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Growth of nematic susceptibility in the field-induced normal state of an iron-based superconductor
revealed by elastoresistivity measurements in a 65 T pulsed magnet
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In iron-based superconductors, both nematic and magnetic fluctuations are expected to enhance superconduc-
tivity and may originate from a quantum critical point hidden beneath the superconducting dome. The behavior
of the nonsuperconducting state can be an important piece of the puzzle, motivating, in this paper, the use of
high magnetic fields to suppress superconductivity and measure the nematic susceptibility of the normal state
at low temperatures. We describe experimental advances which make it possible to measure a resistive gauge
factor (which is a proxy for the nematic susceptibility) in the field-induced normal state in a 65 T pulsed magnet,
and report measurements of the gauge factor of a micromachined single crystal of Ba(Fe0.926Co0.074)2As2 at
temperatures down to 1.2 K. The nematic susceptibility increases monotonically in the field-induced normal state
as the temperature decreases, consistent with the presence of a quantum critical point nearby in composition.
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I. INTRODUCTION

High magnetic fields suppress superconductivity, which
makes it possible to study the low-temperature properties
of the less-understood electronic normal states from which
unconventional superconductivity emerges. An important as-
pect of the normal state of several families of iron-based
superconductors is the tetragonal-orthorhombic phase transi-
tion [1], which originates from electronic correlations rather
than a simple lattice instability. Tuning parameters such as
chemical substitution or hydrostatic pressure suppress the
critical temperature of the coupled nematic/structural phase
transition, TS , as well as the neighboring SDW transition
temperature, TN and tends to increase the superconducting
transition temperature Tc. It is currently unknown to what
extent nematic and SDW fluctuations contribute to the low-
temperature physics of Fe-based materials, nor even whether,
for cases where the transitions are separated, the transitions
remain continuous down to zero temperature. In the 122
family, such as Ba(Fe1−xCox )2As2, the maximum Tc occurs
at approximately the same value of the tuning parameter at
which TS and TN vanish, which suggests that superconductiv-
ity may be enhanced [2] or even driven [3] by quantum critical
fluctuations in the neighborhood of a quantum critical point
(QCP) hidden beneath the superconducting dome.

Numerous experiments, including quantum oscillations
[4], NMR [5], London penetration depth [6], shear modu-
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lus [7], resistivity [8–10], and elastoresistivity [11,12] point
toward the presence of a QCP in several 122 compounds,
although a definitive connection to superconductivity has yet
to be established. Measurements of the nematic susceptibility
to very low temperatures for compositions proximate to the
putative QCP may shed some light on the relevant fluctu-
ations. In the present paper, we focus specifically on the
nematic susceptibility, demonstrating new means to measure
this quantity for a nearly optimally doped composition of
Ba(Fe1−xCox )2As2 while superconductivity is suppressed by
a large magnetic field. While estimates of the nematic sus-
ceptibility have been obtained previously to relatively low
temperatures for similar compositions via elastic stiffness [13]
and Raman [14] measurements, those measurements were
performed in zero magnetic field within the superconducting
state. Here, we study the temperature dependence of the ne-
matic susceptibility in the absence of superconductivity down
to a temperature of 1.2 K via an elastoresistivity technique.

Elastoresistivity is a fourth-rank linear response tensor
characterizing the sensitivity of the resistivity to strain. Spe-
cific components of the elastoresistivity tensor are directly
proportional to the nematic susceptibility [15], and such mea-
surements can therefore detect effects of nematic fluctuations
in the tetragonal state. Due to its nature as an electrical resis-
tance measurement, however, elastoresistivity cannot be mea-
sured in the superconducting state and any low-temperature
studies must rely on an external mechanism such as mag-
netic field or chemical disorder to suppress Tc. An added
challenge of working with Co-doped BaFe2As2 near optimal
doping is that the high upper critical field at zero temperature
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Hc2(0) = 52 T is beyond what is currently accessible with
static magnetic fields. A measurement of the elastoresistivity
in the field-induced normal state near a putative QCP must
therefore be done in a pulsed magnet. This sets a stringent
constraint on the timescales of the measurement and requires
a new experimental approach.

The purpose of this work is twofold. First, we present
adaptations to existing elastoresistivity techniques [16] which
extend the range of applicability of elastoresistivity mea-
surements to higher magnetic fields and lower temperatures.
Second, we apply this technique to a sample of near-optimally
doped Ba(Fe1−xCox )2As2, where x = 0.074. We show that
the resistive gauge factor, which acts as a proxy for the ne-
matic susceptibility, increases monotonically as temperature
decreases down to our base temperature of 1.2 K. As we
will also show, we observe no significant field dependence of
the elastoresistivity, indicating that the driving force behind
the nematic fluctuations is not strongly altered by extreme
magnetic field. This paper provides an experimental perspec-
tive on the important region of the phase diagram close to
optimal doping. At a minimum, for this composition close
to optimal doping, when the superconductivity is suppressed
by an external magnetic field, the continued growth of the
nematic susceptibility as temperature is reduced toward ab-
solute zero is not inconsistent with the presence of a QCP
with a nematic character nearby in composition. This mea-
surement also demonstrates the general possibility of using
elastoresistivity to probe susceptibilities arbitrarily close to a
QCP. Combined with other insights, this observation adds to
the body of evidence that suggests that nematic fluctuations
might play an important role in low-temperature physics at or
near optimal doping in iron pnictides.

II. EXPERIMENTAL METHODS

The sample of Ba(Fe0.926Co0.074)2As2 was grown using
a self-flux technique described in detail elsewhere [17]. The
Co doping concentration was measured using electron probe
microanalysis (EPMA) in a JEOL JXA-8230 SuperProbe
system calibrated using the parent compound, BaFe2As2, and
Co standards. The sample was cleaved and cut into a rect-
angular bar with edges along the tetragonal [110] and [11̄0]
crystallographic axes with dimensions 430 μm × 1950 μm ×
13 μm. Four electrical contacts were made to the sample with
25-μm-diameter gold wire and Chipquik SMD291AX10T5
Sn63/Pb37 solder beads. The full contacting process is de-
scribed in depth elsewhere [18]. The contacted sample was
glued using an AngstromBond epoxy (AB9110LV) onto a
piezoelectric stack (Piezomechanik PSt150/5x5/7 cryo 1)
such that the tetragonal ab plane was flush with the face of
the piezoelectric stack and the long axis of the sample was
perpendicular to the stack’s poling axis. The stack is made of
lead zirconate titanate (PZT). Care was taken to use only a
small amount of glue so the sample’s top surface remained
clean. The glue was cured by baking at 45 ◦C for five to six
hours.

Throughout this paper, we work in a coordinate system
aligned with the PZT stack: with the x axis defined along
the sample, y axis along the PZT stack poling axis, and z
parallel to the out-of-plane crystallographic c axis. This is

described graphically in the inset to Fig. 3. In this coordinate
system, which is rotated by 45◦ about z with respect to the
in-plane crystallographic axes, tensor quantities with x2 − y2

symmetry belong to the B2g irreducible representation of the
D4h crystallographic point group.

To increase the size of the signal and increase the signal-
to-noise ratio, we increased the resistance of the sample using
focused ion beam (FIB) micromilling. After the sample has
been contacted and adhered to the PZT stack, the sample
was patterned into a long meander. Milling was performed
using an FEI Helios NanoLab 600i DualBeam FIB/SEM. An
optical microscope image of the resulting pattern is shown in
Fig. 1(a). Each of the seven bars is 150 μm long, 12.5 μm
wide, and the entire sample is 13 μm thick. Machining the
sample in this way increases its resistance by a factor of ap-
proximately 90, to a final value of 25 � at room temperature.
After machining, the cuts in the sample are filled in with
the same low-viscosity epoxy used to adhere the sample to
the stack. The stack was then loaded into a 65 T multishot
magnet at the National High Magnetic Field Lab Pulsed Field
Facility at the Los Alamos National Laboratory. The sample
and PZT stack are mounted such that the magnetic field is
applied perpendicular to the ab plane of the sample.

A significant source of signal interference in pulsed mag-
nets is the voltage induced in the sample and wires by the
rapidly changing magnetic field. To minimize the impact of
this effect, we mounted the PZT stack and sample onto a
homebuilt stage consisting of an electromagnet coil which
was driven with an oscillating current. We then measured
the magnitude of the inductive pickup while manipulating
the wires, and shaped the wires to minimize this signal. The
inductive pickup effect is almost completely canceled, except
for a sharp spike at the beginning of the pulse which is
suppressed by the phase-sensitive detection and filtering.

Figure 1(b) shows a schematic of the experimental setup
for measuring the sample resistance. Both the voltage mea-
surement and sample excitation were accomplished using a
Red Pitaya STEMlab 125-14 system, which is a multipurpose
data acquisition board based on the Xilinx Zynq-7000 family
of FPGAs. The excitation signal for the sample was gener-
ated by the digital-to-analog converter converted to a current
using a Stanford Research Systems CS580 voltage to current
converter. The sample voltage was amplified by a Stanford
Research SR560 preamplifier with a gain of 20 V/V, then
detected by the STEMlab’s 14-bit ADC at a sampling rate of
125 MHz, stored in memory on the board, and then transferred
to another computer after the pulse.

An elastoresistivity measurement requires that the sam-
ple resistance and the strain be detected simultaneously. We
measure the strain through optical spectroscopy [19] of a
fiber Bragg grating (FBG). We use a grating with peak
wavelengths in the range of 1550 nm. The fiber is illumi-
nated with polarization-scrambled light from a wide-spectrum
LED, and the reflected light is analyzed using a Princeton
Instruments Acton SP2500 spectrometer and line camera. The
strain is extracted from the shift in the peak position in the
spectrum of the reflected light, using a calibration factor of
0.0012 nm/ppm strain. The fiber contains several gratings
spaced by several millimeters; we adhere one to the PZT and
leave the rest freestanding. These freestanding gratings are not

125147-2



GROWTH OF NEMATIC SUSCEPTIBILITY IN THE … PHYSICAL REVIEW B 100, 125147 (2019)

FIG. 1. Schematic diagram of the experiment. Panel (a) shows an optical microscope image of the sample after FIB micromachining. The
sample is adhered to the surface of the PZT stack, and the four contacts on the top and bottom of the image are embedded in epoxy. Panel
(b) shows the setup for the resistance measurement. The excitation signal is generated by the Red Pitaya STEMlab 125-14 device and the
sample voltage is detected by the same device at a digitization rate of 125 MHz. Panel (c) shows the circuit used to drive the piezoelectric
device. The wave-form generator is synchronized to produce 18 cycles of a sine wave starting 6 ms after the beginning of the pulse. Panel
(d) shows the optical path for the fiber Bragg grating (FBG) strain sensor. A continuous wave, broad-spectrum LED light source illuminates
the grating, and the grating only reflects in a narrow band of wavelengths. A spectrometer and line camera records the spectra during the pulse
at a frequency of 46.5 kHz.

affected by the PZT strain but are otherwise subject to the
same environment, so we subtract the peak shift from these
gratings to eliminate magneto-optical effects, thermal drifts,
mechanical vibrations, or other spurious errors. The FBG is
adhered to the side of the PZT stack parallel to the field and c
axis of the sample using Stycast 2850FT blue epoxy. With this
configuration, both the long axis of the sample and FBG are
aligned orthogonal to the poling axis of the PZT, and the strain
measured by the FBG can be used as a proxy for the strain
experienced by the sample. Further checks with resistive strain
gauges show that strain in the two axes is indeed the same to
within 10% at all temperatures, as shown in Appendix C.

The extraction of the gauge factor during the pulse is
achieved using an oscillating strain, similar to the technique
described in Ref. [16]. We apply a sinusoidal excitation
current of 2 mArms at 74.4048 kHz into the sample, and we
drive the PZT with a sinusoidal voltage of ±90 V at 3 kHz.
The drive voltage begins oscillating 6 ms after the beginning
of the magnetic pulse, and continues for 6 ms, or 18 cycles,
such that the PZT is only driven in a small window centered
on the peak magnetic field. This prevents heat generated by
dissipation in the PZT stack from raising the temperature of
the sample. Based on measurements of the critical field Hc2

before and after the pulse, as seen in Appendix B, the heat
generated by the PZT does not significantly heat the sample
on the timescale of a pulse. A representative measurement can
be seen in Fig. 2(a).

Once the signal is acquired, we then use a software lock-in
amplifier to perform the amplitude demodulation and extract
the changes due to strain. The digital lock-in consists of
multiplying the raw signal with a synthesized sine wave of
unit amplitude at the sample current frequency, followed by
a low-pass filter. In this analysis, we use the built-in MATLAB

infinite impulse response low-pass filter function, with a cut-
off frequency of 4321 Hz and a roll-off of 18.54 dB/decade.
There is, however, a broad range of appropriate filter
parameters.

Aside from the change in resistance due to the oscillat-
ing strain, the sample resistance also changes due to the
magnetoresistance of the sample and roughly follows the
shape of the magnetic field pulse itself. This effect is largest at
the lowest temperatures and largest fields where the zero strain
resistance changes by ±2% around the average resistance dur-
ing the 6 ms window while the PZT stack is driven. The mag-
netoresistance appears roughly linear in this small window
near peak field, but is not inconsistent with quadratic mag-
netoresistance near 0 T as observed at higher temperatures
[20]. We compensate for this effect by subtracting a quadratic
background from the resistance signal [inset of Fig. 2(a)].
The strain-induced change in resistance as well as the strain
itself extracted from the FBG [Fig. 2(c)] are then each fit
by a sine wave at the strain frequency. The fitted amplitudes,
�R and εxx, respectively, and the average zero applied stress
resistance R0 [21] are used to calculate the gauge factor,
G = (−�R/R0)/εxx. We incorporate a negative sign such that
G is always positive for our sample: For Ba(Fe1−xCox )2As2,
the resistivity decreases under tensile (positive) strain [9].

The sample temperature is monitored before and after the
pulse by a Cernox temperature sensor, and the upper critical
field Hc2 of the sample itself is also used as a secondary
local thermometer. The method for extracting Hc2 and con-
verting it to temperature is described in Appendix B, and the
reported temperatures throughout this paper incorporate this
correction.

III. RESULTS AND DISCUSSION

The measured gauge factor G = (−�R/R0)/εxx as a func-
tion of temperature is shown in Fig. 3. Each filled symbol
represents a single pulse of the magnet. As the temperature
decreases, the response of the sample resistance to strain
increases in magnitude. For temperatures above the zero-field
superconducting transition Tc = 24.8 K, we also measured
the gauge factor at zero field for comparison. This trace (black
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FIG. 2. A representative elastoresistivity measurement of
Ba(Fe0.926Co0.074)2As2 during a magnetic field pulse. This trace
was taken at 3 K, well below the zero-field superconducting Tc, and
superconductivity was fully suppressed with a 65 T pulse. (a) The
field (blue line) and amplitude of the sample response (black line)
during the magnetic field pulse. The magnet is fired at t = 0 ms.
When the field surpasses Hc2 ≈ 50 T , the sample becomes resistive.
The PZT stack is energized with a 3 kHz drive for 6 ms around
peak field (gray shaded region). Inset: Magnification of the sample
response at peak field. (b) The sample response (black line) after
subtraction of the magnetoresistance background while the PZT
stack is driven. The resistance of the sample oscillates in time due to
the elastoresistivity response. This is fit with a 3 kHz sine wave (red
line). (c) The strain (black line) measured by the FBG grating while
the PZT stack is driven. This is also fit by a 3 kHz sine wave (red
line).

line in Fig. 3) was taken using 0.251 Hz strain. Our extraction
of the gauge factor from the pulsed measurements agrees well
with the conventional technique, despite the four orders of
magnitude difference in frequency. This is consistent with
previous measurements in 2.5% Co-doped Ba-122 [16].

The pulsed magnetic field and the cryostat make it possible
to measure the gauge factor down to 1.2 K, which is more than
an order of magnitude closer in temperature to the putative
QCP than previous measurements of the elastoresistivity in
the iron-based superconductors. At lower temperatures, when
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FIG. 3. The extracted resistive gauge factor of a micromachined
sample of Ba(Fe0.926Co0.074)2As2 as a function of temperature and
field. Data taken during a pulse is represented by filled symbols
and zero-field data taken using the continuous AC elastoresistivity
technique [16] is represented by a solid black line. Error bars repre-
sent one standard deviation, as calculated in detail in Appendix D.
Measurements at all field values produce the same result within error
bars, and match with the zero-field data at temperatures above Tc =
24.8 K. Below the zero-field superconducting transition (vertical
black bar) the gauge factor (and therefore the nematic susceptibility)
continues to increase smoothly with decreasing temperature, indicat-
ing an increasing importance of nematic fluctuations. Note that we
use a rotated coordinate basis (inset) in which the cartesian x and y
axes are rotated by 45◦ with respect to the in-plane crystal axes.

superconductivity has been suppressed by magnetic field, we
find that the gauge factor continues to increase smoothly and
monotonically [22]. This is our main result.

Strictly speaking, the resistive gauge factor reported here is
related to, but not exactly equal to, the B2g nematic susceptibil-
ity χN . An ideal measurement of elastoresistivity components
proportional to χN would measure the two in-plane compo-
nents of the resistivity tensors ρxx and ρyy independently, as
well as the strain components εxx and εyy. Altogether, this
would then permit decomposition of the measured elastore-
sistivity into its various independent symmetry channels and,
in particular,

mB2g = mxxxx − mxxyy = �ρxx − �ρyy

ρ0(εxx − εyy)
∝ χN . (1)

In this paper, the single meandering resistance bar used to
maximize the signal is primarily sensitive to ρxx; finite ele-
ment modeling of current flow through the sample geometry
shows that the measured resistance comprises 93% ρxx and
7% ρyy. A single resistance measurement does not allow for
independent determination of ρyy. However, based on prior
measurements, we can make several general statements which
justify the use of the measured gauge factor as a proxy for the
nematic susceptibility.

To linear order, the x-axis resistivity ρxx in a system with
tetragonal symmetry can be affected by antisymmetric strain
εB2g = (εxx − εyy)/2 and two different forms of symmetry-
preserving strains: isotropic in-plane strain εA1g,1 = (εxx +
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εyy)/2 and out-of-plane strain εA1g,2 = εzz. Strains with a B1g

symmetry (i.e., antisymmetric strain rotated by 45◦ about the
c axis) cannot contribute to linear order due to the orientation
of the sample. The gauge factor G contains contributions
from the elastoresistivity coefficients of various symmetries
weighted by in-plane Poisson ratio ν = εyy/εxx and out-of-
plane Poisson ratio νz = εzz/εxx according to the relation

G =
(

1 − ν

2

)
mB2g +

(
1 + ν

2

)
mA1g,1 +

(νz

2

)
mA1g,2 , (2)

where mA1g,1 = �ρxx+�ρyy

ρ0(εxx+εyy ) and mA1g,2 = �ρxx+�ρyy

ρ0(εzz ) . In any strain
experiment, the Poisson ratio which should enter into Eq. (2)
depends not only on the elasticity tensor of the material, but
also on the boundary conditions imposed on the sample. Some
care is required in understanding the proper effective Poisson
ratio. In the limit of a thin film sample, the appropriate value of
ν is given by that of the PZT stack, which has been measured
to be ν ≈ −2.3 at low temperatures, although it is temperature
dependent [16]. The opposite limit, in which the sample is
treated as a free-standing beam and compressive or tensile
stress is applied to both ends, is controlled by the Poisson
ratio of the material itself, which is ν ≈ −0.26 [18]. Due to
the complex situation of a micromachined sample embedded
in epoxy, we expect the Poisson ratio to lie between these two
limits, although we do not have a direct measure [23].

Despite the uncertainty in the exact value of ν that charac-
terizes the strain in the meander, it can be shown that the anti-
symmetric strain component εB2g is larger by a factor of at least
1.7 for all possible values of ν, and that the A1g coefficient
(1 + ν)/2 in fact vanishes at a crossover value of ν = −1.
Moreover, prior measurements [24] have demonstrated that
the response of the in-plane resistivity of Ba(Fe1−xCox )2As2

to in-plane isotropic in-plane strains (mA1g,1 ) as well as out-
of-plane strains (mA1g,2 ) is smaller than mB2g by an order
of magnitude in underdoped Ba(Fe1−xCox )2As2 and does
not have a strong temperature dependence. Considering all
of these factors, the response to antisymmetric strain, mB2g ,
which has been shown previously to correspond to the nematic
susceptibility [11,15,25] is expected to provide the dominant
contribution to the gauge factor.

Two additional factors limit the quantitative accuracy of
the present technique to estimate mB2g . First, the strain within
the meandering section of the sample, which is embedded
within epoxy, may be both inhomogeneous and may also
deviate from the strain in the PZT stack. Several studies
have examined the transmission of strain from PZT stacks
through layers of epoxy and into pnictide samples [12,24],
but these focused on large, flat samples adhered with different
epoxies than the one used in this paper. While the absolute
magnitude of the local strains is unknown, the change of the
strain environment when the PZT stack is energized will still
carry primarily B2g character as a consequence of the relative
alignment of the stack and the sample.

Second, PZT stacks exhibit strongly anisotropic thermal
expansion in which the stack expands along the y axis upon
cooling while contracting along the x axis. The resulting
nonzero offset in εB2g can result in measurable contributions
from higher order elastoresistivity responses. In particular, the
response of the A1g,1 component of the resistivity tensor to

the square of the antisymmetric strain ε2
B2g

has been shown
to diverge on approach to the nematic transition in 2.5%
Co-doped BaFe2As2 [24]. A nonzero B2g offset strain can
therefore affect the apparent linear response of the isotropic
resistivity to a small perturbation and alter the measured
gauge factor. However, in compositions where the quadratic
coefficient has been measured, the quadratic effect has been
shown to depend even more strongly on temperature than the
linear part, such that any effects present in this measurement
should alter the observed temperature dependence. This is not
observed in the present measurement. Further measurements
of the quadratic coefficients near optimal doping range must
be made to clarify the effect of offset strains.

These complexities notwithstanding, we find that the tem-
perature dependence of our data compares very well with prior
work [11,12] in zero field above Tc. A direct comparison is
shown in Appendix E. In short, the gauge factor here exhibits
the same temperature dependence as the B2g elastoresistivity
component and hence the nematic susceptibility.

Our data clearly reveal that the nematic susceptibility con-
tinues to grow in a smooth and continuous manner with de-
creasing temperature, without any observable cusp or satura-
tion. The role played by critical fluctuations in enhancing the
nematic susceptibility can in principle be further understood
by analyzing the precise functional form of the susceptibility
at low temperatures. Realistic parameters for a Curie-Weiss
dependence of the susceptibility with temperature (as may
be expected from a mean-field continuous phase transition
[12]), however, are unable to fit our data over the full range
of temperatures. The lowest temperature data does not diverge
strongly enough, as demonstrated in Appendix F; in particular,
the temperature dependence of the gauge factor within the
field-induced normal state appears approximately linear in
temperature. This behavior could perhaps be explained either
by quenched disorder limiting the correlation length of quan-
tum critical fluctuations or by Landau damping from metallic
degrees of freedom [3,26,27].

It is worth noting that magnetic fields are known to have
little effect on TS [28], an effect which is corroborated by
the field independence of the gauge factor. Deviations from
a simple scaling due to field-induced motion of the transition
itself are therefore unlikely. Also, we note that magnetic fields
up to 65 T do not appear to significantly perturb the nematic
fluctuations in this material.

Also, the featureless nature of the susceptibility curve
demonstrates that no other competing phase transitions occur
as superconductivity is suppressed. This suggests that while
a 65 T magnetic field destroys superconductivity, the high-
temperature normal state and the field-induced normal state
are indeed adiabatically connected. The main result is that
we infer that the nematic susceptibility continues to rise to
the lowest temperatures once superconductivity is suppressed.
This is consistent with the presence of a QCP with a nematic
character nearby in composition space. The role played by the
strong nematic fluctuations in terms of the superconductivity
and also other properties remains open, but our observation,
taken together with other probes of the nematic fluctuations
in this system, are highly suggestive that these might be
connected.
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IV. CONCLUSIONS

We have presented a new implementation of elastoresis-
tivity measurements which extends to high fields (65 T)
and low temperatures (1.2 K), and which in principle en-
ables measurements arbitrarily close to a QCP. We then used
this technique to extract a resistive gauge factor, a proxy
for the nematic susceptibility, in the field-induced normal
state at low temperatures of a micromachined sample of
Ba(Fe0.926Co0.074)2As2. The gauge factor grows smoothly
and monotonically as the temperature decreases down to the
lowest attainable temperatures, which supports the notion that
strong nematic fluctuations in the nonsuperconducting state of
the iron pnictides may stem from a QCP hidden beneath the
superconducting dome. This work provides a step in mapping
the nematic susceptibility in the iron pnictide superconductors
near the putative quantum critical point.
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APPENDIX A: NORMALIZATION OF RESISTIVITY
RATIOS

The definition of the base resistance R0 used to nor-
malize the elastoresistivity response carries some ambigu-
ity [29]. If the physical origin of the magnetoresistance of
Ba(Fe1−xCox )2As2 were independent of nematic fluctuations,
the most physically motivated choice would be to normalize
by the extrapolated zero-field resistance. Near optimal doping,
the resistance as a function of temperature can be well fit
by a straight line, as shown in Fig. 4. We can approximate
R(H = 0) in the field-induced normal state by simply ex-
trapolating this fit to lower temperatures. In our analysis,
however, we calculate the gauge factor (−�R/R0)/εxx using
the average resistance measured at peak field R0(H ). This
quantity is chosen because it can be directly measured during
the magnetic field pulse and requires no extrapolation nor
assumptions about the origin of the magnetoresistance. In any
case, the magnetoresistance of Ba(Fe1−xCox )2As2 is small
[20]. At the lowest temperatures and highest fields there is a
quantitative difference (up to 12% in the field and temperature
ranges considered in this study) between R0(H ) and the
extrapolated low temperature R0(H = 0). A comparison of
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R
0(
H
=0
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FIG. 4. Linear extrapolation of the zero-field resistivity down to
cold temperatures. The deviation between the measured resistance at
65 T and the extrapolated value at the same temperature is largest
at the coldest temperatures and highest fields, at 12%. The shaded
region is the region over which the linear fit was performed.

the normalizations is shown in Fig. 5. The differences do not
affect the conclusions we draw from this paper.

APPENDIX B: SAMPLE TEMPERATURE DETECTED
THROUGH Hc2

In our implementation of the elastoresistivity measure-
ment, the sample is directly adhered to the surface of the PZT
device. At high operation frequencies, however, piezoelectric
devices are known to generate significant heat which could
affect our measurement. To verify the temperature of the
sample independent of thermometry errors, we extracted Hc2

from the resistivity curves. This extraction can be done both
on the increasing and decreasing field sweeps, and the results
are shown in Fig. 6. We observe a temperature offset at

0 20 40 60 80 100 120 140 160 180
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50
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200

250
Normalized by R0(H=0)
Normalized by R0(H)
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FIG. 5. Comparison of the extracted gauge factor
G = (−�R/R0)/εxx using R0 = R0(H ) and R0 = R0(H = 0).
The two differ only quantitatively and the choice of normalization
does not change the conclusions we draw from the data.
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FIG. 6. Hc2 as a function of temperature, measured with increas-
ing field before the strain cycles (upward triangles) and decreasing
field after the strain cycles (downward triangles). To check for Joule
heating within the sample in the resistive phase, several measure-
ments (open symbols) were taken without driving the PZT and with
the sample current decreased by a factor of 10. We observe an
increase in Hc2 when the sample is submerged in liquid helium. Inset:
Normalized resistance vs field for two 60 T pulses at 7 K. Hc2 is
extracted from the intersection of the two straight line fits. Dotted
lines corresponds to the data taken without energizing the PZT and
using 10% of the sample excitation current.

temperatures above the boiling point of liquid helium but
below 10 K. Also, there is a slight decrease in Hc2 in the
downsweep relative to the upsweep, which indicates some
slight heating of the sample during the pulse. By performing
similar measurements without driving the PZT stack and
using only 10% of the excitation current to the sample (1%
of the excitation power in the resistive phase), we see that
most of this heating still occurs, suggesting that it is not
due to either the PZT or Joule heating within the sample
or contacts. Vortex pinning effects are unlikely to explain
the change in Hc2 considering that the effect disappears once
the sample is submerged in liquid helium. We therefore at-
tribute this heating to eddy currents caused by the magnetic
field pulse or poor thermalization between sample and ther-
mometer.

The Hc2 values were fit to an anisotropic two-band model
[30,31] found to be valid for this material at an almost
identical doping (results shown with the solid line), and the
measured deviation in temperature has been used to shift the
temperature of data points in Fig. 3 in the main text.

APPENDIX C: STRAIN ACCURACY

As described in the main text, the strain measurement
during the pulse is performed using a FBG. The sample is
adhered to the xy plane of the PZT stack, perpendicular to the
magnetic field, while the grating runs along the z axis, parallel
to the field. The poling axis of the PZT stack is oriented along
the y axis. In this orientation, the sample (sensitive primarily
to strain along the x axis, εxx) and the FBG (sensitive to εzz)
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FIG. 7. Strain per volt measured on a Pst150 2x3x5 PZT stack
along both the x and z directions, both perpendicular to the poling
axis y. The sample is primarily sensitive to the x direction, while
the FBG detected strain along the z axis, parallel to the field. The
intrinsic response of the PZT stack itself is expected to be identical
in both x and z directions, with an approximately 10% decrease in
the measured εzz, likely due to the placement of the electrodes along
the yz faces of the stack.

should both experience the same magnitude and sign of strain
for a given voltage applied to the PZT, by merit of both being
perpendicular to the poling axis. To verify this assumption,
we adhered two resistive strain gauges to the xy and yz planes
of another PZT stack from the same manufacturing batch
and measured the strain per volt characteristics along both
directions.

The results, in Fig. 7, show that the two are indeed very
close, with a deviation of approximately 5%. The slight
suppression of εzz relative to εxx may be caused by the con-
struction of the stack, which places the electrodes along the yz
planes and may stiffen the stack slightly against deformation
along z.

APPENDIX D: ERROR ANALYSIS

The error in the measured gauge factor, σG, depends on
the measurement error of the oscillating resistivity response to
strain amplitude, σ�R, normalization, σR0 , and the oscillating
strain amplitude, σε,

(σG

G

)2
=

(σ�R

�R

)2
+

(
σR0

R0

)2

+
(σε

ε

)2
. (D1)

The error in the normalization, R0, is dominated by the
magnetoresistance of the sample since the elastoresistivity
measurements are performed over a range of fields above
Hc2. R0 is taken to be the average resistance value during the
course of the measurement. The maximum variation during a
measurement is 2% and occurs at the lowest temperatures and
highest fields. We use this 2% value as an upper bound for all
temperatures.

At every temperature we measured, a magnetic field pulse
we also performed between 5 and 15 test “pulses” in zero
field, in which the sample and PZT are driven using the same
protocol but the magnet is not fired. The standard error of
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FIG. 8. Standard deviation of εxx from sets of pulses taken at
each temperature.

the strain for each set of pulses is shown in Fig. 8. The
error increases at colder temperatures. The standard error of
the elastoresistivity response can only be measured above
the superconducting transition temperature due to practical
limitations on the number of high field pulses that can be
performed. The standard error of the modulated resistance
amplitude is shown in Fig. 9. It is roughly temperature inde-
pendent, so we use a pooled error of all pulses in the definition
of the error bars in Fig. 3.

APPENDIX E: COMPARISONS OF THE TEMPERATURE
DEPENDENCE OF PAST STUDIES

Two other published studies to date have presented mea-
surements of the elastoresistivity of Ba(Fe1−xCox )2As2 for
similar compositions: Chu 2012 [11], which presents a gauge
factor similar to this paper, and Kuo 2016 [12] in which
mB2g is measured by extracting ρxx and ρyy independently. To
compare all data on the same footing, we normalize all three
measurements to their values at 50 K. The results, shown in
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FIG. 9. Standard deviation of �R from zero field pulses taken
above the superconducting transition. The standard deviation is
roughly temperature independent.
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FIG. 10. Reported values of mB2g and the gauge factor normal-
ized to the value at 50 K (chosen arbitrarily) for Ba(Fe1−xCox )2As2

from three different studies: Chu 2012 [11], Kuo 2016 [12], and this
paper. Relative to the scale factor used for this paper, data from Kuo
and Chu require scaling factors of 1.91 and 0.83, respectively.

Fig. 10, show that the temperature dependencies of all three
measurements find the same qualitative behavior, despite the
differences in their implementation.

APPENDIX F: TESTING GOODNESS OF FIT TO
CURIE-WEISS FUNCTIONAL FORM

The B2g component of the elastoresistivity tensor for heav-
ily underdoped compositions of Ba(Fe1−xCox )2As2 follows
a Curie-Weiss functional form for a region of temperatures
above the critical temperature of the structural phase transition
[12]. While such behavior is anticipated for a thermally driven
coupled nematic/structural phase transition [32], the behavior
of a metal at or near a nematic QCP is essentially unknown
[3,26,27,33]. Motivated in part by extrapolation from the
underdoped compositions, and in part by the growth of the
measured gauge factor at low temperatures, we test here
the goodness of fit of the measured data obtained in our pulsed
field experiment to the Curie-Weiss functional form. As we
show below, while the data plausibly follow Curie-Weiss
behavior over a restricted window of intermediate tempera-
tures, the data rise less rapidly than would be expected for a
Curie-Weiss behavior at lower temperatures.

The Curie-Weiss dependence for the nematic susceptibility
can be written as

χN (T ) = C

T − 	
+ χ0, (F1)

where C is the Curie constant, 	 is the Weiss temperature
(which would vanish at a QCP), and χ0 is the susceptibility in
the high-temperature limit. As described in the main text, the
gauge factor G = (−�R/R0)/εxx is dominated by a term pro-
portional to the nematic susceptibility, and could be expressed
as

G(T ) = C∗

T − 	
+ G0. (F2)
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FIG. 11. The same data presented in Fig. 3, replotted as its
inverse for several values of the temperature-independent offset term
G0. If a single set of parameters could describe all of our data with
a Curie-Weiss fit, the data would appear linear. Even the largest G0

presented here, which is unphysically large for Ba(Fe1−xCox )2As2,
is unable to reconcile both the high- and low-temperature behaviors
with Curie-Weiss scaling.

The high-temperature limit G0 arises only from geometric
effects and should therefore be of order unity for a metal

like as Ba(Fe1−xCox )2As2. Even with the extension of the
available data range by an entire decade at low temperatures
presented in this paper, any attempt at a three-parameter fit
to our data is poorly constrained. We illustrate the deviation
from this power-law scaling at low temperatures by plotting
the inverse of the gauge factor data in Fig. 11, in the form

1

G − G0
= T − 	

C∗ (F3)

for several possible values of G0. A quantity which obeys
the Curie-Weiss temperature dependence should, on this plot,
appear linear over the full range for some value of G0, with
slope set by C∗ and y intercept set by 	. However, even
an unphysically large value of G0 = 50 cannot reconcile the
power-law dependence of the inverse gauge factor at high
temperatures with the relatively flat temperature dependence
at low temperatures. Such large gauge factors are possible
for semiconductors with low carrier densities, where alter-
ations of the band structure and carrier mobilities due to
strain can dominate, but are not expected in metals such as
Ba(Fe1−xCox )2As2 [34]. Only positive values of G0 are pre-
sented, as negative values only serve to increase the curvature
on this plot.
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