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Disorder-induced suppression of charge density wave order: STM study of Pd-intercalated ErTe3
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Pd-intercalated ErTe3 is studied as a model system to explore the effect of increasing disorder on an
incommensurate two-component charge density wave (CDW). The ordering vectors of the CDW components
lie along the two in-plane principal axes of the nearly tetragonal crystal structure. Using scanning tunneling
microscopy (STM), we show that introducing Pd intercalants (i.e., disorder) induces CDW dislocations, which
appear to be associated with each CDW component separately. Increasing Pd concentration has a stronger effect
on the secondary CDW order, manifested in a higher density of dislocations, and thus increases the anisotropy
(nematic character) of the CDW. Suggestive evidence of Bragg glass phases at weak disorder is also discussed.
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I. INTRODUCTION

Charge-ordered states are a key feature of strongly cor-
related materials [1–3]. For example, the cuprate high-
temperature superconductors exhibit various signatures of
charge ordering and fluctuating order, raising the question
of their impact on the occurrence and nature of supercon-
ductivity. While notionally “charge order” refers to states
that spontaneously break the spatial symmetries of the host
crystal, the presence of unavoidable disorder complicates the
situation. On theoretical grounds [4] it is expected that even
weak quenched disorder disrupts long-range incommensurate
charge density wave (CDW) order at long distances, which
implies intrinsic difficulty in inferring from observations what
the exact form of the symmetry breaking would be in the
“ideal,” zero-disorder limit [5,6]. This, and the fact that the
magnitude of the resulting ion displacements is relatively
small, delayed the identification of such order in the cuprates
with traditional methods, such as x-ray scattering, even though
evidence of local order was deduced earlier from scan-
ning tunneling microscopy (STM) and spectroscopy (STS)
studies [7,8].

More generally, because charge order is so sensitive to
quenched randomness, it is extremely important to comple-
ment spatially averaged information obtained from transport
or diffraction measurements with information from local
probes. Thus, to shed light on this issue, we turn here to
a model system which mimics certain aspects of the main
features of the charge-ordering phenomena of the cuprates but
for which a fairly solid understanding of the theory of the pure
system exists (see [9] and the Supplementary Information of
[10]) and disorder can be introduced in a controlled fashion
and its effects studied using both global (scattering and trans-
port) and local (STM) probes.

It was recently suggested that Pd-intercalated RTe3 (R =
rare-earth element, Er in this paper) is a suitable model system

[11–13]. This family of quasi-two-dimensional (quasi-2D)
metals exhibits unidirectional and bidirectional incommen-
surate charge density wave states [14–17]. As indicated in
Fig. 1, the pristine (unintercalated) compound undergoes two
successive CDW phase transitions, with critical temperatures
TCDW1 = 270 K and TCDW2 = 165 K [17]. TCDW1 marks the
onset of the “primary” CDW order with ordering vector
qCDW1, and TCDW2 is the second, orthogonal CDW component
with qCDW2. Thus, despite the nearly tetragonal symmetry of
the crystal, the phase at TCDW1 > T > TCDW2 has unidirec-
tional CDW order, while the low-temperature phase is bidirec-
tional, but with generally inequivalent strengths. Straquadine
and Fisher demonstrated via resistivity measurements that
signatures of the two phase transitions are then smeared and
suppressed by Pd intercalation, consistent with a scenario in
which the dominant effect arises from disorder induced by the
intercalant atoms [13].

In this paper we present a low-temperature STM study
of the effects of disorder on the two orthogonal components
of the incommensurate CDW order in Pd-intercalated ErTe3.
This allows us to obtain clear insight into the nature of the in-
terplay between the two components of the order, the relation
between the fundamental density wave order and composite
orientational (“vestigial nematic” [9]) order, and the (some-
times nonlocal) role of topological defects (dislocations) in
all these phenomena. Our principal results are as follows: (i)
Both CDWs resolved by STM are consistent with bulk mea-
surements [13,18], including the fact that the wavelengths in
the two directions are slightly but significantly different from
each other. (ii) Both CDW components coexist throughout
the sample, even in the presence of disorder, consistent with
the intrinsically bidirectional character of the low-temperature
CDW order. However, the CDW associated with the higher
Tc is dominant. (iii) Introducing Pd intercalants induces
both phase disorder and dislocations (initially dislocation
pairs), which appear to be associated with each component
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FIG. 1. Phase diagram taken from [13]. Colored points at x =
0 mark the phase transitions of the pristine sample. Gray points at
finite x mark the crossover temperatures identified as features in the
electrical resistivity. Vertical arrows mark the three Pd concentrations
discussed in this paper. Inset: Calculated Fermi surface of the parent
compound ErTe3 (from [15]) with q1 and q2 as nesting vectors.

separately. This has a stronger disruptive effect on the sec-
ondary CDW, which has a greater number of dislocations
than the primary component. (iv) Nonetheless, vestiges of
the two distinct CDW phases persist all the way to 5% Pd
intercalation, far beyond where signatures of the smeared
phase transitions are observed in bulk probes. (v) In the
presence of disorder, nematic order [9,10] is still preserved
over length scales at least as long as the STM field of view.
We propose a phase diagram with two Bragg glass [19–24]
phases and speculate where our samples fall on this diagram.

RTe3 is formed in the orthorhombic space group Cmcm [25]
and contains double layers of nominally square Te planes
separated by RTe block layers. Orthorhombicity is derived
from a glide plane stacking of these tetragonal layers, which
determine the electronic properties of this system at high
temperatures. A unidirectional CDW was first detected in
this system by transmission electron microscopy [14]. Angle-
resolved photoemission spectroscopy (ARPES) showed that
large portions of the Fermi surface (FS) nested by qCDW1 are
indeed gapped [26]. STM and STS studies established the
incommensurate nature of the CDW in TbTe3 while also re-
vealing an additional CDW ordering perpendicular to the prin-
cipal one [16], but weaker in amplitude. Subsequent ARPES
studies on ErTe3 established that two incommensurate CDW
gaps are created in two separate transitions by perpendicular
FS nesting vectors [18]. Despite the near-nesting conditions
that result in gapping of a substantial portion of the Fermi
surface in the CDW state, several factors indicate that strong-
coupling effects unrelated to Fermi surface nesting play a role
[27]. Evidence for this perspective lies in the large values
of 2�CDW/kBTCDW (∼15 and ∼7 for the first and second
CDWs, respectively) [28], although several other factors can
also yield such an effect. More convincingly, high-energy-
resolution inelastic x-ray scattering on TbTe3 revealed strong
phonon softening and increased phonon linewidths over a
large part in reciprocal space adjacent to the CDW ordering

vector, thus showing momentum-dependent electron-phonon
coupling [29].

II. EXPERIMENT

PdxErTe3, with 0 � x � 0.055, was grown using a Te
self-flux for pure RTe3 compounds [15], with the addition
of small amounts of Pd to the melt. A detailed descrip-
tion of sample preparation, characterization, and the effect
of Pd intercalation on the bulk properties is given in [13].
Three levels of intercalation were studied: 0.3%, 2%, and
5% (marked in Fig. 1). STM was performed with a hybrid
UNISOKU-USM1300 system constructed with a homemade
ultrahigh-vacuum sample preparation and manipulation sys-
tem. The samples were cleaved at room temperature at pres-
sures of low 10−10 torr and immediately transferred to the low-
temperature STM. Topography was performed at ≈ 1.7 K,
with typical tunneling parameters of Vbias = 50–100 mV and
I = 100–300 pA.

III. RESULTS AND DISCUSSION

The phase diagram in Fig. 1 shows that the secondary
CDW state is more sensitive to disorder. Its “transition tem-
perature” is suppressed quickly as x increases and extrapolates
to zero around x = 1%. Thus, samples with low levels of
intercalants should be an excellent starting point to observe
the effect of weak disorder on both transitions.

Figure 2(a) shows the topography of an x = 0.3% sample.
The features visible are an atomic corrugation, CDW corru-
gations, and small lumps on the surface, often with a skewed
X pattern around them. The lumps, which generally increase
in number with the intercalation density, are only a fraction
of an angstrom high and thus must arise from subsurface
intercalants rather than surface Pd atoms. Single-crystal x-ray
diffraction on the same crystals confirmed the increase in the
b-axis lattice constant consistent with Pd atoms intercalating
between the van der Waals bonded Te bilayer [13]. Density
functional theory calculations also show this to be the most
favorable location for intercalation [11]. No surface Pd atoms
were observed for low intercalations, presumably due to
the high volatility of the Pd atoms upon cleaving at room
temperature.

Much of the analysis of the CDW and effects of disorder
is done via the Fourier transform (FFT) of the topographic
data, as in Fig. 2(b). The two CDWs generate a series of
very sharp peaks in a line from the origin to both recipro-
cal lattice points corresponding to the RTe block layer [see
Figs. 2(c) and 2(f)]. As in previous STM and x-ray studies of
the parent compound [15,16,30], there are four characteristic
CDW points due to mixing with the lattice. For the primary
(dominant) CDW, these are qCDW1 = 0.70c∗, c∗ − qCDW1 =
0.30c∗, 2c∗ − 2qCDW1 = 0.60c∗, and 2qCDW1 − c∗ = 0.40c∗.
[In this material, the primary and secondary CDWs lie along
the c and a axes, respectively, and the asterisk (∗) indicates
the reciprocal lattice vector.] The perpendicular line cut has
a slightly different set of peaks with qCDW2 = 0.68a∗, a∗ −
qCDW2 = 0.32a∗, etc. (The uncertainty is ≈ 0.005c∗, or one
FFT pixel, in our 100-nm scans.) Based on wavelength, we
identify the former with the primary, or higher Tc, CDW
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FIG. 2. (a) Topography (cropped) of the 0.3% Pd-intercalation
sample. (A full-size 100-nm image is available in Appendix A).
(b) FFT of (a) with reciprocal lattice points from the Te plane
labeled and white lines indicating the line cut directions. (c) The
respective line cuts. Here the stronger CDW peaks (red) are along
c∗. (d) Topography (cropped) of the 2% sample. (e) FFT of (d) and
(f) the respective line cuts.

[17,18,31]. The latter is the secondary CDW, with a transition
at lower temperatures, and is the one that shows a weaker
signal in diffraction measurements and disappears first with
rising intercalation level [13]. In our STM data, depending
on many factors, such as tunneling parameters, tip condition,
and scan location, the relative amplitudes of the four peaks
within one line scan can vary. However, it is generally true that
the CDW1 signal is always stronger everywhere in the 0.3%
sample, thus giving the visual impression of a unidirectional
CDW. We also note the presence of strong satellite peaks
at qTe ± qCDW. The CDW exists in the Te plane, and its
signal is strongly modulated by this lattice (qTe). Similar
strong satellites were also seen in the STM data of pristine
TbTe3 [16].

Next, we show a higher level (2%) of intercalation in
Figs. 2(d)–2(f), where the secondary CDW is expected (from
resistivity data) to be absent. Like in the 0.3% sample, we
note the lack of surface Pd atoms. There also exist the same
subangstrom lumps, the X pattern, and their greater abundance
in accordance with the higher intercalation level. However,
both CDWs are still present, with the second CDW having a
lower amplitude. This was also seen in the low-temperature x-
ray data of [13]. For either intercalation level, both CDWs are
omnipresent, ruling out the possibility of alternating domains
of a unidirectional CDW.

Unlike the parent compound, the presence of intercalants
creates additional features in the topography and FFT due
to quasiparticle scattering interference. In real space, this
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FIG. 3. CDW defect analysis of the 0.3% and 2% Pd-
intercalation samples. (a) The 1000-Å phase plot for the 0.3%
secondary CDW showing dislocations. (b) The 2% sample. (c) and
(d) Zooms of the highlighted areas showing real-space filtered topog-
raphy. (e) Autocorrelation plots for the CDW signals.

manifests itself as streaks that emanate from some of the
lumps in a skewed X pattern. In Fourier space, scattering along
ungapped portions of the Fermi surface, which generally run
≈45◦ to the CDW vectors (Fig. 1, inset), manifests as a
compressed X at the origin as well as other streaks. This
X is biased in the c* direction in the 2% sample and may
reflect the broken fourfold symmetry via two different CDW
gaps [18]. In the 0.3% sample there are two of these features,
perpendicularly overlapped.

To focus on the distinct CDW components, we decompose
the topographic maps in Figs. 2(a) and 2(d) as ρ(r) = ρ1(r) +
ρ2(r) + · · · , where the primary component, ρ1(r), is obtained
by applying a flat-topped Gaussian filter that keeps only
Fourier components in a neighborhood of radius �q around
qCDW1 = 0.70c∗, ρ2(r) is obtained from the same filtering
near qCDW2 = 0.68a∗, and · · · is everything else. (All data
shown are for �q ≈ 0.05c∗ to avoid capturing portions of the
nearby CDW point. Further details regarding the filter width
and subsequent data analysis are provided in Appendix A.)
Each component, in turn, can be expressed in terms of an
amplitude and phase, ρ j (r) = Aj (r) cos[qCDWj · r + φ j (r)],
where the phase measures the lateral displacements in the
CDW structure, and dislocations are visualized where the
phase winds by 2π around a point. The majority of dislo-
cations are paired with a nearby antidislocation so that the
phase winding cancels out. The phase φ2 of the secondary
CDW (the one more strongly affected by disorder) in the 0.3%
and 2% samples is shown in Figs. 3(a) and 3(b), respectively.
Figures 3(c) and 3(d) show ρ2(r) in the small areas iden-
tified by the squares in Figs. 3(a) and 3(b), which contain,
respectively, a dislocation pair and an isolated dislocation.
The primary CDW in the 0.3% sample has minimal phase
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FIG. 4. (a) The 300-Å topography of the 5% Pd-intercalation
sample. (b) FFT of (a) and (c) the respective line cuts.

variations and no dislocations, meaning that the intercalants
have a minimal effect on this CDW (see Fig. 7). In the
2% sample, the primary CDW has some closely separated
dislocation pairs, but no isolated dislocations were observed.

To obtain a more quantitative measure of the range of
the CDW correlations we compute the autocorrelation of the
filtered CDW

Gj (r) ≡ Re

[
g j

∫
d2r′Aj (r)Aj (r + r′)eiφ j (r)−iφ j (r+r′ )

]
, (1)

with normalization g j chosen such that Gj (0) = 1. This quan-
tity is shown in Fig. 3(e) for both the primary (solid lines)
and secondary (dashed lines) components of the CDW and
for both the 2% (blue) and 0.3% (red) samples. Manifestly,
out to the longest distances accessible to us, it is clear that the
disorder has a substantially stronger effect on the secondary
CDW, but that, with the possible exception of the secondary
CDW in the 2% sample, long-range correlations persist even
in the presence of disorder. The character of the short distance
drop in Gj , unsurprisingly, depends on the choice of �q and
is due to non-CDW features or noise which create short-range
correlations. [Oscillations in the curves are due to analyzing
individual data sets and thus lack (disorder) configuration
averaging.] However, the qualitative doping dependence of
the long-distance (greater than 100 Å) correlation is relatively
insensitive to these factors, as shown in Fig. 8 in Appendix A.

Finally, we discuss the 5% Pd-intercalation sample, where
Fig. 1 would suggest that remnants of both CDWs are com-
pletely suppressed. The topography in Fig. 4(a) is qualita-
tively different from that in the lower intercalation samples,
lacking the skewed X pattern, but still having subangstrom
height modulations with small length-scale corrugations. We
typically observe an adatom on the surface approximately
once every 30 nm, with a height of a few angstroms, which
occasionally moves or causes a tip reconstruction. This limits
our scan size and therefore FFT resolution.

The FFT [Fig. 4(b)] reveals that the CDW peaks are
now significantly broadened, with a vague grouping near
the primary CDW point and an even more nebulous region
for the secondary one. However, broad peaks at the CDW
ordering vector still appear in the line cuts in Fig. 4(c). At
higher temperatures (95 K), no sharp k-space points were seen
in x-ray and electron diffraction measurements[13]. Instead,
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FIG. 5. A proposed phase diagram as derived in Appendix B.

broad and diffuse streaks spanning between the original CDW
points were seen, indicating 2D short-range correlations that
are consistent with the q-dependent susceptibility. What could
be these same streaks appear in our data as well. In fact,
the visible corrugations seen in the topography are due to
these streaks plus the broad CDW peaks and not the atomic
lattice, although the lattice points are well defined in the FFT.
This short-range CDW order likely originates from CDW
fluctuations pinned by the disorder as the sample is cooled
to measurement temperature [3]. A similar observation was
reported for the CDW system NbSe2 [32].

Putting all these results together, we propose a phase
diagram for a two-component CDW system in the presence
of disorder (derivation and further explanation are given in
Appendix B) as in Fig. 5. Viewing this in terms of STM
data, in the less disordered samples, the decay of the CDW
correlations at long distances (up to r ∼ 1000 Å) is suffi-
ciently slow that it could be consistent with persistent long-
range order, but we rule this interpretation out on theoretical
grounds. In contrast, in three dimensions, a Bragg glass phase
is thought [22] to be possible, in which the autocorrelation
function falls as a power law, ∼1/rx, with x ≈ 1, and in
which no isolated (unpaired) dislocations would occur at long
distances. We thus identify as Bragg glass order cases in
which no isolated dislocations are seen in the field of view
and in which the autocorrelation function at long distances is
approximately constant or, at most, very slowly decreasing.
In both the 0.3% and 2% samples but not in the 5% sample,
the primary (dominant) CDW component exhibits Bragg glass
correlations by this criterion. The secondary (subdominant)
CDW also is Bragg-glass-like in the 0.3% sample, meaning
the ground state is a bidirectional Bragg glass. By contrast,
in the 2% sample, we see fairly well isolated dislocations in
the secondary CDW, and the correlations fall considerably
with distance, meaning that either the CDW is short range
correlated and thus the ground state is a unidirectional “stripe
glass” or that the sample is at least close to the phase bound-
ary. In the 5% sample, all the CDW correlations are short
ranged, but there still is a notable difference between the
strength and range of the two components, so (to the extent
that the effect of the weak orthorhombicity can be treated as a
perturbation) this sample exhibits vestigial nematic order.
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APPENDIX A: ADDITIONAL DATA AND ANALYSIS
OF DISLOCATIONS

Figure 6 shows the full-range topographic data for the 0.3%
and 2% samples. We start by employing a variant of the Fujita-
Lawler analysis of a localized Fourier transform in order to get
local displacements of the atomic lattice which are related to
scanning artifacts such as creep and hysteresis [33,34]. The
distortion is removed before further analysis.

Next, we Fourier transform the topographic data and filter
around the qCDW = 0.70c∗ (or 0.68a∗) point. To obtain a
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FIG. 7. The 1000-Å phase plots for (a) the 0.3% Pd-intercalation
sample and (b) the 2% sample.

real-space representation of the CDW, we reverse transform
to obtain ρ(r). To obtain the phase plots, we additionally
multiply by e−iqCDW ·r and take the angle of this complex
quantity. Two phase plots (for the primary CDW component)
not shown in the main body of the paper are provided in Fig. 7.
Note that these have fewer dislocations than their respective
secondary components. In particular, the 0.3% primary CDW
has a relatively uniform phase and no dislocations at all.

To compute autocorrelation, we use the Fourier-filtered
CDW signal ρ(r). This results in a 2D image, peaked at
the center, with modulations at the CDW period. In order to
remove the oscillations and obtain the amplitude, we multiply
by e−i(qCDW ·r+δ) and filter away the second harmonic. The
resultant image has both real and imaginary components,
and via careful choice of qCDW and δ, the real part can be
maximized with minimal imaginary contributions. That this
is possible is a testament to the single-frequency (i.e., long
correlation length) nature of the CDW. Using the real image,
we take a line cut from the origin out in the direction of the
CDW with a small angular average (±7◦) for smoothing.
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in the main body of the paper.
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In Fig. 8 we show the effects of the Fourier filter width �q
around the CDW point on the calculation of autocorrelation.
The green “medium” curve corresponds to the filter width
used in the main body of the paper and all the analyses. In this
plot, the autocorrelation curves have been normalized at long
length scales. A wider filter lets in more high-frequency noise
and other spurious signals, which leads to more short-length
correlations (the initial peak in the red curve) as well as
unphysical oscillations.

APPENDIX B: THEORETICAL BACKGROUND

In this Appendix we provide a summary of the theoretical
background behind our analyses of the experimental data. It
sketches an effective field theory of two-component CDW
order in the presence of quenched randomness. In reality, the
crystals involved are slightly orthorhombic, but this seems
to be a very small effect, so we will consider an idealiza-
tion in which the crystal is taken to be tetragonal and the
orthorhombicity—when included at all—will be represented
as an infinitesimal external symmetry-breaking field.

1. Reviewing the phase diagram in the clean limit

In the absence of disorder (or the best achievable approx-
imation to this limit) the phase diagram in T and chemi-
cal pressure P shows three distinct phases: a uniform (no
CDW) phase for T > TCDW1(P); a phase with “bidirectional”
CDW order, but with distinctly different strengths and slightly
different ordering vectors for the two CDW components at
T < TCDW2(P) < TCDW1(P); and a “unidirectional” CDW for
intermediate temperatures TCDW1(P) > T > TCDW2(P). Both
CDW phases break the tetragonal point-group symmetry and
in this sense have a nematic component.

Since the two transitions are separated from each other,
it is reasonable to treat them separately. However, since the
various ordering tendencies get both truncated and scrambled
when disorder is introduced, we would like to treat them
from the perspective of a single, unified effective field theory.
Moreover, it is observed that as a function of increasing P,
the two lines tend to approach one another, so that for the
case of ErTe3 studied here (which has the largest effective P,
i.e., the smallest lattice constant of any of the stoichiometric
tri-tellurides studied to date) (TCDW1 − TCDW2)/TCDW1 ≈ 0.4.
We would thus like to think that this allows us to organize our
thinking about a putative multicritical point at T = T ∗ > 0
and P = P∗ at which these two lines would meet at slightly
higher pressure, i.e., TCDW1(P∗) = TCDW2(P∗) = T ∗.

The nature of such a multicritical point in a tetragonal
system is already somewhat unusual. To see this, consider
the lowest-order effective (Landau) potential as a function of
the two components of the CDW order represented by two
complex scalar fields, φ1 and φ2. To the extent that the crys-
tal can be treated as approximately tetragonal, the effective
Hamiltonian density H[φ1, φ2] is symmetric under discrete
rotations (and other point group interactions) that exchange φ1

and φ2. (The weak effect of the subtle orthorhombicity of the
actual crystal structure can be modeled as a small symmetry-
breaking term of the form Vorth ≡ −b[|φ1|2 − |φ2|2].)

FIG. 9. Steps in constructing the phase diagram which is the
result of the minimization of the different parts of the effective
potential (see text).

2. φ4 theory of stripe and nematic phases

To fourth order in the fields, the effective potential is

V (φ1, φ2) = α

2
[|φ1|2 + |φ2|2] + 1

4
[|φ1|2 + |φ2|2]2

+ γ

2
|φ1|2|φ2|2 + · · · , (B1)

where we have assumed that the quartic term is positive and
have normalized the fields such that their strength is unity.

The phase diagram in the α-γ plane that results from min-
imizing this effective potential (i.e., Landau theory) is shown
in Fig. 9(a). For γ > 0, there is a second-order transition
to a stripe-ordered CDW phase as α changes from positive
to negative values, while for γ < 0 the transition is to a
checkerboard state. In the stripe phase, either the thermal
average of φ1 is nonzero and φ2 = 0 or the converse; in
addition to breaking translational symmetry in one direction,
this phase strongly breaks the C4 rotational symmetry that
interchanges the two components of the order parameter.
In the checkerboard phase, the thermal averages of φ1 and
φ2 are not only nonzero but of equal magnitude; this state
breaks translation symmetry in both directions but leaves an
unbroken C4 rotational symmetry. The point α = γ = 0 is
a bicritical point, below which, as a function of γ , there is
a first-order boundary between the stripe and checkerboard
phases. Fluctuation effects for an effective Landau-Ginzburg-
Wilson model with this form of the effective potential have
been considered elsewhere (see especially [9]). In addition
to their effects on critical exponents, these can lead to ad-
ditional subtleties in the nature of the phase diagram and
even to additional phases making their appearances; for in-
stance, in a quasi-2D system, there can be a narrow strip
between the stripe-ordered phase and the fully symmetric
phase in which CDW order is melted but in which vestigial
C4 symmetry breaking persists, giving rise to a vestigial
nematic phase.
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More interesting is what happens to this phase diagram
in the presence of weak but non-negligible disorder. Here
(in d � 4) no incommensurate CDW long-range order is
possible, which likely implies that the CDW transitions are
all replaced by crossover lines separating regions with little in
the way of CDW correlations from regions with substantial
intermediate-range CDW order. (An interesting possibility,
which we will ignore for now but to which we will return
below, is that for weak enough disorder there could exist
a Bragg glass phase with power-law CDW order and no
unbound dislocations [22,23].) However, as shown in Ref. [9]
(and as would be expected anyway on general grounds),
the nematic component of the stripe order persists up to
a nonvanishing critical disorder strength. The shape of the
phase boundary follows from continuity: in the limit that the
disorder strength tends to zero, this boundary must coincide
with the phase boundary of whatever CDW phase has a
nematic component. Thus, the phase diagram in the presence
of weak disorder becomes that in Fig. 9(b), where the dashed
lines indicate crossovers, and the solid black line bounds the
nematic phase.

3. φ8 theory and the nematic bidirectional CDW phase

Manifestly, the φ4 theory is inadequate in that it is miss-
ing one phase that is observed in experiments (the nematic
bidirectional CDW) and yet has one implied phase (the
checkerboard CDW) not seen in experiments. While we can
always imagine that the checkerboard CDW is lurking, as yet
undiscovered, in the large-P reaches of the phase diagram,
the missing bidirectional phase is something that needs to be
addressed.

Even in the case of pure ErTe3, TCDW2 is smaller than TCDW1

by a substantial factor, so at temperatures in the neighborhood
of TCDW2 there is no justification for assuming that |φ j | is
small; there is thus no reason to keep only low-order terms
in powers of the field in the effective field theory. Indeed,
away from the putative multicritical point, it is legitimate to
treat the two clean-limit transitions in terms of two distinct
effective field theories. Let us consider the case where we
are well below TCDW1, where the value of either |φ1| or
|φ2| is not small, but above TCDW2, and even slightly below
TCDW2, the subdominant component is a legitimate expansion
parameter. It is convenient to carry out the expansion of the
effective potential in a way that is still manifestly C4 invariant.
We thus define new quantities as follows: φ1 ≡ |φ| cos(θ )eiδ1

and φ2 ≡ |φ| sin(θ )eiδ2 . Translational symmetry implies that
the free energy must be independent of δ1 and δ2, and the
tetragonal symmetry implies that the free energy must be
invariant under θ → −θ and θ → θ + π/2. We can there-
fore, in complete generality, express the effective potential
in terms of the two quantities |φ|2 ≡ |φ1|2 + |φ2|2 and �4 ≡
|φ1|2|φ2|2 = |φ|4[1 − cos(4θ )]/8, such that near TCDW2, � is
small. We thus expand V in powers of �, giving

V = V0(|φ|2) + V1(|φ|2)

2
�4 + V2(|φ|2)

4
�8 + · · · , (B2)

where (noting explicitly for future use all terms up to order
|φ|8 and using the same conventions for the low-order terms
as above)

V0(φ2) = α

2
φ2 + 1

4
φ4 + u6

6
φ6 + u8

8
φ8 + · · · , (B3)

V1(φ2) = γ + γ2

2
φ2 + γ4

4
φ4 · · · , (B4)

V2(φ2) = λ + · · · . (B5)

In the neighborhood of TCDW2, |φ| is already large and does
not change much in magnitude, so we can focus exclusively on
θ . For V1 > |V2||φ|4/4, V is minimal for θ = 0 (i.e., we are in
the stripe phase), while for V1 < −|V2||φ|4/4 the minimum is
at θ = π/4 (i.e., we are in the checkerboard phase). (Here [θ ]
means the value of θ mod π/2 chosen to lie in the interval 0 �
[θ ] < π/2.) The shape of this intermediate regime depends on
the sign of V2. For V2 < 0 [the case illustrated in Fig. 9(c)], in
the interval 0 < V1 < |V2||φ|4,

θ = 1

4
cos−1

[ |V2||φ|4 − 8V1

|V2||φ|4
]
. (B6)

Thus, the boundary between the stripe phase and the nematic
bidirectional CDW phase (i.e., the line that implicitly de-
fines TCDW2) occurs where V1 = 4|V2|φ4, while the bound-
ary between the nematic bidirectional CDW phase and the
checkerboard phase occurs where V1 = 0. On the other hand,
for V2 > 0, the stripe phase persists as long as V1 > 0. Thus,
TCDW2 is defined by the condition V1 = 0, while the transition
to the checkerboard phase occurs where V1 = −V2|φ|4/4. In
both cases, all transitions are continuous.

For simplicity, this discussion was carried through in the
case in which TCDW2 is well separated from TCDW1. However,
clearly, the same considerations apply even as they approach
each other at the multicritical point, α = γ = 0. All that is
different here is that the size of the intermediate nematic bidi-
rectional CDW phase, which is bounded by |δV1| < |V2|φ4/4,
thus gets to be parametrically small, as shown in Fig. 9(c).
Here, approximating these terms by their leading-order ex-
pressions in powers of |φ|2, we infer that the intermediate
phase occurs for a range of γ such that |γ | � |λ||α|2.

It is interesting to note that the instability of the bicritical
point seen in the φ4 treatment and its substitution by this
peculiar tetracritical point appears to be inevitable, at least at
the level of mean-field theory. We have not explicitly carried
out the analogous treatment of fluctuation effects and the
effects of disorder in the resulting φ8 theory as was carried out
for the φ4 theory. Away from the multicritical point, however,
more or less the same considerations apply, leading to the
(conjectural) phase diagram shown in Fig. 9(d) in the presence
of weak disorder.

Indeed, at the conjectural level, it is reasonable to propose
that as a function of T and disorder strength σ , one would
expect a phase diagram with the general topology shown in
Fig. 10. Here, the inset shows a portion of the clean limit
phase diagram (plotted in the α-γ plane, where α should
be considered a proxy for T ), and the dotted red line shows
a trajectory through this diagram at fixed γ such that the
two requisite transitions at TCDW1 and TCDW2 are present. The
main figure assumes the same fixed γ but shows a putative
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FIG. 10. A conjectured phase diagram as a function of tempera-
ture T and disorder strength σ . Here the inset shows a portion of the
clean-limit phase diagram (plotted in the α-γ plane, where α should
be considered a proxy for T ; see text).

phase diagram in the α-σ plane. Phases with CDW long-range
order are confined to the σ = 0 axis. However, in just the
same way as previously discussed [9], the disorder leaves
us with a nematic transition, represented by the solid black
line, that survives up to a critical value of σ , defined as
the point at which the nematic critical temperature goes to
zero. Strong local CDW correlations persist to finite disorder,
vanishing with increasing α or σ via a crossover that can be
roughly identified with the nematic transition line, although
surely some local correlations survive arbitrarily far beyond
this. No other symmetries are broken upon decreasing α, so
what was TCDW2 at σ = 0 becomes a crossover line (which
is sharply defined only for arbitrarily weak disorder), below
which a second component of the local CDW correlations
should be apparent. (This is indicated by the dashed blue line
in Fig. 10.)

Finally, we have indicated two possible Bragg-glass transi-
tions in Fig. 10 as solid red lines. A Bragg glass is character-
ized by quasi-long-range (power law) order and an absence of
any free dislocations [22,23]. It is thermodynamically distinct
from a CDW phase (which has long-range order) and from
a fully disordered phase (which has exponentially falling
CDW correlations). The existence or not of such a phase
is not inevitable, as it depends on an appropriate hierarchy
of energies (e.g., a large core energy for the dislocation)
but it is thought to be possible in three dimensions. In the
present case there could be two such phases: one being a
“stripe-glass phase” (discussed previously in Ref. [35]) in
which there is unidirectional CDW quasi-long-range order
and a “bidirectional glass phase” which has two orthogonal,
nonequivalent CDW correlations, both with quasi-long-range
order. In principle, such quasi-long-range order could be in-
ferred from x-ray diffraction as it leads to a charge-order peak
which has a power-law singularity, which is distinct from the δ

function that rises from long-range-order or the Lorentzian (or
squared Lorentzian) that characterizes the disordered phase.
While this distinction is likely difficult to establish in practice,
a more promising way to establish such a phase is from STM
studies in which dislocations can be directly visualized.

In terms of other (non-STM) measurement techniques, the
red lines mark thermodynamic phase transitions, so nonana-
lytic behavior of any measurable properties should appear as
one crosses them. What those singularities are is not simple
to predict unambiguously. Moreover, because these are glassy
states, the issue of dynamics is always present to compli-
cate any discussion—these systems are prone to fall out of
equilibrium due to all sorts of domain pinning phenomena—
which would also round any thermodynamic signatures. The
phase boundaries (solid lines) in Fig. 10 should show up
as sharp features in measurable quantities, under conditions
in which the system remains in equilibrium. The nematic
transition, however, should be rounded by the small degree
of orthorhombicity in the crystals: it should thus show best as
a relatively sharp onset of various measures of macroscopic
anisotropy, such as anisotropy in the resistivity tensor. The red
lines are intrinsically glassy and so may be associated with the
onset of slow glassy dynamics and a failure of the system to
achieve equilibrium on laboratory timescales.
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