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The science of spatial fisheries management, which combines
ecology, oceanography, and economics, has matured significantly.
As a result, there have been recent advances in exploiting spatially
explicit data to develop spatially explicit management policies,
such as networks of marine protected areas (MPAs). However,
when data are sparse, spatially explicit policies become less viable,
and we must instead rely on blunt policies such as total allowable
catches or imprecisely configured networks of MPAs. Therefore,
spatial information has the potential to change management
approaches and thus has value. We develop a general framework
within which to analyze the value of information for spatial
fisheries management and apply that framework to several US
Pacific coast fisheries. We find that improved spatial information
can increase fishery value significantly (>10% in our simulations),
and that it changes dramatically the efficient management
approach—switching from diffuse effort everywhere to a strategy
where fishing is spatially targeted, with some areas under inten-
sive harvest and others closed to fishing. Using all available infor-
mation, even when incomplete, is essential to management
success and may as much as double fishery value relative to using
(admittedly incorrect) assumptions commonly invoked.
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Spatially explicit policies are increasingly used for conservation
and management of marine resources. Broad patterns of

resource decline, increasing conflicts in coastal zones among
competing users, and pressures from a complex set of human
impacts are someof the reasonspolicymakers are turning to spatial
management as an evolving paradigm for ocean policy (1, 2).
A substantial body of literature indicates that spatial manage-

ment can improve marine resource management. For example,
siting a network of marine protected areas (MPAs) in strategic
spatial locations can simultaneously enhance both the yields and
profits of a fishery and improve ecosystem service provision (3–7).
Other prominent examples include ocean zoning for various
activities, ecosystem-based management, and the use of spatial
concessions or territorial user rights in fisheries (TURFs) man-
agement. Several studies have documented the benefits arising
from more explicit spatial management (2, 8–12, 13), although
concerns about whether spatial management approaches increase
or maintain fisheries catches still remain (e.g., refs. 14 and 15).
Achieving benefits from spatial management policies requires

spatial information. For example, designing effective MPA net-
works requires spatial information on habitat, species dis-
tributions, larval, juvenile, and adult movements and source–sink
dynamics of larval production and recruitment (7, 16–18). These
data are often scarce and costly to obtain. The questions of which
sources of uncertainty may be reduced cost effectively, and what
management approaches are more robust to remaining uncer-
tainties are fundamentally important in the management of
fisheries and natural resources in general (e.g., ref. 19).
In this paper we develop and implement a framework for calcu-

lating the value of information that facilitates spatial management

of marine resources. Value of information studies have been con-
ducted on El Niño forecasts for salmon management (20), weather
forecasting for agriculture (21), and other applications. This work
most closely parallels that of Polasky and Solow (22), who inves-
tigate the value of spatial information (e.g., from site surveys) for
terrestrial reserve site selection. A key difference in our work is that
information resolves a structural process underlying a bioeconomic
model, not just the spatial distribution of sedentary organisms. We
are primarily concerned with two questions. First, how does
improved information lead to improved spatial management of a
fishery? We focus on the effects of information on abundance of
fish, profits from the fishery, and MPA implementation. Second,
what is the value of this improved information? The framework we
illustrate here provides a means to calculate the economic value of
information. We apply this general framework to several repre-
sentative fisheries from the Southern California Bight (SCB) and
quantify the value of information under different alternative larval
dispersal scenarios. In this region, perfect spatial information can
improve the economic values of the fisheries significantly and these
optimal solutions often require spatial closures, even from a pure
fisheries profit perspective.

Modeling a Spatially Optimized Fishery
Our model starts with a single fish species residing in a hetero-
geneous patchy marine environment. The spatial domain of the
species is carved into a finite set of patches (or sites), which are
connected via larval dispersal. Habitat quality is heterogeneous,
which determines the patch’s carrying capacity. In the absence of
harvest, this metapopulation settles down to an equilibrium in
which each patch contains a different biomass of the species.
Harvest is set by a fishery manager and may be spatially heter-

ogeneous. Thus, the fishery manager has the ability to direct
harvest spatially—e.g., by setting zonal total allowable catches
and/or by establishing marine protected areas. This mimics the
approaches taken by Costello and Polasky (3), Sanchirico and
Wilen (23), and Sanchirico et al. (7), among others. Although this
kind of spatially targeted management is not the most common, it
is not without precedent. For example, in the Alaskan halibut
fishery, which is managed by individual transferable quota, quotas
are zone specific. In the Washington state geoduck fishery,
allowable catches are area specific. In Baja California, Mexico,
cooperatives centrally control the location and timing of lobster
harvest. And inCalifornia, although harvest quotas are not spatial,
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a network of marine protected areas in the northern Channel
Islands creates a spatial mosaic of areas open and closed to fishing.

Objective Function. We allow for a multicriterion objective func-
tion that simultaneously accommodates profit (from harvest) and
conservation (standing biomass) of the species in question. We
adopt a discount rate of 0; we seek to maximize the steady state
value of the objective function. There are N patches; the steady
state harvest in patch i is Hi and the set of harvests is H ≡ {H1,
H2, . . ., HN}. Let π(H) be steady state profit and B(H) be steady
state biomass. If π and/or B are uncertain, then the objective is to
maximize their expected values, where the expectation operator
is given by E[·]. The maximand is

V ðHÞ ¼ ð1� αÞE½ πðHÞ� þ αβE½BðHÞ�: (1)

The coefficient α controls the relative weight of profit vs. con-
servation in the overall objective. When α = 0, we recover the
standard objective function from economics (to maximize profit).
When α= 1 conservation drives the objective. In what follows we
will explore a full range of the weight, α. Finally, the coefficient β
allows for a unit conversion of B to π. In practice, we select β so
that maximized value when α= 0 and maximized value when α=
1 are equal. Formally, β ¼ maxHπðHÞ

maxHBðHÞ:

Management Under Uncertainty. The focus of this analysis is on
information that resolves uncertainty. Uncertainty can enter in
numerous ways that affect the objective function (Eq. 1) and will
thus have an impact on management. Although the framework we
present is general and is agnostic about the source of uncertainty,
it is instructive to provide a few examples. If habitat is unknown
(or incompletely mapped spatially), then we will be uncertain
about spatial production. This would introduce uncertainty into
both π and B above. In contrast, uncertainty over harvest costs
would induce uncertainty only over π, but conditional on spatial
harvesting decisions, the biomass, B will be deterministic.
The modeling methods described in this paper extend both to

problems with structural uncertainty and inherent stochasticity.
When the manager is uncertain about a structural element of the
system (e.g., uncertainty about the amount of sandy bottom in a
patch), information can (at least in principle) resolve that
uncertainty once and for all. When the system is inherently sto-
chastic (e.g., upwelling varies interannually), information can
inform the realization of the stochasticity in a particular period,
but will not resolve the process once and for all. Without loss of
generality, and to illustrate the concepts more concretely, we will
work through a problem with structural uncertainty. In particular,
the manager is uncertain about the larval dispersal kernel, D.The
dispersal kernel, D is an N × N matrix where element Dij is the
proportion of larvae originating in patch i that disperse to patch j.
Accordingly, we assume D does not change over time; once it is
learned, it is known once and for all. Although published models
of fish populations almost unanimously assume a fixed D, an
emerging literature suggests that D itself may vary from year to
year (in which case, D itself would be inherently stochastic). The
methods developed here apply equally well under that general-
ization; in Conclusions and Discussion we discuss its implications
on our numerical results.
To completely characterize uncertainty over D we must, in

principle, compile the set of all possible dispersal kernels (only one
of which is the true dispersal kernel). Let {D1, . . ., DJ} be that set.
Further, suppose we assign a probability weighting to each of
those dispersal kernels: {p1, . . ., pJ}, where∑pj ¼ 1:The question
is how this uncertainty affects the fishery manager’s choice of
harvest, H. It is well-known that for nonlinear problems, the
optimal choice of H differs (sometimes quite substantially) from
the optimal choice under a deterministic environment (24). In
other words, selecting our “best guess” of the dispersal kernel,D,

and proceeding with a deterministic analysis may lead us to arrive
at thewrong policy. Loosely speaking, whenwe do not knowwhich
dispersal kernel is the correct one, we are forced to adopt a rather
blunt policy that would perform well on average for any possible
dispersal kernel. The objective is to maximize V(H) fromEq. 1, by
choosing H, subject to the biological growth relationships, where
D is a random variable. The important thing here is that a single
spatial harvest pattern is being selected that performs well on
average. Let the optimized spatial harvest pattern under uncer-
tainty be givenbyHU, and the associated expected valuebe givenby
VU (where VU ≡ V(HU)).

Management with Information. Now suppose that we can obtain
information about the uncertain variable(s). In our example this
amounts to obtaining information about the larval dispersal ker-
nel, D. Information on D allows us to make more precise man-
agement recommendations. In the extreme,we can acquire perfect
information and know the “true” dispersal kernel. For that case,
no uncertainty remains and we simply maximize Eq. 1 by choosing
H subject to the biological growth equations. Before acquiring
information, however, we do not know which dispersal kernel is
the truth. If the dispersal kernel turns out to be Dj, then we max-
imize Eq. 1 using that information by choosing Hj, which yields a
payoff V(Hj|Dj). Thus, we end up with one of J spatial harvest
patterns: H1, . . ., HJ, with associated probabilities p1, . . ., pJ.

Calculating the Value of Information
We are interested in the ex ante expected value of information—
a measure of the maximum willingness to pay for the information
before the fishery manager knows what information will be
revealed. This is the relevant statistic for determining whether to
acquire information ahead of time. With information, the
expected value of the objective is:

VI ¼ ∑
J

j¼1
V ðHjjDjÞp j; (2)

where the term pj weights each value by the associated probability
of drawing that dispersal kernel. The ex ante value of information
is simply the difference of the value of the systemwith information
and the value of the system without information:

VOI ¼ VI � VU : (3)

An important result is that VOI cannot be negative. If the fishery
manager expected the information to be useless or faulty, hewould
simply disregarded it. Thus, hemust expect the information to lead
to better management decisions, so VOI ≥ 0. Its magnitude is an
empirical question to which we turn in the following section.

Application to the Southern California Bight
We adopt a modified form of the biophysical model used to
evaluate alternative MPA packages in California’s South Coast
region as part of theMarine Life Protection Act process (25). The
model is a stage structured spatial model representing populations
of fish in the Southern California Bight (from Point Conception to
theMexican border including offshore islands). In this analysis, we
divide the region into 135 patches of approximately equal size (∼10
km in diameter) and the amount of hard substrate in each patch is
used as a measure of habitat availability. The model assumes
Beverton-Holt form intracohort density dependence in juvenile
survival, where the maximum number of survivors in a patch is
linearly related to habitat availability. The model tracks fish in
each patch in 1-year age classes (combining multiple cohorts
spawning in the same year for simplicity), with adult fish under-
going von Bertalanffy growth and age-independent natural mor-
tality. Fish are harvested in each patch at a rate dependent on the
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effort expended in the patch, and the unit of effort is the amount
required to catch 1% of the fish in that patch in a year. The profit
achieved in a given patch is the total harvest in that patch less the
cost of the effort expended there. The costs are chosen so that
patches can be profitably fished until the population is reduced to
10% of the maximum population occurring in any patch in the
unfished system. Fish reproduce once a year, and the number of
larvae produced by each fish is proportional to its weight. The
larvae produced in each patch are then redistributed among all of
the patches on the basis of the larval dispersal kernel described in
the next section. Details on themodel structure are given in ref. 25
and parameter values for the three species modeled here are
reproduced in Tables S1 ‒ S3.

Empirical Larval Dispersal Estimates. To calculate the value of
information about larval dispersal, we require a set of J alter-
native potential dispersal kernels for the SCB. We generate a
total of 10 dispersal kernels for use in this analysis. Kernels 1–8
are derived from an ocean circulation model, kernel 9 is from a
Gaussian model of larval dispersal, and kernel 10 assumes a
common larval pool. Our operating assumption is that one of
kernels 1–8 is the “correct” dispersal kernel, but ex ante, the
fishery manager does not know which one it is. Kernels 9–10
mimic kernels that are often assumed in the literature. We use
these to illustrate how poorly management can perform under
the incorrect assumption that larvae are dispersed according to a
Gaussian kernel or a common larval pool.
Kernels 1–8 are derived from the output of a high-spatial

resolution (1 km) circulation model (26) that advects surface-
following larvae from source to destination locations given the
plankton larval duration (PLD) and the spawning season for the
species in question (27, 28). We generated output from this
model for 7 years (1996–2002) so we used the dispersal kernel
for each individual year and the average dispersal across all years
as our eight alternatives. The 1-km SCB regional circulation
model solutions well represent available oceanographic obser-
vations in the SCB (29). Ocean circulation model outputs are
available for the period of 1996–2003, spanning the 1997–1998
El Niño and the 1999 La Niña events, providing larval dispersal
estimates for seven spawning seasons and their arithmetic mean.
There remains a technical mismatch between the manner in

which these kernels were derived (i.e., from an underlying model
in which the kernel is stochastic, and varies from year to year)
and our assumption that the kernel is fixed, but unknown. This
reflects both the state of the literature (which typically assumes,
either explicitly or implicitly, that the dispersal kernel is fixed),
and our interest in deriving alternative dispersal kernels that
were as realistic as possible. The methods developed here are
equally applicable to an underlying model with a stochastic
kernel (in which case, information would inform the kernel in a
particular year, t). The implications of this change in assumption
are discussed in Conclusions and Discussion.
Larval dispersal kernels are calculated from millions of

Lagrangian trajectories simulated within the 1-kmmodel solution
following procedures outlined in refs. 27 and 28. Potential larval
connectivity is quantified as the probability that water parcels
released at a source site are found within a destination site at the
end of their PLD. This calculation of the site-to-destination
probabilities defines potential larval connectivity (28). Potential
larval dispersal kernels are calculated for three species: sheep-
head, kelp bass, and kelp rockfish. Sheephead is the focus of this
manuscript and they typically spawn from July to October with a
40-dayPLD(30, 31).Kelp bass spawn fromMay to Septemberwith
a 30-day PLD (32, 33), and kelp rockfish spawn from March to
June with a 60-day PLD (34, 35). Examples of potential dispersal
kernels for sheephead from the 135 source sites in the Southern
California Bight (Fig. 1A) are shown in Fig. 1B–E (see Figs. S1 and
S2 for dispersal kernels for kelp bass and kelp rockfish).

The 8-year mean dispersal kernel for sheephead (Fig. 1B) shows
several important factors characterizing potential dispersal in the
SCB. First, the time mean of sheephead site-to-site dispersal varies
bymore than a thousand across the SCB. Second, themeandispersal
kernel is asymmetric (Fig. 1B), indicating that source–destination
relationships are more complicated than simple distance assess-
ments. Third, many strong regional associations are apparent.
For example, sites 1–62 represent themainland coast (Fig. 1A) and
strong levels of mean larval dispersal are found within the main-
land sites south of Ventura, indicating a large degree of regional
self-settlement in the southern portion of the SCB (Fig. 1B).
Mainland source sites are also fairly well connected to Northern
Channel Island destinations (sites 63–96) and the Southern
Channel Islands (sites 97–135) with the exception of source sites
nearer the Mexican border (sites 1–5). By comparison Northern
Channel Islands source sites (sites 63–96) are weakly connected
with the other subregions and with themselves whereas sources
from the SouthernChannel Islands (sites 97–135) are only strongly
connected with themselves.
Example potential dispersal kernels for 1997 and 1999 (Fig. 1

C and D, respectively) show expected changes in oceanographic
conditions associated with the 1997–1998 El Niño and the 1999
La Niña events. Ocean circulation patterns in the California
Current are largely poleward during El Niño events and equa-
torward during La Niña (e.g., 36, 37, 29) and is easily seen in Fig.
1 C and D. This representation illustrates the variability in larval
dispersal due to interannual changes in ocean circulation and the
inherent variability of eddy driven transport (e.g., 30, 38).
Dispersal kernel 9 derives from geometric distance between

sites using the Gaussian larval transport model (39); see Fig. 1
legend. The Gaussian dispersal model (Fig. 1E) underestimates
the scales of variability of dispersal and cannot explain any asym-
metry in dispersal.
Finally, dispersal kernel 10 simply assumes a “common larval

pool” for which any single site has the same probability for
transporting larvae to any other site. All dispersal estimates are
normalized by their absolute magnitude of dispersing larvae.
This ensures that kernels differ only in their spatial patterns, not
in the overall magnitude of larvae produced and dispersed
throughout the system.

Experiments.We ran a total of four experiments using the dispersal
kernels introduced above. The “true” dispersal kernel is always
one of dispersal kernels 1–8, each with probability 1/8. The
experiments differ in the assumptionsmade by thefisherymanager
about what is the true dispersal kernel. For each experiment, we
calculate the expected value, biomass, effort, and area in MPAs.
We do so for a range of the weighting parameter, α.

Experiment 1: Choose spatial harvests, H, under uncertainty
over the true dispersal kernel.
Experiment 2: Choose spatial harvests, H, with perfect infor-
mation about the true dispersal kernel.
Experiment 3: Choose spatial harvests, H, under the incorrect
assumption that the true dispersal kernel is Gaussian (disper-
sal kernel 9).
Experiment 4: Choose spatial harvests, H, under the incorrect
assumption that the true dispersal kernel is common larval
pool (dispersal kernel 10).

Results
For each of three species, the value of the fishery, relative to
optimal management under uncertainty, is shown in Fig. 2. Each
of the four lines corresponds to a different experiment (see
above), and the magnitude can be interpreted as the fractional
value of information. For example with a conservation weighting
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factor of 0, the value of the fishery with perfect information on
dispersal is 5–11% higher than the value of the same fishery
under uncertainty over dispersal, depending on the species (Fig.
2). Here we will first characterize the value of information. We
then explore the biological and management consequences of
improved information.

How Fishery Value Depends on Information. The kind of information
used to optimize management has a major impact on its expected
value. As expected, the value of a fishery optimized with perfect
information always has the highest value—as much as 11% more
than the same fisherymanagedwith uncertainty about the dispersal
(Fig. 2).Whenperfect information is not available, the best one can
do is to manage under uncertainty by using the available informa-
tion on the types of dispersal patterns that might occur. When the
fishing effort is optimally distributed on the basis of simpler
(although incorrect) representations of dispersal, the value of the
fishery can be significantly lower; for the case of kelp rockfish it is
only half of the value of the fishery optimized under uncertainty
(Fig. 2C).Of these simpler approximations, optimizingfishingusing
the distance-based Gaussian approximation yields only slightly
higher values than optimizing on the basis of larval-pool dispersal.
The effect of information on the value of the fishery is largest

when the system is managed solely for maximizing profit, but the
qualitative patterns are maintained across a broad range of man-
agement goals. As the conservation weighting factor increases, the
spread between the value of the fishery optimizedwith andwithout
information narrows, and thus the value of information is reduced.
In the extreme case in which the system is being managed solely to
maximize biomass (i.e., when the conservation weighting factor is
1) the optimal solution is to cease fishing. In this situation the
optimal fishing pattern does not depend on dispersal, so infor-
mation has no value.
The effect of information is similar across the three species,

although the magnitude of its value varies. For example, opti-

mizing solely for profit with full information produces about 11%
higher expected value than optimizing with uncertainty for kelp
rockfish, 8%more for sheephead, and 5%more for kelp bass (Fig.
2 A–C). For these three species, the value of information is larger
for species with longer PLDs, potentially reflecting greater
potential to take advantage of source–sink dynamics in these
longer dispersing species. Although there is considerable variation
in the predicted values of information, the three species presented
here represent a range of pelagic larval durations (30, 40, and 60
days) and spawning seasons (spring, summer, and fall), so these
patterns may apply across a wide range of larval life histories and
seasonal ocean circulation patterns. A much larger set of species
would be necessary to draw any general conclusions, however.

How Fishing Effort and Biomass Depend on Information. In the
optimized fishing distributions, there is considerable variability in
fishing effort from patch to patch. This variability arises both
from heterogeneity in the habitat and from variability in larval
dispersal. The more information about dispersal that is available,
the more the distribution of fishing effort can be optimized to
take advantage of source–sink dynamics.
One striking feature of the optimized fishing distributions is that

they include significant areas that are closed to fishing, even when
the manager’s objective is to maximize fisheries profit. These
marine reserves are defined here as patches where fish could be
extracted profitably but which are left unfished in the optimal
solution. A strong effect of information is found on the fraction of
the habitat optimally dedicated to reserves. When the fishery is
optimized with perfect information, substantially more habitat is
in reserves than when the fishery is optimized under uncertainty
(Fig. 3A). When the fishery is optimized on the basis of simpler
approximations of dispersal, substantially less habitat is protected,
with the larval pool approximation typically protecting the least
amount of habitat. These results hold true for all three species and
across a wide range of management goals (Figs. S3 and S4).
The overall level of fishing and the resulting biomass also

depend on the availability of information. Overall fishing effort is
substantially higher when using the simplified dispersal; optimized
fishing on the basis of larval pool dispersal has the highest levels of
fishing (Fig. 3C). Because of these highfishing rates, biomass levels
are consistently lower in these cases and are the lowest for the
larval pool case (Fig. 3B).Optimizationswith perfect knowledge of
the potential dispersal but uncertainty about which is correct tend
to have the lowest levels of fishing effort, ∼20% lower than in the
simplified cases and a few percentage points lower than the aver-
age fishing effort with full information. Biomass in these cases is
correspondingly high, ∼10% higher than the simplified con-
nectives, with biomass in the uncertainty case slightly higher than
that with full information. These results are consistent for the
range of management goals, which either focus on maximizing
profit or on maximizing some mix of profit and conservation.

Discussion and Conclusions
We show that marine reserves can be economically profitable
and that profit levels increase with the amount and quality of
spatial information provided. This is because fishing effort can be
allocated more efficiently to patches of varying productivity given
dispersal information. Thus, spatial information informs better
management and has substantial economic value, possibly >10%
of the value of the fishery. Improved spatial information (even
when incomplete) also tends to lead to lower overall fishing
effort and correspondingly higher fish abundances than can
occur—even in fishery being optimized for profits—without that
information. Better information also leads to a greater hetero-
geneity in the spatial harvest and nearly doubles the number of
reserves optimally designated, all while increasing overall profit.
These conclusions will depend on which parameters are

uncertain and on the specific modeling choices made. For

Mean

Gaussian19991997

Destination siteDestination siteDestination site

Destination site

S
ou

rc
e 

si
te

S
ou

rc
e 

si
te

Longitude

La
tit

ud
e

A B

E

D

C

Fig. 1. (A) Ocean circulation model domain and SCB site locations (after ref.
31). (B) Eight-yearmean potential dispersal kernel for sheephead larvae in the
SCB. Sheephead typically spawn from July to October and have a 40-day PLD
(33, 34). Source sites are listed in the y axis and destination in the x axis and the
strength of dispersal is shown in color (note the logarithmic scale and all dis-
persal kernels have the same color bar). (C) Potential dispersal kernel for
sheephead larvae for the ElNiño yearof 1997. (D) Potential dispersal kernel for
sheephead larvae for the La Niña year of 1999. (E) Dispersal estimates calcu-
lated as a function of geometric distance between sites using the Gaussian
larval transport model (42). Site-to-site dispersal values are calculated
assuming no mean flow and variable component of the flow of 10 km/day
using the Gaussian dispersal formulae provided in Eq. 5 and table 1 of ref. 42.
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example, instead of postulating a fixed (but unknown) dispersal
kernel, we could have allowed it to be stochastic. In that case,
information would inform the value of Dt in period t. Because
permanent reserves would tend to be less desirable under that
condition (see ref. 3), we suspect that this change would dampen
our result that information significantly increases the number of
reserves designated. A related extension would assess the effect
of information on structural changes to a truly stochastic kernel,
e.g., if information resolved changes in the variance of weather
arising from climate change.
Taken together, Figs. 2 and 3 paint an interesting picture of the

determinants of increased value arising from improved informa-
tion; notably that the value arising from increases in biomass are
relatively small.When the conservationweighting factor (α) is low,
the contribution from biomass is low because it receives little
weight in the objective function.When the conservation weighting
factor is large, the contribution from biomass is also low, but for a
different reason.Here, the samepolicy is pursued regardless of the
information, so the same biomass is achieved with, and without,
information. We thus conclude that equilibrium biomass can play
a direct role in the value of information, but only for intermediate
values of the conservation weighting factor, α. Fishery profit plays
a direct role, even for small values of α.
Our results contribute to a growing debate on how different

objectives of marine management—maintaining populations and
sustaining harvests—can be reconciled. Previous studies have

shown that life-history characteristics of species, their mobility,
and the behaviors and constraints to the fishing fleet are
important determinants of whether both objectives can be met
(4, 5, 40, 41). Here we propose a different aspect of this problem
to be considered: the amount of information available on the
dynamics of the biological systems and their interactions with the
environment. Our results suggest that investment into acquiring
spatial information, particularly on source–sink dynamics of
exploited species, may be economically efficient and will benefit
both the fisheries and the exploited populations.
Our modeling framework simplifies several features of real

marine systems to produce general insights rather than addressing
the specific characteristics of individual systems. Relaxing some of
our assumptions may lead to different conclusions, although such
differences are likely to be quantitative rather than qualitative. For
example, this model assumes a sole owner of the fishery, thus no
competition among fishermen. In contrast, under several manage-
ment schemes, such as a quota system where fishing is regulated
through a total allowable catch (TAC), fishing fleets compete for a
common resource. Such competition would likely interfere with the
efficient allocation of fishing effort among areas with varying (and
known) productivity, especially in the case of overcapacity of the
fishing fleets. This effect is likely to decrease the estimated value of
information. Moreover, excessive competition among fishing fleets
may be decreased, even under a TAC system, through private
agreements among fishermen (e.g., via cooperatives) or by insti-
tuting spatial property rights. Whatever the management regime,

A

B

C

Fig. 2. The expected value of the (A) sheephead, (B) kelp bass, and (C) kelp
rockfish fisheries optimized using different information about larval dis-
persal. Filled circles are with full information, open circles are with infor-
mation about alternative possible dispersal kernels but uncertainty about
which is correct, filled triangles are for the Gaussian larval transport model,
and open triangles are for the larval-pool model. Results are given for a
range of management goals, from purely profit maximizing (conservation
weighting factor α = 0) to purely biomass maximizing (conservation
weighting factor α = 1). All values are expressed relative to the value of the
fishery optimized under uncertainty.

A

B

C

Fig. 3. Characteristics of the sheephead fishery, which has been optimized
using different information about larval dispersal. (A) The fraction of habitat
in MPAs, (B) the equilibrium biomass, and (C) the total fishing effort. Filled
circles are with full information, open circles are with information about
alternative possible dispersal kernels but uncertainty about which is correct,
filled triangles are for the Gaussian larval transportmodel, and open triangles
are for the larval-pool model. Results are given for a range of management
goals, from purely profit maximizing (conservation weighting factor α = 0) to
mostly biomass maximizing (conservation weighting factor α = 0.75).
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the frameworkpresentedhere canprovide guidance about the value
of information to improve spatial management.
We also found that optimally sited networks of marine reserves

become considerably larger with improved information. Informa-
tion on the source–sink dynamics allows the siting of no-take zones
in themost efficient locations (typically the sourceareas).When this
information is not available, reserves (albeit smaller networks) are
still typically part of theoptimal solution even though the increase in
fishery performance is not as remarkable. This is consistent with
other theoretical studies showing that the profit of a sole owner
fishery under MPA implementation can be larger than optimized
profit under traditional management (3). We also allowed for
multiple objectives where conservation of unfished biomass (not
just fishery profit) is the driving factor. As expected, we find that the
fraction of area in reserves and the overall systemwide biomass
increased as the weight on conservation increased.
We did not explicitly address the tradeoff between the value of

information and the cost of acquiring it. When gathering infor-
mation is costly, efficient information acquisition will depend on

both the benefits and costs. In extreme cases, where costs are
sufficiently high, it may be efficient to manage under uncertainty,
without acquiring any additional information. On the other
hand, there are likely to be additional benefits—beyond fisheries
management—of improved understanding of larval dispersal
dynamics.
Although we focused on the specific case of uncertainty over

larval dispersal patterns, the framework developed here is suffi-
ciently general to accommodateothermechanismsof dispersal and
other sources of uncertainty and information. Biological, eco-
nomic, and oceanographic variables may all be uncertain, and this
approach could be used to evaluate which sources of uncertainty
are most efficiently resolved by acquiring additional information.
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