
PHYSICAL REVIEW B 99, 100101(R) (2019)
Rapid Communications Editors’ Suggestion

Elastoresistive and elastocaloric anomalies at magnetic and electronic-nematic critical points
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Using Ba(Fe0.975Co0.025)2As2 as an exemplar material exhibiting second-order electronic-nematic and an-
tiferromagnetic transitions, we present measurements that reveal anomalies in the elastoresistance (

∂ρi j

∂εkl
) and

elastocaloric effect ( ∂T
∂εkl

) at both phase transitions for induced strains εkl that do not share the symmetry of either
order parameter. Both effects are understood to arise from the effect of strain on the transition temperatures; in
the region close to the phase transitions this leads to (1) similarity between the strain and temperature derivatives
of the resistivity and (2) similarity between the elastocaloric effect and the singular part of the specific heat.
These mechanisms for elastoresistance and elastocaloric effect should be anticipated for any material in which
mechanical deformation changes the transition temperature. Furthermore, these measurements provide evidence
that the Fisher-Langer relation ρ (c) ∝ U (c) between the scattering from critical degrees of freedom and their
energy density, respectively, holds near each of the transitions in the material studied under varying strain as it
does for varying temperature.

DOI: 10.1103/PhysRevB.99.100101

In metals, critical anomalies in the resistivity and specific
heat detect symmetry-breaking order and its critical fluctu-
ations, regardless of the symmetry broken by the order pa-
rameter. Perhaps the best-known theory connecting resistivity
and specific heat in a critical system originates from Fisher
and Langer [1]. Their work relates the critical contributions
to the resistivity ρ (c) and to the energy density U (c) in a
ferromagnet, where the (c) superscript indicates the additive
contribution to a quantity from the critical degrees of freedom.
According to this relation, the anomaly in the temperature
derivative of the resistivity, ∂ρ (c)

∂T , is proportional to the critical
contribution to the specific heat, C(c)

p . Though this correspon-
dence was initially anticipated only above the magnetic Curie
temperature, Tc, subsequent work clarified conditions under
which the relation holds both above and below Tc and in both
ferromagnets and antiferromagnets [2], and also applied the
Fisher-Langer relation to nonmagnetic systems [3]. Here, we
study the effect of strain, εi j , on the same quantities studied
by Fisher and Langer, the resistivity and energy density [4].

Strain-based experimental techniques are being adopted
across scattering [5–7], transport [8–11], and NMR
measurements [12–14]. Typically in materials such as
Ba(Fe0.975Co0.025)2As2, where there is a second-order
electronic-nematic transition [8,15–17], antisymmetric strain
of the same symmetry as the nematic order parameter has
been applied [8,9,18]. Here, rather than using strain of the
same symmetry as the nematic or Néel order parameters,
we instead induce strain belonging to different irreducible
representations from the order parameters. Crucially, in this

*These authors contributed equally to this work.

strain environment the distinction between the symmetric
and broken-symmetry phases remains sharp in the presence
of such strain, even as the critical temperatures, TS and TN ,
generically shift. Close to criticality, we experimentally
determine proportionality between critical anomalies in the
elastocaloric coefficient and the specific heat, and between
critical anomalies in the elastoresistance and in ∂ρ

∂T . These
correspondences arise naturally from the strain dependence of
the transition temperatures. Furthermore, these measurements
appear consistent with the Fisher-Langer relation, evincing a
generalized correspondence,

C(c)
p ∝

(
∂ρ (c)

∂T

)
ε

∝
(

dU (c)

dεxx

)
T

∝
(

dρ (c)

dεxx

)
T

, (1)

near each phase transition in Ba(Fe0.975Co0.025)2As2. Equa-
tion (1) is the key result of this work, and it is demonstrated
experimentally in Fig. 1, which shows the temperature depen-
dences of four related, but separately measured quantities.

Ba(Fe0.975Co0.025)2As2 is an underdoped iron-pnictide
with two continuous phase transitions upon cooling
[15–17]. The first is an electronically driven tetragonal-
to-orthorhombic transition at TS ≈ 99 K caused by a nematic
order parameter of B2g symmetry [8,19]. The second is
an antiferromagnetic transition at TN ≈ 93 K. Due to the
presence of spin-orbit coupling, the antiferromagnetic
polarization is along the nematic easy axis [14], so both
transitions are of an Ising class. The qualitative behavior of
the data in Fig. 1 can be understood by considering that the
antiferromagnetic phase transition is mediated by short-range
interactions for which the upper critical dimension d+

c = 4,
whereas long-range strain forces result in d+

c = 2 for the
nematic transition [20]. Therefore, the overall structure of
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FIG. 1. (a)–(d) Temperature and strain derivatives of the re-
sistance and energy in Ba(Fe0.975Co0.025)2As2 in proximity to the
successive nematic and Néel transitions, each plotted against a single
corresponding axis on the left. Traces (a), (b), and (c) are obtained
from a single sample with TN ≈ 93 K. The specific heat shown in (d)
is obtained from a second sample with TN ≈ 92 K used in Ref. [16].

the traces in Fig. 1 reflects the fact that one transition occurs
below and one transition occurs above the respective upper
critical dimension, thus the anomalies consist of a pronounced
peak at TN and a mean-field-like step at TS [21].

The samples of Ba(Fe0.975Co0.025)2As2 were grown by
a self-flux method [16]. Reference specific heat data were
obtained for a sample with TN ≈ 92 K and TS ≈ 98 K from
Ref. [16], which used a standard relaxation technique in
a Quantum Design Physical Property Measurement Sys-
tem. Measurements of resistivity, elastoresistivity, and elas-
tocaloric effect were obtained simultaneously from a second
sample (TN ≈ 93 K and TS ≈ 99 K), which has been mea-
sured previously to obtain precise values of the strain-induced
changes in the nematic and Néel transition temperatures [11].
The latter sample was cleaved to an approximate 0.035 mm
c-axis thickness, then cut into a bar with axes oriented to
those of the tetragonal unit cell, with approximate dimensions
2 mm × 0.4 mm [11]. Uniaxial stress was applied to the sam-
ple using a commercially available strain apparatus (CS100,
Razorbill Instruments), which almost perfectly compensates
the thermal expansion of Ba(Fe0.975Co0.025)2As2 and allows
the sample to be tuned near zero total strain at all temper-
atures [11]. The displacement-per-volt of the piezoelectric
stacks was characterized by previous measurements [11] us-
ing an Andeen Hagerling AH2550A capacitance bridge; the
displacement-per-volt of the piezoelectric stack is frequency
independent to a few percent [22]. The piezodevices were
driven at frequencies from 1 to 30 Hz, with a maximum am-
plitude of 7.5 V. Four-point electrical contact was made using
Chipquik SMD291AX10T5 solder and gold wires. The volt-
age contacts were 0.65 mm apart, and the crystal was mounted
with epoxy so that the middle portion of the crystal, measuring
0.780 mm long and containing both voltage contacts, was
between the mounting plates and experienced a piezodriven
mechanical deformation. The temperature derivative of the
resistivity was obtained from a smoothing-spline fit to the raw
resistivity data.

The elastoresistance of the sample was measured using
an amplitude demodulation technique described previously
[22], using the dual-reference mode of a Stanford Research
860 lock-in amplifier. All elastoresistance signals so measured
were frequency independent, indicating an intrinsic response
not due to elastocaloric heating from the sample or strain
device. The elastocaloric effect was measured by affixing a
Type E chromel-constantan thermocouple onto the middle of
the sample, where the strain is expected to be approximately
uniform, using a thin layer of AngstromBond AB9110LV
epoxy. The temperature oscillations at the strain frequency
were measured with a lock-in technique [23].

The application of a uniaxial stress σxx along the [100]
axis induces a finite strain along all three crystal axes, as is
evident by solving

∑
kl ci jklεkl = σi j , where ci jkl is the elastic

constant tensor and σi j is the stress. Following the framework
presented by Ikeda et al. [11], a combination of strains can be
written, using compact Voigt notation for the elastic constants,
in a basis corresponding to irreducible representations of D4h:

εA1g,1 = 1

2
(εxx + εyy) = σxx

2
(
c11 + c12 − 2 (c13 )2

c33

) , (2)

εA1g,2 = εzz = σxx

2c13 − (c11 + c12) c33
c13

, (3)

εB1g = 1

2
(εxx − εyy) = σxx

2(c11 − c12)
. (4)

For the specific case of this sample and uniaxial stress along
the [100] axis, the elastic constants in Eqs. (2)–(4) are only
weakly temperature dependent and lack singular temperature
dependence at criticality, so it is appropriate to approximate
them as temperature-independent constants for a narrow range
of temperatures in the vicinity of the critical temperatures. We
emphasize, however, that this may not be appropriate (i) over a
wider range of temperatures or (ii) for Ba(Fe0.975Co0.025)2As2

samples under B2g strain, where the shear modulus c66 softens
due to coupling to order parameter fluctuations [19].

The strains induced by uniaxial stress, shown in Eqs. (2)–
(4), belong to irreducible representations of the D4h point
group which exclude the nematic and Néel order parameters.
Strains such as these do not have bilinear coupling to either
order parameter in the Landau free energy [18]. Instead, these
strains influence the electronic order through free-energy
terms that depend on second-order moments of each order
parameter. Therefore, a primary effect of such strain is to vary
the transition temperature Ti, which in Ba(Fe0.975Co0.025)2As2

is either TS for the nematic/structural transition or TN for the
Néel transition, according to

Ti = Ti,0 − �
(1)
α,iεα − �

(2)
α,i(εα )2 + . . . , (5)

where εα is one of the strains in Eqs. (2)–(4). By symmetry,
�

(1)
α,i �= 0 only for “trivial” strains which break no additional

crystal symmetries, such as εzz for a tetragonal material.
However, the discussion phrased in terms of this general
form [Eq. (5)] simultaneously applies both when α is triv-
ial and nontrivial [24]. We noted earlier that for a sample
aligned along the principal tetragonal axes, multiple strains
are applied simultaneously and are all in approximately fixed
proportion to each other and εxx. To treat multiple simul-
taneous strains of fixed proportion, we define να

xx = εα/εxx
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FIG. 2. (a) Resistivity of sample, plotted as a line against the
left axis, and the temperature derivative shown against the right

axis. (b) Comparison of − ∂ρ

∂T

d[ 1
2 (TS+TN )]

dεxx
and −( dρxx

dεxx
)T , motivated by

discussion in the text. For the sake of comparison, the trace for

− ∂ρ

∂T

d[ 1
2 (TS+TN )]

dεxx
is reproduced with an offset of −1.24 m	 cm as a

solid gray line (behind the red data points). The inset shows the
changes in ∂ρxx

∂T and ( dρxx
dεxx

)
T

. Cyan crosses represent temperatures
in a window of ±2 K around the structural transition; magenta
circles represent temperatures in a window of ±2 K around the
Néel transition, and gray points represent temperatures outside both
windows. Straight lines show best fits using published values of dTN

dεxx

(dashed magenta line) or dTS
dεxx

(solid cyan line) over the corresponding
temperature windows [11].

for each irreducible representation and replace Eq. (5) by a
sum over the α, which yields dTi

dεxx
= ∑

α να
xx�

(1)
α,i and d2Ti

dε2
xx

=∑
α (να

xx )2�
(2)
α,i. For Ba(Fe0.975Co0.025)2As2, these coefficients

have been reported in Ref. [11] for each of the two phase
transitions; the linear response is dTN

dεxx
= −629 ± 2 K, and

dTS
dεxx

= −521 ± 4 K. While there is no general (symmetry)
reason for these two quantities to be within a factor of 2, it
presumably reflects common electronic physics driving the
magnetic and the structural transitions which remains as yet
undeciphered in the pnictides. This greatly simplifies the
following analysis, in that the strain-induced changes in TN

and TS give rise to elastocaloric and elastoresistive anomalies
of comparable magnitude at the two transitions.

The relation between the elastoresistivity and resistivity is
shown in Fig. 2. Inspection reveals a close similarity between
the temperature derivative of the resistivity ∂ρxx/∂T [blue
symbols in Fig. 2(a)] and the elastoresistivity (dρxx/dεxx )T

[red symbols in Fig. 2(b)]. Motivated by this observation,
we scale ∂ρxx/∂T by the average value of the strain-induced

change in transition temperature
d[ 1

2 (TS+TN )]
dεxx

= −575 K and

plot ∂ρxx

∂T
d[ 1

2 (TS+TN )]
dεxx

[blue crosses in Fig. 2(b)] alongside

( dρxx

dεxx
)T . Scaled this way, the data lie almost on top of each

other when a constant offset is included (gray line). This
Rapid Communication argues that this correspondence is
not accidental, but rather a direct consequence of the strain
dependence of the critical temperature for each of Néel and
nematic order.

Our explanation begins with an almost trivial observation:
if a measured property has a critical anomaly on approach
to a critical temperature Ti and strain changes the critical
temperature, then under a strain ε the anomaly appears at
Ti(ε) not Ti(0). Building on this observation, we note the strain
perturbations chosen for this work do not change the 3D Ising
universality class of each phase transition, so the functional
forms of critical anomalies remain approximately the same
in the presence of strain [25]. Therefore, rather than consider
temperature and strain separately, we consider anomalous be-
havior in thermodynamic and transport properties as functions
of T − Ti(ε), where Ti represents TS or TN for each of the
phase transitions.

The electronic scattering mechanisms are treated as in-
dependent and additive, so the diagonal components of the
resistivity can be approximated as having a critical component
ρ (c) and noncritical part ρ (0) satisfying

ρxx(T, εxx ) ≈ ρ (0)
xx (T, εxx ) + ρ (c)

xx (T − Ti(εxx )) (6)

for i = S, N near each of the nematic and Néel transitions,
respectively. Under isothermic conditions, this gives rise to an
elastoresistive effect(

dρ (c)
xx

dεxx

)
T

= −
(

∂ρ (c)
xx

∂T

)
dTi

dεxx
. (7)

If ρ (0) has a gradual temperature dependence, the above
relation manifests in the derivatives of the total resistivity, as is
evident in Fig. 2, and furthermore wherever the Fisher-Langer
relation holds, it follows that this elastoresistive response
tracks the specific heat. Motivated by Eq. (7), we plot in the
inset to Fig. 2 ( dρxx

dεxx
)T versus ∂ρxx

∂T , and overlay linear best fits
for the fixed proportionality constants of (dTi/dεxx )T in the
proximity of each phase transition. As can be seen the data
are consistent with these estimates, up to systematic effects
depending on the region around TS and TN where the fit is
performed.

The same model can also be applied to measurements of
the heat capacity and elastocaloric effect shown in Fig. 3.
As before, the energy density U is separated into a critical
component U (c) and noncritical component U (0). As the stress
is varied under isothermal conditions, the critical part of the
internal energy follows(

dU (c)

dεxx

)
T

= −C(c,i)
p

dTi

dεxx
, (8)

where C(c,i)
p = ∂U (c)

∂T is the anomaly in the specific heat at
Ti and the total specific heat is Cp. Equivalently, and more
relevant for the immediate experiment, under isentropic con-
ditions, and neglecting the strain effects on the non-critical
degrees of freedom, we obtain a change in the temperature of
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FIG. 3. (a) The specific heat of Ba(Fe0.975Co0.025)2As2 from
Ref. [16]. The estimate of the heat capacity anomaly is obtained by
subtracting the heat capacity of a sample of Ba(Fe0.937Co0.063)2As2,
which remains tetragonal and nonmagnetic down to T = 0. (b)
Arguments in the text lead to Eq. (9), according to which the critical
part of the elastocaloric effect (dashed line, right axis) should be
exactly equal to the rescaled specific heat anomaly (dots, left axis).
Both quantities show similar features at both TS and TN . However,
as discussed in the text, an amplitude difference between these
two traces emerges from experimental considerations of the strain
apparatus.

the sample given by

(
dT

dεxx

)
S

= C(c,i)
p

Cp

dTi

dεxx
+ . . . . (9)

Figure 3(a) shows the specific heat anomalies, C(c,i)
p of a

sample of Ba(Fe0.975Co0.025)2As2 obtained by Chu et al. in
Ref. [16] by subtracting a “background” contribution taken
to be the measured specific heat of Ba(Fe0.937Co0.063)2As2,
for which both transitions are absent. Fig. 3(b) shows in
the upper trace, plotted against the right axes, corresponding
anomalies in the elastocaloric coefficient. There is a clear
correspondence in both the shape of the peak at TN and the
mean-field-like step in both specific heat and elastocaloric
coefficient right near TS . Fig. 3(b) also shows the effect
of scaling the specific heat anomaly according to Eq. (9)
to predict the elastocaloric coefficient, using the fact that
for solids the compressibility is small so that Cv ≈ Cp. The
difference in magnitude between traces in Fig. 3(b), approx-
imately a factor of 5, can be quantitatively understood as
the result of experimental limitations in the strain appara-
tus. Heat from the elastocaloric effect is generated solely

by the strained portion of the sample [26], but is dissi-
pated throughout the whole sample and some way into the
glue within the timescale of the measurement [27], thus
reducing the amplitude of the temperature modulation. In
case the measurement is performed using high frequencies,
or equivalently, on short timescales, the temperature sen-
sor’s heat capacity becomes significant compared to the heat
capacity of the fraction of the sample thermalizing to it. Most
importantly, it should be noted that the observed elastocaloric
effect in the sample cannot stem from self-heating effects [28],
nor from any elastocaloric effect within the PZT stacks [29].
Furthermore, our detailed characterization of the experiment
[23] shows that variation of the thermal properties of the
sample and the glue together produce temperature dependence
of the thermal transfer function less than 5% for the strain
frequency chosen and the temperature window under investi-
gation. The temperature dependence of the elastocaloric effect
signal thus purely reflects the thermodynamic signatures of
the sample.

In conclusion, this work demonstrates elastocaloric and
elastoresistive anomalies in Ba(Fe0.975Co0.025)2As2 which
track the specific heat and temperature derivative of the re-
sistivity. Rather than using strain of the same symmetry as
the order parameters, as has been used for measurements
of thermodynamic susceptibilities [8,9,18], these effects are
realized by inducing strain belonging to different irreducible
representations from the order parameter. The similarity of
these four quantities, shown in Fig. 1, is consistent with a
simple picture with just two rules for the critical parts of the
resistivity and energy: they satisfy the Fisher-Langer relation
and are functions of T − Ti(ε) close to a phase transition
at Ti [30].

Finally, we note that even under circumstances in which the
Fisher-Langer relation does not hold, and even for other types
of order parameters than those studied here, “isotropic” strain
is a ubiquitous tuning parameter that always has a linear effect
on the transition temperature. This results in (contributions to)
an elastocaloric effect tracking the specific heat and an elas-
toresistivity tracking ∂ρ

∂T , which may be useful for extracting
dTi
dε

or possibly the critical part of specific heat anomalies [31].
Furthermore, for other measurements like scattering or spin
relaxation under strain, the strain dependence of the critical
temperature can similarly admix the temperature derivative
into measurements of the strain derivative unless forbidden
by symmetry.
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