3 1.6 0 0
Ocean pollution (from ships/ports) 0.9 1.0 0.9 0.4 0 0.8 1.3 1.3 1.1 0.8 0 0 1.0
Pollution input: atmospheric 1.0 1.1 1.0 0 1.3 0.9 1.3 1.1 1.4 1.1 0 0 1.2
Pollution input: inorganic 1.3 1.5 0.9 0.8 1.4 1.3 1.3 1.2 1.4 1.6 2.0 1.9 1.1
Pollution input: light/noise 0.1 0 0.6 0.3 1.3 1.2 1.2 0.9 1.2 0.2 0 0 0
Pollution input: organic 1.3 1.5 1.1 1.4 1.5 1.9 1.9 1.3 1.4 1.5 2.0 2.5 1.3
Pollution input: trash, urban runoff 0.7 1.2 0.9 1.0 1.0 1.2 1.2 1.1 1.1 0.9 1.2 1.9 0.4
Power, desalination plants 0.8 1.1 0.5 0.5 0 1.7 1.3 1.5 1.2 0.2 0 0 0
Scientific research: collecting 0.7 0.7 0.6 0.1 0 0.7 0.7 0.8 0.9 0.9 1.3 0.7 0.7
Scientific research: expts./surveys 0.7 0.8 0.8 0.8 0 0.7 0.7 0.9 0.8 1.0 1.3 0.8 0.8
Sediment input: decrease 0.1 0 0.8 0.6 1.6 1.2 2.3 0.8 2.4 0.3 0 0.4 0
Sediment input: increase 1.4 1.1 1.3 0.8 1.4 1.8 1.4 1.5 1.4 0 0 1.2 0
Shipping (commercial, cruise, etc.) 0 0.3 0.3 0 0 1.4 0.4 0.2 0 0.3 0 0 0
Tourism: kayaking 0.6 0.5 0.1 0 0 0.4 0.4 0.4 0.2 0.1 0 0 0
Tourism: recreational boating 0.9 1.0 1.0 0 0 0.2 0.8 0 0.2 0.2 0 0 0.4
Tourism: scuba diving 1.0 0.9 0.1 0 0 0 0 0 0 0.1 0 0 0.2
Tourism: surfing 0 0 0.1 0 0 0.4 0 0.6 0 0 0 0 0

Score mean 0.8 0.9 0.8 0.4 1.0 1.1 1.1 1.0 1.0 0.7 0.5 0.5 0.7
Score SE 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Sample size mean 11.5 9.3 9.5 3.8 0.2 3.8 5.2 13.1 8.0 6.1 1.7 2.1 3.1
Sample size SE 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.1

Notes: Mean scores for each stressor across all ecosystems, and for each ecosystem across all stressors, are reported in the ‘‘score
mean’’ column and row, respectively. Ecosystem abbreviations: KF (kelp forest), RR (rocky reef ), SG (seagrass), Shl (shallow soft),
SR (suspension-feeding reefs), BE (beach), MF (mud flats), RI (rocky intertidal), SM (salt marsh), SSh (soft shelf ), SSl (soft slope),
SD (soft deep), HSh (hard shelf ), HSl (hard slope), HD (hard deep), Cyn (canyons), SMt (seamounts), Surf (surface waters), Deep
(deep waters). Score identities are based on four equal divisions of the range of values: 0.0–0.8 (normal black font), 0.9–1.7 (light
blue), 1.8–2.6 (purple), and 2.7–3.4 (red). Sample size means (6SE) were calculated based on the average sample size per
vulnerability criteria in Part IV (i.e., when a respondent evaluated a stressor, all vulnerability criteria values were not always
provided). Stressor abbreviations: acidific. (acidification), alt. (altered), byc. (bycatch), demrs. (demersal), des. (destructive), dynam.
(dynamics), engineer. (engineering), expts. (experiments), HABs (harmful algal blooms), hyp. (hypoxic), meso. (mesotrophic),
temp. (temperature).
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could be made to Washington (rocky intertidal), the

Washington subregion differed significantly from all

other subregions except central California, but had

highly correlated values in all of these cases (R2 . 0.72).

Baja California was significantly different from northern

and southern California in vulnerability scores for

seagrass ecosystems (as well as Washington in rocky

intertidal ecosystems), and also had low correlation
values. Vulnerability scores for rocky intertidal ecosys-

tems in Baja did not differ significantly from central and
southern California.

Comparing directly stated and modeled ranks

Spearman’s rank correlation between directly stated
ranks (Part II) and model-derived mean vulnerability
scores (mean values across ecosystems from Part IV) is

significant (P¼ 0.001) but relatively low (q¼ 0.44). The
five most commonly directly stated top five stressors

were sea temperature change (42% of respondents
ranked it in their top five), recreational fishing (33%),

habitat alteration from coastal engineering (32%),
increasing sediment loads (22%), and invasive species

(22%); yet of these, only sea temperature change and
invasive species were among the top five modeled

vulnerability ranks (Table 7), and recreational fishing
and sediment increase were not among the top 10

modeled ranks. Ocean acidification received the highest
modeled vulnerability score, yet was included in only

11% of respondents’ stated top five stressors.
Additionally, UV change, sea level rise, benthic struc-

tures, shipwrecks, and hypoxic zones caused by nutrient
input were only included in �7% of stated top five

stressors, yet all appeared among the top 10 modeled
ranks. Remarkably, all but three of the 53 stressors were
ranked by at least one expert in their top-five stated

stressors (across all ecosystems).

DISCUSSION

Decision theory approach

to assessing ecosystem vulnerability

Our approach moves beyond previous methods for
assessing environmental risk in several key ways. The

decision rules (criteria) and relative importance of those
criteria (weights) are explicit and quantified, rather than

implicit and qualitative as is the case for most Delphi
processes. The structured approach to assessing these

criteria and weights compels experts to take an
ecosystem-level perspective when evaluating the impor-
tance of stressors rather than, for example, focusing only

on the species they study and to explicitly consider (and
quantify) exposure and sensitivity aspects of vulnerabil-

ity. Vulnerability is an abstract concept and defining it at
an ecosystem-level scale adds further complexity to the

concept. This complexity challenges an individual’s
cognitive ability to compare the vulnerability of

ecosystems to various stressors in a consistent and fair
manner without the aid of a model built from concrete

subcomponents. Indeed, experts’ directly stated top
stressors showed little correlation with the modeled

top stressors. When experts simply list key stressors,
there is no way to know why they chose those stressors,

with responses potentially subject to biases that cannot
be tested (Payne et al. 1992, Lichtenstein and Slovic

2006). Using a mathematical model, however, requires

TABLE 6. Extended.

Offshore ecosystems

Score meanHSl HD Cyn SMt Surf Deep

0 0 0 0 0 0 0
0 0 0 0 1.2 0 0.3
0 0 0 0 0 0 0.1
0 0 0 0 0.2 0 0.4
2.3 0 2.3 0 0.4 0 1.4
2.3 3.4 2.6 2.6 3.2 2.7 2.6
0 0 0 0 0 0.6 0.9
1.2 0 1.7 0 2.5 1.9 1.5
0 0 0 0 2.5 0.8 0.9
0 0 0 0 0 0 0.7
0 0 0 0 0.2 0 0.8
0 0 0 0 0 0 0.3
1.2 0 1.1 0 0.5 0 0.7
0 0 0 0 0.1 0 0.5
0 0 0 0 0 0 0.1
2.3 2.8 2.5 2.7 0.3 0 1.3
1.8 1.3 1.3 1.3 0.4 0 1.0
1.1 0.9 0.8 0.9 0.3 0 0.8
0 0 0 0 0.1 0 0.2
0 0 0 0 0.1 0 0.3
0 0 0 0 1.6 1.6 0.3
0 0 0 0 1.1 1.5 0.2
1.6 0.7 0 0.7 1.1 0 0.9
0 0 0 0 0.1 0 0.3
0 0 0 0 1.0 0 0.5
0 0 0 0 0.3 0 1.2
0 0 0 0 0 0 0.2
1.3 1.3 1.3 1.2 1.4 1.4 1.0
1.3 0 0 0 1.5 1.8 1.0
1.0 0 0 0 1.8 2.0 1.0
0 0 1.0 0 1.1 0.9 0.8
0 0 1.3 0 1.4 2.1 0.9
1.2 1.3 1.2 1.3 1.3 1.3 1.1
1.0 0.9 0.6 0.7 1.0 0.8 0.8
2.5 2.5 2.3 2.3 0 0 1.6
1.4 1.1 1.3 1.1 1.1 1.3 1.2
0 0 0 0 0 0 0.2
1.3 0 0.9 0 1.4 0 0.7
0.7 0 1.3 0 1.6 0.9 0.8
0 0 1.3 0 1.6 1.3 1.2
0 0 0 0 0.4 0.8 0.4
0 0 1.2 0 1.5 1.3 1.3
0.9 0 0.8 0 1.1 0.8 0.9
0 0 0 0 1.5 0.2 0.6
0 0.7 0.7 0.7 0.7 0.4 0.6
0 0.9 0.9 0.9 1.0 0.5 0.8
0 0 0 0 0 0 0.6
1.0 0 1.4 0 0.2 0 0.8
0 0 0 0 1.5 0 0.2
0 0 0 0 0.9 0 0.2
0 0 0 0 1.1 0 0.3
0 0 0 0 0.2 0 0.1
0 0 0 0 0.2 0 0.1

0.5 0.3 0.6 0.3 0.8 0.5 0.7
0.1 0.1 0.1 0.1 0.1 0.1 0.07
2.2 1.0 0.7 1.9 11.6 1.8 19.0
0.1 0.0 0.0 0.0 0.1 0.0 0.00
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knowing which subcomponents to use in building the

model and how to combine subcomponents in a way

that matches an expert’s decision-making process. The

subcomponents (i.e., vulnerability criteria) come from a

long history of research on the topic; the multi-criteria

decision model (MCDM) fills the latter role of

combining subcomponents. The MCDM revealed that

experts primarily used percentage change (i.e., resis-

TABLE 7. Scores and rank orders for directly stated top stressors (Part II) and the multi-criteria decision model (MCDM) (based
on Parts III and IV).

Stressor

Directly
stated

MCDM for all
ecosystems

Coastal
MCDM

Offshore
MCDM

Score
Rank
order Score

Rank
order Score

Rank
order Score

Rank
order

Aquaculture: finfish (herbivores) 0.01 40 0.00 53 0.00 53 0.00 52
Aquaculture: finfish (predators) 0.01 42 0.27 40 0.19 50 0.33 28
Aquaculture: marine plant 0.00 51 0.10 51 0.21 48 0.0 53
Aquaculture: shellfish 0.10 19 0.41 36 0.83 30 0.04 42
Benthic structures: e.g., oil rigs 0.03 33 1.37 4 1.64 6 1.14 8
Climate change: ocean acidification 0.11 18 2.57 1 2.19 2 2.91 1
Climate change: sea level rise 0.06 25 0.88 18 1.80 4 0.06 40
Climate change: sea temperature change 0.42 1 1.54 3 1.91 3 1.20 6
Climate change: UV change 0.01 43 0.93 15 1.59 7 0.33 29
Coastal engineering: altered flow dynamics 0.19 11 0.71 27 1.48 9 0.02 46
Coastal engineering: habitat alteration 0.32 3 0.81 23 1.66 5 0.04 43
Direct human impact: trampling 0.15 13 0.33 37 0.67 34 0.01 49
Disease/pathogens 0.12 17 0.70 28 0.94 25 0.48 24
Dredging 0.08 22 0.54 33 1.06 20 0.07 38
Fishing: aquarium 0.01 41 0.13 50 0.26 45 0.02 47
Fishing: demersal destructive 0.20 6 1.30 5 0.66 35 1.87 2
Fishing: demersal nondestructive high bycatch 0.19 10 1.01 11 0.90 26 1.13 9
Fishing: demersal nondestructive low bycatch 0.20 7 0.80 24 0.84 29 0.76 16
Fishing: destructive artisanal 0.04 29 0.24 46 0.48 41 0.01 50
Fishing: nondestructive artisanal 0.05 26 0.27 41 0.52 39 0.03 44
Fishing: pelagic high bycatch 0.12 15 0.29 39 0.22 46 0.35 27
Fishing: pelagic low bycatch 0.07 23 0.25 43 0.16 51 0.32 30
Fishing: recreational 0.33 2 0.85 19 1.09 17 0.65 21
Freshwater input: decrease 0.01 46 0.26 42 0.54 38 0.01 51
Freshwater input: increase 0.02 36 0.51 34 0.89 27 0.18 33
Invasive species: from ballast, etc. 0.22 5 1.25 7 2.23 1 0.36 26
Marine component of forestry operations

(log booms)
0.03 34 0.25 45 0.48 40 0.03 45

Military activity 0.01 50 0.96 14 0.59 36 1.29 4
Nutrient input: causing harmful algal blooms 0.14 14 1.00 12 1.33 12 0.71 17
Nutrient input: causing hypoxic zones 0.07 24 1.00 13 1.22 14 0.81 14
Nutrient input: into eutrophic (upwelled) waters 0.09 21 0.78 25 1.07 19 0.52 23
Nutrient input: into mesotrophic

(non-upwelled) waters
0.05 27 0.91 17 1.14 16 0.69 18

Ocean dumping: lost fishing gear 0.04 32 1.13 10 1.01 23 1.25 5
Ocean dumping: marine debris, trash, etc. 0.04 31 0.82 22 0.80 31 0.85 12
Ocean dumping: ship wrecks 0.00 52 1.61 2 1.56 8 1.67 3
Ocean dumping: toxic materials 0.02 37 1.15 8 1.16 15 1.17 7
Ocean mining: sand, minerals, etc. 0.00 53 0.25 44 0.20 49 0.29 31
Ocean pollution: chemicals from ships,

ports, spills
0.16 12 0.69 29 0.86 28 0.54 22

Pollution input: atmospheric 0.01 44 0.84 20 1.01 22 0.68 20
Pollution input: inorganic 0.12 16 1.15 9 1.23 13 1.08 11
Pollution input: light/noise 0.02 39 0.43 35 0.76 32 0.14 36
Pollution input: organic 0.20 9 1.29 6 1.48 10 1.13 10
Pollution input: trash, etc. (i.e., urban runoff ) 0.20 8 0.91 16 1.04 21 0.80 15
Power, desalination plants 0.05 28 0.55 32 0.96 24 0.19 32
Scientific research: collecting 0.01 47 0.63 30 0.58 37 0.68 19
Scientific research: experiments/surveys 0.02 38 0.75 26 0.69 33 0.81 13
Sediment input: decrease 0.09 20 0.56 31 1.09 18 0.07 39
Sediment input: increase 0.22 4 0.83 21 1.34 11 0.38 25
Shipping: commercial, cruise, ferry 0.01 45 0.22 47 0.29 43 0.18 34
Tourism: kayaking 0.01 48 0.20 48 0.29 44 0.10 37
Tourism: recreational boating 0.04 30 0.30 38 0.46 42 0.17 35
Tourism: scuba diving 0.03 35 0.13 49 0.22 47 0.05 41
Tourism: surfing 0.01 49 0.07 52 0.12 52 0.02 48

Notes: Directly stated scores were calculated based on the frequency of each stressor occurring among the top five stated
stressors across all ecosystems; average ranks were used to break ties. The multi-criteria decision model score was calculated from
Eq. 1 for each ecosystem and then averaged across all ecosystems, and for coastal and offshore ecosystems separately.
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tance) and trophic impact when evaluating ecosystem

vulnerability to stressors, despite that vulnerability is

thought to also be a function of exposure, not just

measures of sensitivity (Metzger et al. 2005, Millennium

Ecosystem Assessment 2005).

The MCDM also allowed us to test how consistently

experts used the vulnerability criteria in their assess-

ments (i.e., internal model validity) by comparing results

from two versions of the survey based on different

systems (coastal vs. offshore), calculating model weights

using different numbers of scenario rankings, and using

the model to predict the next-ranked stressor. These

comparisons do not allow us to test the uncertainty of

individual experts but do provide several methods for

testing and quantifying variability (i.e., uncertainty)

among experts, a key improvement over our previous

approach (Halpern et al. 2007). We found high model

validity in all cases: model weights were consistent

between systems and with different numbers of ranks

used to build the model, and the ecosystem vulnerability

model predicted well the next-ranked stressor. This

ability to evaluate model validity is rare among methods

for eliciting expert judgment. The robustness of the

model suggests that the vulnerability model can be used

with the same values for the criteria weights to evaluate

new stressors and ecosystems not included here. Thus,

the model provides a rapid way to assess additional and

emerging ocean uses, such as wind and wave farms or

liquefied natural gas (LNG) terminals, and quickly

‘‘slide’’ them into the appropriate rank order once their

vulnerability scores are estimated.

The vulnerability model solves the ‘‘apples to orang-

es’’ problem of making comparisons between very

different types of systems, and the use of expert

judgment allows the filling of knowledge gaps where

empirical data do not exist. The vulnerability model, in

particular, differentiates our work from other efforts to

rank stressors to ecosystems (Olson and Dinerstein

1998, Myers et al. 2000, Pew Oceans Commission 2003,

Metzger et al. 2005, Millennium Ecosystem Assessment

2005). In this structured framework, judgment is a

means to efficiently incorporate knowledge and under-

stand the world. Thus, the approach presented here

benefits from greater transparency and repeatability

than most other expert judgment elicitation procedures.

Ecosystem vulnerability in the California Current

Ecosystem-based approaches to resource management

require knowledge of how each ecosystem responds to

the stressors associated with human uses of the ocean,

yet empirical information on such responses is limited.

Using a decision theory method for eliciting expert

judgments, we have evaluated the vulnerability of 19

marine ecosystems within the California Current region

to 53 different stressors, a total of 1007 stressor-by-

ecosystem combinations. There are both expected and

unanticipated aspects to the vulnerability assessments

for the California Current. Averaged across all ecosys-

tems, stressors with high vulnerability scores were

associated with climate change, invasive species, habitat

destruction (benthic structures, coastal engineering), and

pollution; all of which have been previously highlighted

as key issues (Vitousek et al. 1997). Coastal ecosystems

were assessed to be more vulnerable to human stressors,

and to a higher number of stressors, than offshore

systems. At the ecosystem level, rank order of stressors

by vulnerability scores varies greatly with ecosystem

type, as is expected. More unexpectedly, ocean acidifi-

cation topped the rankings for many ecosystems. This

result highlights the urgent need to develop strategies for

addressing this climate stressor. However, very few

experts listed ocean acidification, UV change, and sea

level rise among their top five stated ranks, yet these all

fell within the top 10 modeled ranks, indicating the need

for greater awareness of these climate stressors. On the

other hand, experts do seem to be aware of the

importance of sea temperature change and invasive

species, as these stressors ranked high for both ranking

methods. Modeled results ranked commercial fishing as

a top stressor in most offshore ecosystems (Tables 6 and

7), as has been found by many others (e.g., Pauly et al.

1998, Myers and Worm 2003, Worm et al. 2006); but

across all ecosystems, the five types of commercial

fishing showed lower vulnerability scores than many

other stressors. This is because experts judged pelagic

fishing to have very little or no impact on many

ecosystems and land-based sources of stress to have

larger impacts on a suite of coastal ecosystems. Fishing

may have ranked lower as well because our approach

focuses on present-day stressors and therefore ignores

the historical, accumulated stress of fishing (in particular

overfishing) on ecosystems.

Although many of these results on the top stressors or

most vulnerable systems may seem expected or known, it

is extremely valuable to test those assumptions with a

rigorous scientific approach and to assess the level of

consensus on rankings among experts. Results from a

rigorous survey provide strong rationale and justifica-

tion for management decisions even when top stressors

are believed to be already well-known; the value of this

supporting role should not be underestimated given the

politically charged environment in which these decisions

are often made. The combined input of a large number

of experts should carry considerably more weight than

that of one or few managers or scientific advisors

asserting their beliefs about top stressors.

Although these relative stressor rankings are valuable

for aiding conservation and management prioritization

efforts, another useful result is the matrix of quantitative

vulnerability scores that is produced (Table 6). These

scores not only give a quantitative, relative estimate of

vulnerability of an ecosystem to each stressor (e.g., kelp

forests are judged to be five times as vulnerable to ocean

acidification as they are to shellfish aquaculture), but

also allow direct and quantitative comparisons of

stressor vulnerability among ecosystem types (e.g., rocky
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reefs are judged to be 30% more vulnerable to

recreational fishing than seagrass beds are to organic

pollution). This ability to compare very different entities

in a quantitative manner has broad potential application

and relevance to various cost–benefit analyses of how

and where to prioritize management, mitigation, and

conservation effort.

A key challenge for any effort to evaluate cross-

ecosystem, cross-sector vulnerability is to decide how

much to lump or split categories of stressors and

ecosystems. Fishing can be considered as a single

stressor, as five categories of stress (as we have done

here), or as many categories in which each species and

gear type is evaluated separately. Similarly, habitats can

be classified according to any number of physical and

biological attributes (e.g., sediment grain size or type,

tidal flux, depth, relief, wave exposure, upwelling

characteristics, temperature, salinity, species composi-

tion, and diversity; Carlton 2007), which can lead to few

or many habitat types depending on these decisions. For

example, one could choose to lump all salt marshes

together as a single ecosystem type or split them into

estuarine and coastal salt marshes. Here we strove to

focus on a level of habitat classification that was general

enough to likely be addressed by management efforts in

the California Current but fine enough to capture

important differences, and a level of stressor classifica-

tion that captures important differences in potential

impact to ecosystems from subdivisions of a stressor

class but is general enough to match typical manage-

ment focus. Additionally, we have assumed that experts

take into account the temporal dynamics of oceano-

graphic and climatic processes (e.g., El Niño Southern

Oscillation cycle, the Metonic cycle, the Pacific decadal

oscillation; Halpin et al. 2004) when assessing the

influence of a particular stressor on an ecosystem.

However, our survey focused on assessing the present

day (within the past five years), so longer temporal

dynamics could be the focus of future studies. In

summary, our method for assessing ecosystem vulnera-

bility can easily be adapted to assess a different

classification scheme, spatial scale/extent, or time

period, and directly compared to our output here.

Our assessment of the differential vulnerability of

ecosystems does not account for potential synergistic

effects among stressors, where some combinations of

stressors may lead to greater impacts than our estimates

here, resulting in higher scores. These synergisms are

currently poorly understood (Crain et al. 2008, Darling

and Cote 2008), so it is difficult to account for them in

the vulnerability model. Also, the default vulnerability

criteria values provided in Part IV may have influenced

experts, or experts may have been reluctant to modify

defaulted values unless they felt them to be radically

wrong. An alternative would have been to leave these

values blank, but experts tend to skip blank values

(Halpern et al. 2007).

Ultimately, the accuracy of the vulnerability scores

depends on the quality of expert judgment. We were

careful to include only experts with empirical knowledge

and experience in marine ecosystems within the

California Current, but we recognize that this does not

ensure accuracy. Future studies could incorporate

additional assessments; for example, including experts

with backgrounds in each of the stressors. In addition,

carefully controlled experiments that clearly show the

relative vulnerabilities of ecosystems to different stress-

ors are the gold standard for environmental risk

assessment, but the day is far off when such data exist

for the numerous ecosystem–stressor combinations.

Until then, expert judgment elicitation can provide some

guidance to management efforts.

Management implications

Our approach and results can be used in a number of

ways to inform and aid management efforts and

particularly address the fundamental question of how

and where to prioritize stressor and ecosystem manage-

ment. Our results alone cannot answer that question, as

there are many dimensions (socioeconomic, opportuni-

ties, etc.) that drive such decisions, but our quantitative

vulnerability scores can provide a key piece of the

answer. The matrix of vulnerability scores based on

expert judgment informs which stressors are likely most

important to address, which ecosystems are likely most

vulnerable, and which factors (i.e., criteria) likely drive

that vulnerability. Even if these results are believed to be

known, having a quantitative and transparent method

for assessing vulnerability is of enormous value to

anyone or any organization that must explain and

defend their management decisions.

Our analyses provide results most appropriate for

state-level and federal-level management or conserva-

tion organizations focused on large biogeographic

regions or the California Current as a planning unit.

At this scale, the high vulnerability scores of most

ecosystems for climate change stressors point to the

immediate need for local, state, federal, and interna-

tional action to address this key stressor for nearly all

ecosystems. Two of the high-scoring stressors revealed

by our analysis (invasive species and coastal engineer-

ing) highlight management challenges that might be

most successfully addressed at different spatial scales.

Although removal of existing invasive species may be

possible by local action, it is generally very difficult, and

the risk of new species invasions can only be reduced by

state, federal, and even international regulations that

control the movement of species (i.e., vectors such as

ballast water, hull fouling, aquaculture, and aquarium

trade; Bax et al. 2001, Ruiz and Carlton 2003). Given the

difficulty of eradicating invasive species and reversing

their impacts on local ecological communities, prioritiz-

ing the reduction of invasive species risks at the regional

level may have a high ecosystem-wide payoff. Habitat

alteration due to coastal engineering also had high
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scores in several coastal ecosystems. Although it is

difficult to fully reverse, it can be regulated and managed

locally at the scale at which it occurs, and there are some

options for local habitat restoration. For local-scale

management, vulnerability rankings could be different.

Fortunately, our framework is fully scalable, with the

model weights expected to be consistent across scales

and locations, and the output allows for quantitative,

relative vulnerability assessments that are often not

intuitive or known. The model also provides a rapid

method for assessing the potential impact of new

stressors relative to existing stressors, and in theory the

same stressors in new locations where one would simply

need to gather new criteria scores (Part IV of the survey).

These results provide a critical piece of information

for moving toward marine ecosystem-based manage-

ment (EBM) and ocean zoning, but they are clearly not

all that is needed for effective management. Among

other things, EBM requires consideration of spatial

patterns of cumulative impacts of human activities on

ecosystems (McLeod et al. 2005, Halpern et al. 2008a),

and in order to map cumulative impacts, one needs

information on the relative vulnerability of ecosystems

to those stressors, along with information on the

intensity of each stressor (Crowder et al. 2006, Halpern

et al. 2008b, Halpern et al. 2009). Such mapping also

allows one to assess the realized impact of each stressor

on each ecosystem, rather than the expected vulnerabil-

ity as is captured here. Ultimately, effective management

and conservation also require assessments of the costs

and benefits of any management action, recognition of

logistical and financial constraints, compromises for

political feasibility, and the flexibility to manage

adaptively as new information becomes available.

Without knowledge of relative ecosystem vulnerability

to different human activities, however, ecosystem-based

management will be difficult if not impossible to achieve.
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APPENDIX A

Sample survey for a kelp forest ecosystem is provided, except that Part III for both coastal and offshore ecosystems is included to
show where scenario names were changed between these two expert groups (Ecological Archives A020-049-A1).

APPENDIX B

Number of surveys completed per ecosystem per region and subtotals per ecosystem and region (Ecological Archives A020-049-
A2).

APPENDIX C

Respondents’ years of experience per chosen ecosystem and per chosen subregion (Ecological Archives A020-049-A3).

APPENDIX D

Threats listed by participants in the survey that were not on our stressor list (Ecological Archives A020-049-A4).
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