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Symmetric and antisymmetric strain as continuous tuning parameters for electronic nematic order
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We report the separate response of the critical temperature of the nematic phase transition TS to symmetric and
antisymmetric strains for the prototypical underdoped iron pnictide Ba(Fe0.975Co0.025)2As2. This decomposition
is achieved by comparing the response of TS to in-plane uniaxial stress and hydrostatic pressure. In addition
to quantifying the two distinct linear responses to symmetric strains, we find a quadratic variation of TS as a
response to antisymmetric strains εB1g = 1

2 (εxx − εyy), exceeding the nonlinear response to symmetric strains
by at least two orders of magnitude. These observations establish orthogonal antisymmetric strain as a powerful
tuning parameter for nematic order.
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I. INTRODUCTION

Electronic nematic order is found in several families of
Fe-based superconductors [1–7] and also suggested to be an
important aspect within the phase diagram of at least some
cuprate high-temperature superconductors [8–14]. In order
to assess the relevance of nematic fluctuations for super-
conductivity [15–22], new methods are required to contin-
uously tune the critical temperature of the nematic phase
transition, with the ultimate goal of potentially providing
access to a nematic quantum phase transition with a smoothly
adjustable external parameter. Here we show how symmetric
and antisymmetric strains induced by external stresses can
be used as separate tuning parameters for nematic order. We
demonstrate this for a representative underdoped Fe pnictide,
Ba(Fe0.975Co0.025)2As2, but emphasize that these ideas are
quite general for nematic order. More broadly, the notions of
symmetry decomposition that we employ can be applied to
access strains as tuning parameters for other types of phase
transitions, thus offering a road map to gain further insight
into most existing stress based phase diagrams.

The irreducible representations of the crystallographic
point group provide a natural basis in which to express
strains experienced by a solid. Within the D4h point group,
appropriate for the specific material discussed in this pa-
per, the six independent components of the strain tensor
can be decomposed into two components that are symmet-
ric with respect to the primary (C4) rotation of the point
group [εA1g,1 = 1

2 (εxx + εyy), εA1g,2 = εzz, Fig. 1(c)(i)], two
components that are antisymmetric [εB1g = 1

2 (εxx − εyy) and
εB2g = εxy, Fig. 1(c)(ii) and 1(c)(iii)], and two components
that belong to an Eg representation, comprising vertical shear,
εEg = (εxz, εyz). The specific challenge is to separately deter-
mine the effects of each of these strain components on the
critical temperature Tc of a phase transition.

In this paper we demonstrate how this can be achieved
by comparison of the response to two (or more) different
stress conditions [illustrated in Figs. 1(a) and 1(b)]. This

decomposition not only reveals the relative roles of in-plane
and out-of-plane symmetric strains but also establishes
orthogonal antisymmetric strain as a powerful new tuning
parameter for nematic order.

As broken symmetries are the most fundamental orga-
nizing principle for (solids and) phase transitions, we start
by reviewing the symmetry constraints for the nematic
transition in underdoped Fe-pnictide superconductors, like
Ba(Fe0.975Co0.025)2As2 studied here. The nematic order pa-
rameter and associated lattice distortion that onset at the
coupled nematic/structural phase transition at TS have a B2g

symmetry (broken C4 rotation and horizontal and vertical
mirrors/rotations). Hence, an external stress that induces an
antisymmetric strain with a B2g symmetry [Fig. 1(c)(iii)]
necessarily induces a finite order parameter at all temper-
atures and therefore smears the phase transition [4,23–25].
Stresses that induce the orthogonal antisymmetric strain, εB1g ,
however, preserve the horizontal and vertical mirrors/rotations
[Fig. 1(c)(ii)]. Consequently, a nematic phase transition is
still permitted and εB1g can therefore be used as a continuous
tuning parameter for the phase transition. Since TS is an
isotropic quantity (invariant under (C4) rotation), antisymmet-
ric strain εB1g can affect TS only in even powers, thus λB1g ≡
∂TS/∂εB1g = 0 (λ(B1g,A1g,i) ≡ ∂2TS/∂εB1g∂εA1g,i = 0). In con-
trast, the two symmetric strain components εA1g,1 and εA1g,2

do not lower the crystal symmetry [Fig. 1(c)(i)] and therefore
to leading order affect TS linearly. Hence, considering both
A1g and B1g symmetry strains, to second order the critical
temperature TS is given by

TS = TS(0) +
2∑

i=1

λ(A1g,i )εA1g,i
+

2∑
i�j=1

λ(A1g,i ,A1g,j )εA1g,i
εA1g,j

+ λ(B1g,B1g )ε
2
B1g

, (1)

defining the coefficients λi that are to be measured. This is
achieved by comparing measurements of TS(ε) obtained from
uniaxial stress and hydrostatic pressure experiments.
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FIG. 1. Schematic representation of strains experienced by a
tetragonal material while held under (a) hydrostatic pressure, and
(b) uniaxial stress applied along the [100] direction. Black arrows
indicate stress. The strain tensor [right side of symbolic equations
(a) and (b)] is derived by multiplying the stiffness and the stress
tensor (left side). White arrows in panel (a) and (b) indicate the
orientation of the tetragonal crystal axes. In each case, the strain
tensor experienced by the material is decomposed into irreducible
representations of the crystal symmetry. For materials with regular
mechanical properties (i.e., a positive out-of-plane Poisson ratio and
an in-plane Poisson ratio smaller than 1), the symmetric strain modes
εA1g,i share the same sign (are both compressive) during hydrostatic
pressure experiments but have opposite sign during uniaxial stress
experiments. Panel (c) illustrates in-plane deformations as well as
the associated preserved symmetries (white lines). While symmetric
A1g strain preserves C4 rotational symmetry (white arrow) as well
as vertical, horizontal, and diagonal mirror planes (white dash dotted
lines), antisymmetric B1g and B2g strains lower the primary rotational
symmetry to C2 and break diagonal and vertical mirror planes,
respectively.

II. EXPERIMENTAL METHODS

For both hydrostatic and uniaxial stress experiments, the
transition temperatures are determined from resistivity data
[Figs. 2(a) and 3(a)]. The longitudinal resistivity ρxx as a
function of temperature was determined during slow temper-
ature sweeps (down and up for each εxx) using a standard
four probe technique (see Appendix B) on a crystal contacted
using PbSn reflow solder (for more details see Appendix A).
The coupled structural/nematic transition temperature TS was
determined from the center of a Gaussian function fit to a local
maximum in the second derivative [Figs. 2(c) and 3(c)], the
magnetic transition temperature TN from a minimum in the
first derivative [Figs. 2(b) and 3(b)]. An upper bound for the
error bar around TS is estimated by half the standard deviation
of the Gaussian function [26].

Uniaxial stress experiments were performed using a com-
mercially available strain apparatus (CS100, Razorbill instru-
ments). Uniaxial stress was applied along a bar shaped sample
of Ba(Fe0.975Co0.025)2As2 (with typical dimension 2000 ×
400 × 35 μm) by affixing it in between two mounting plates

FIG. 2. (a) Electrical resistivity of Ba(Fe0.975Co0.025)2As2 as a
function of temperature determined during a uniaxial stress experi-
ment. For each temperature sweep (warming) shown here, the sample
is held at a constant strain, εdisp

xx , indicated by the color scale (blue
data points indicate compressive strain, beige points tensile strain,
and cyan colored data small strain around the strain neutral point).
Panel (b) and (c) show the first and second derivative of the resistivity
with respect to temperature. Panel (d) shows TS and TN versus nomi-
nal strain εdisp

xx . The red lines are fits using a second order polynomial
resulting TS(εxx ) = 100 − (521 ± 4)εxx − (28300 ± 1100)ε2

xx, and
TN(εxx ) = 94.5 − (629 ± 2)εxx − (24700 ± 500)ε2

xx.

that are pushed together/pulled apart using voltage controlled
lead zirconate titanate (PZT) stacks. The cell is designed
to compensate for the thermal expansion of the PZT stacks
[27]. Furthermore, due to matching of the thermal expansion
of Ba(Fe1−xCox )2As2 [28] and the sample mounting plates
(titanium) (see Appendix B 1, Fig. 7), the strain on the sample
is almost perfectly independent of temperature for a fixed
voltage applied to the PZT stacks. Stress was applied along
the tetragonal [100] axis resulting in a combination of εA1g,1,
εA1g,2, and εB1g [see Fig. 1(b)]. The misalignment of the [100]
crystal and the stress axis was estimated to be smaller than
2.5◦ by comparing to a uniaxial stress experiment on a crystal
oriented such that stress was applied along the tetragonal
[110] axis (see Appendix B 1 a). The nominal strain along
the tetragonal [100] axis (εdisp

xx ) was determined by the zero
strain length of the sample between the mounting plates and
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FIG. 3. (a) Temperature dependence of the electrical resistivity
ρ of Ba(Fe0.975Co0.025)2As2 for a range of hydrostatic pressures p

determined during slow warming temperature sweeps. Panel (b) and
(c) show the first and second derivative with respect to temperature,
respectively. The dotted lines in panel (c) shows second derivatives
calculated neglecting resistivity data below TN + 1 K, avoiding over-
lap of the smoothed signatures of the features associated with TN and
TS . Similar to Fig. 2, blue colored symbols indicate compressive
strains. Panel (d) again shows the structural and antiferromagnetic
transition temperature as a function of pressure. The red lines in
panel (d) are linear fits to the data.

the length change measured by sampling a capacitance sensor
using an Andeen-Hagerling AH2550A capacitance bridge.
Due to strain relaxation effects in the mounting plates and
the mounting glue, the actual strain εxx experienced by the
sample is smaller than ε

disp
xx . Using finite element simulations

(see Appendix C), we estimate εxx = (0.7 ± 0.07)εdisp
xx . The

extracted critical temperature can be well fit by TS(εxx) =
TS(εxx = 0) + αεxx + βε2

xx (red line, [29]), with α = −521 ±
4 K and β = −28300 ± 1100 K. As we will show later,
the surprisingly large quadratic response is due solely to
antisymmetric strain, εB1g .

The second experiment reported here is electrical
resistivity on a bar shaped (1000 × 600 × 30 μm) crystal
of Ba(Fe0.975Co0.025)2As2 as a function of temperature
under hydrostatic pressure (Fig. 3). The measurements were

FIG. 4. Normalized linear response of the structural transition to
symmetric εA1g,1 and εA1g,2 strain during hydrostatic pressure and
uniaxial stress experiments. The cyan and purple vertical planes
indicate the relative combination of symmetric strains induced during
hydrostatic pressure and uniaxial stress experiments, respectively.
Experimental data are shown by the cyan (hydrostatic pressure) and
purple stars (uniaxial stress), respectively. Linear fits are shown by
red lines. The yellow plane defined by these two lines describes the
material’s linear response to symmetric strain.

performed using a HPC-30 pressure cell within a PPMS from
Quantum Design using Daphne oil 7373 as pressure medium.
The hydrostatic pressure was determined by measuring the
superconducting transition temperature of a lead manometer.
Under perfectly hydrostatic conditions (for details see
Appendix B 2) the strain is purely symmetric, and both εA1g,1

and εA1g,2 are compressive (Fig. 1(a)). Both transitions are
found to vary almost perfectly linearly under hydrostatic
pressure, though with a slightly different slope [see Fig. 3(d)],
thus merging for pressures greater than approximately 1.75
GPa. A linear fit results in TS(P ) = TS(P = 0) + α̃P , where
α̃ = −9.38 ± 0.08 K/GPa.

III. RESULTS AND DISCUSSION

To decompose the strain induced changes of TS, the relative
amount of strains within each of the different symmetry
channels is first determined, based on the measured elastic
stiffness tensor [30] (see Appendix C 1). The linear response
(which, as described earlier, can only arise due to symmetric
strain) can then be plotted as a function of the decomposed
strains εA1g,1 and εA1g,2 (Fig. 4). For hydrostatic pressure (cyan
plane in Fig. 4) the response is purely linear, so no subtraction
is necessary. For uniaxial stress, the quadratic term (βε2

xx,
defined earlier) is first subtracted using the fitted value of β, to
leave the linear response: T lin

S (εxx) = TS(εxx) − βε2
xx (purple

stars in Fig. 4). Since the ratio of εA1g,1 and εA1g,2 is different
for the two experiments, the purple and cyan planes in Fig. 4
are not parallel. Moreover, since two lines define a plane,
the material’s response to symmetric strain (yellow plane in
Fig. 4) is uniquely defined by these two sets of measurements.
A full decomposition of the response to symmetric strains is
now possible, and the associated partial derivatives are read-
ily determined; λ(A1g,1 ) = −6.35 ± 0.23 K/%, and λ(A1g,2 ) =
16.70 ± 0.32K/% [31] (for details see Appendix D). The ratio
of these terms λ(A1g,2 )/λ(A1g,1 ) = −2.63 ± 0.11 demonstrates
that c-axis strains have a considerably larger effect on TS than
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FIG. 5. Normalized nonlinear response of the coupled
nematic/structural transition temperature to strain during hydrostatic
(cyan stars, top axes) and uniaxial stress (purple stars, bottom axes)
experiments. The quadratic contribution evident in the uniaxial
stress data is solely due to antisymmetric B1g strain. Red line shows
fit to a quadratic function. The origin of the kink near zero strain is
currently unknown. The feature is, however, smaller than the error
bars and has no statistically significant impact on the fit.

symmetric in-plane strains. Considering the contributions of
symmetric strain to a standard Landau free energy expansion
of the nematic phase transition (discussed further below), we
note that the finite values of λ(A1g,1 ) and λ(A1g,2 ) necessarily
imply the formation of spontaneous symmetric strains εA1g,1

and εA1g,2 upon cooling below TS. That λ(A1g,1 ) and λ(A1g,2 ) have
opposite signs is consistent [32] with the observation that the
spontaneous strains as measured in recent thermal expansion
experiments [33] have opposite signs.

Having decomposed the linear response, we turn to the
quadratic response. Figure 5 shows the normalized nonlinear
response of TS to strain calculated by subtracting the linear
response [i.e., subtracting αεxx and α̃P from the data shown
in Figs. 2(d) and 3(d), respectively, using the fitted values
of α and α̃]. Data are shown as a function of the three
(two) strain components present for the uniaxial stress (hydro-
static pressure) experiments on the bottom (top) axes. While
quadratic responses to symmetric A1g,i strain are allowed by
symmetry, no such response is observed during our hydro-
static pressure experiment (cyan data points). Moreover, A1g

strains experienced in the hydrostatic pressure experiments
exceed by nearly a factor of four those experienced by samples
held under uniaxial stress. Hence, the quadratic response ob-
served during our uniaxial stress experiment (purple curve in
Fig. 5) is caused exclusively by antisymmetric B1g strain. The
fit parameters then yield λ(B1g,B1g ) = ∂2TS/∂ε2

B1g
= −7.25 ±

0.25 K/%2.
The quadratic functional form of TS(εB1g ) is understood

based on symmetry, but the magnitude and sign of λ(B1g,B1g )

are not determined by symmetry alone. Our measurements
reveal that the ratio λ(B1g,B1g )/λ(A1g,i,A1g,i ) is at least 100 and pos-
sibly even larger [34]. The surprisingly large value of λ(B1g,B1g )

means that for tensile strains larger than ε
disp
xx ≈ 1.84%, εB1g

strain dominates the suppression of TS. The physical origin
of this very large effect remains to be determined, but we
emphasize one important difference between strains of these

two symmetries. Specifically, A1g strains do not break any
symmetries [Fig. 1c(i)] and therefore do not introduce any
new terms to the low-energy effective Hamiltonian describing
the system. However, B1g symmetry strain explicitly breaks
specific symmetries [Fig. 1c(ii)] and therefore introduces new
operators to the effective Hamiltonian. Acting on an Eg or-
bital doublet (for example, degenerate dxz and dyz orbitals),
operators with B1g and B2g symmetry do not commute; con-
sequently B1g symmetry strain induces quantum fluctuations
in a B2g symmetry order parameter [35], possibly accounting
for (or at least contributing to) the large negative value of
λ(B1g,B1g ).

On a phenomenological level, we note that the negative
sign of λ(B1g,B1g ) for Ba(Fe0.975Co0.025)2As2 is entirely consis-
tent with observations that the B1g component of the elastic
tensor, 1

2 (c11 − c12) hardens upon cooling through TS [30].
This can be readily appreciated by turning to the standard
Landau treatment of the nematic phase transition [5]. Writing
the free energy in even powers of the nematic order parameter
and including coupling to strains εA1g,1, εA1g,2, εB1g , and εB2g

we obtain

�F = a

2
(T − T ∗)�2

B2g
+ b

4
�4

B2g
+ λB2g

εB2g�B2g

− a

2
λB1gε

2
B1g

�2
B2g

−a

2
λA1gε

eff
A1g

�2
B2g

+ 1

2
C

(0)
66 ε2

B2g

+ 1

2

(
C11 − C12

2

)(0)

ε2
B1g

+ 1

2
Ceff

A1g

(
εeff

A1g

)2
, (2)

where �B2g is the nematic order parameter, the coupling
coefficients λB1g , λA1g,1 and λA1g,2 are determined by our mea-
surements, and εeff

A1g
and Ceff

A1g
are appropriate combinations of

A1g symmetry strains and terms in the elastic stiffness tensor,
determined by the Poisson ratio of the material. Significantly,
the biquadratic coupling of �B2g to εB1g not only provides
means to tune TS, but also renormalizes the bare elastic
modulus CB1g = ( C11−C12

2 )
(0)

for free-standing samples, such
that

Ceff
B1g

= ∂2F

∂ε2
B1g

=
(

C11 − C12

2

)(0)

− aλB1g�
2
B2g

. (3)

In other words, since a > 0 our observation of a negative
value of λB1g = −7.25 ± 0.25 K

%2 is consistent with observa-
tions that the B1g component of the elastic tensor C11−C12

2
hardens [30] upon cooling through TS.

IV. SUMMARY

In-plane strain has previously been demonstrated as a
suitable means to induce phase transitions [36]. Here we
have shown how a complete symmetry decomposition, made
possible by comparison to hydrostatic pressure, reveals the
separate effects of symmetric and antisymmetric strains that
are necessarily both present when a sample is held under
in-plane uniaxial stress. We emphasize that antisymmetric
strain is a powerful continuous tuning parameter for nematic
phase transitions. While values of εB1g that would be necessary
to completely suppress the coupled nematic/structural phase
transition in Ba(Fe0.975Co0.025)2As2 are slightly out of reach,
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this is not necessarily the case for other materials, raising the
distinct possibility that antisymmetric strain could be used to
continuously tune a suitable material to a nematic quantum
phase transition [35]. Finally, we report that symmetric c-axis
strain has a significantly stronger effect on the nematic tran-
sition in Ba(Fe0.975Co0.025)2As2 as compared to symmetric
in-plane strain.

ACKNOWLEDGMENTS

The authors thank J. Schmalian, S. A. Kivelson, A. Hristov,
C. W. Hicks, and P. Massat for insightful discussions. This
work was supported in part by the Gordon and Betty Moore
Foundation’s EPiQS Initiative through Grant No. GBMF4414
(M.S.I. & P.W.) and by the Department of Energy, Office
of Basic Energy Sciences, under Contract No. DEAC02-
76SF00515 (T.W. & I.R.F.). J.C.P. was supported by a NSF
Graduate Research Fellowship (Grant No. DGE-114747) and
a Gabilan Stanford Graduate Fellowship, J.A.W.S. acknowl-
edges support as an ABB Stanford Graduate Fellow.

APPENDIX A: SAMPLE PREPARATION

The Ba(Fe0.975Co0.025)2As2 single crystals characterized
here were grown using a FeAs self flux technique described
elsewhere [37]. The crystals were cleaved into thin plates and
cut into rectilinear bars. Typical samples dimensions for uni-
axial stress and hydrostatic pressure experiments were 2000 ×
400 × 35 μm and 1000 × 300 × 35 μm, respectively. Elec-
trical contacts were made by a reflow soldering technique
using a Sn63Pb37 solder paste with a solder particle size of
15–25 μm (Chip Quick SMD291AX10T5). The initial steps
of the contacting procedure using solder paste are similar to
contacting methods using silver paint or silver epoxy. The
ends of short (∼10 mm) pieces of 25 μm wide gold wire were
dipped into the solder paste and positioned onto the freshly
cleaved sample surface. The sample, resting on a 1 mm thick
glass slide, is then placed on a hot plate preheated to 200 ◦C to
reflow the solder beads. To prevent oxidation of the contacts,
the sample and glass slide are taken off the hot plate as soon
as the solder particles melt. This can be easily seen as the
contact appearance changes from matte to shiny. The typical
contact resistance of such solder joints was estimated by a
quasi-four-point measurement to be smaller than 20 mOhm
per contact. While the contact resistance of soldered contacts
is superior to silver paint and silver epoxy, it is important to
note that the superconductivity of the solder (Tc ∼ 7.1 K) [38]
might be problematic for measurements at low temperatures.
These solder joints are also significantly more mechanically
robust and are better able to survive thermal cycling than silver
paint contacts.

APPENDIX B: EXPERIMENTAL METHODS

Four point resistivity measurements during our uniaxial
stress and hydrostatic pressure experiments were performed
using a Stanford Research Lock In amplifier (SR830). The
output of the lock-in amplifier was converted to a constant
current source using a 1 kOhm series resistor. The voltage

sample

bottom mounting platenylon wire
100 µm 100 µm

I+ V+ V- I-

contacts

top mounting plates

sample

(a) (b)

bottom mounting plate

top mounting plate
spacer washer

(c)
sample

epoxy

cell body

mounting screw
contact

FIG. 6. (a) Ba(Fe0.92Co0.08)2As2 crystal mounted on a Razorbill
CS100 cell using bottom and top mounting plates. Panel (b) sketches
a sample mounted onto bottom mounting plates, panel (c) sketches a
cross sectional view.

signal was amplified with a Stanford Research transformer
preamplifier (SR554).

All resistivity measurements used the same cryostat, a
PPMS from Quantum Design. The temperature was swept
slowly at a rate of 0.5 K/min. The sample temperature was
measured using a Cernox CX-1050 temperature sensor from
Lakeshore mounted on the Ti body of the CS100 cell (for
uniaxial stress experiments) and the Cu-Be body of the hy-
drostatic pressure cell, respectively. The temperature sensors
were sampled using a Lakeshore 340 temperature controller.
The thermal lag of the sample as compared to the measured
cell temperature was estimated by taking resistivity measure-
ments during cooling and warming runs. Thermal lags of
about 0.1 K and 0.25 K were found for our uniaxial stress
and hydrostatic pressure experiments, respectively.

1. Uniaxial stress experiments

Uniaxial stress experiments were performed using a com-
mercially available CS100 cell from Razorbill Instruments.
This cell uses piezo electric (PZT) stacks to separate two
mounting plates. The exact working principle of such a cell
is described in detail elsewhere [27]. Samples were affixed
onto the mounting plates of the uniaxial stress cell (see Fig. 6)
using Devcon 2-ton epoxy. The glue layer thickness between
the sample and the bottom mounting plates was controlled
using Nylon wire spacer with a diameter of 25 μm. The glue
layer thickness between the sample and the top mounting
plates was controlled by the thickness of spacer washers
between the top and bottom mounting plates. Typically, the
glue layer on top of the sample was approximately double the
thickness of the bottom glue layer.

The zero-volt strain (zero volts across the PZT stacks
results in zero piezoelectric extension or contraction of the
stacks) experienced by the sample during uniaxial stress ex-
periments is determined by the differential thermal expansion
of the sample and the sample mounting plates and thus, in gen-
eral, is not temperature independent. In this case however, the
thermal expansion of the Ti mounting plates and the in-plane
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FIG. 7. Comparison of the in-plane thermal expansion of
Ba(Fe0.92Co0.08)2As2 [28] and the thermal expansion of Ti [39].

expansion of Ba(Fe0.92Co0.08)2As2 are very similar (Fig. 7).
Therefore we can approximate the strain as independent of
temperature and fully controlled by the voltages applied to the
piezoelectric stacks. Due to the hysteresis of the PZT stacks,
zero volts across all three PZT stacks does not necessarily
correspond to zero strain.

The nominal strain along the transport direction (εdisp
xx ) was

determined by measuring the displacement of the two sides of
the cell (using a capacitive displacement sensor sampled by an
Andeen Hagerling AH2550 capacitance bridge) with respect
to the initial distance between the lower sample mounting
plates. Since the zero-volt distance of the capacitor plates is
not independent of temperature (due to the thermal expansion
of the epoxy holding these plates), first a calibration of the
zero volt capacitance has to be determined as a function
of temperature. Ideally, this is done by affixing a relatively
stiff bar of titanium (to match the thermal expansion of the
cell made of titanium) across the two sides of the cell and
measuring the capacitance as a function of temperature. Since
the zero volt capacitance changes between each measurement
run due to the hysteresis of the PZT stacks, it is important to
record this value before the mounting procedure of each sam-
ple. The calibration can then be adjusted from measurement
to measurement. The change of the capacitance with changing
distance of the capacitor plates, on the other hand, is almost
temperature independent (the thermal contraction of the plates
as well as the change of the dielectric permittivity of helium
gas within the experimental temperature range are small). The
manufacturer supplied calibration is thus almost temperature
independent.

Due to strain relaxation effects within the glue layers
and the Ti mounting plates, the actual strain on the sample
differs from the nominal value. In this work, we estimated the
strain relaxation effects using finite element simulations (more
details given below). The strain experienced by the sample
was calculated to be εxx = (0.7 ± 0.07)εdisp

xx . The difference
in strain on the top and bottom surface of the sample was

FIG. 8. (a) Resistivity as a function of temperature for different
strains εdisp

xx , applied along the tetragonal [110] axis. (b) Derivative
of the electrical resistivity with respect to temperature. The steplike
feature associated with the structural phase transition is suppressed
quickly and is fully smeared for strains on the order of εdisp

xx ≈ 3 ×
10−3.

found to be less than 2%, despite the asymmetric glue layer
thicknesses. The normal strains within the sample were found
to be approximately constant in distances over 100 μm of
the plates. The voltage contacts on our samples were placed
so that only the section of the sample experiencing uniform
strain was probed. To avoid shear strains introduced into the
sample by asymmetric, point shaped contacts, the voltage (and
the current) contacts were line shaped and spanned the entire
width of the sample [see Fig. 6(b)].

a. Uniaxial stress along the tetragonal [110] axis

B2g strain is known to turn the phase transition into a
crossover and smear all the related features. This is indeed
what we observe in our experiment applying uniaxial stress
along the tetragonal [110] axis. Figure 8 shows the data for
the B2g strain experiment. The feature corresponding to the
nematic phase transition (step change in the derivative of the
resistivity with respect to temperature) is quickly suppressed
and replaced by a broad crossover. A relatively small strain
ε

disp
xx of about 3 × 10−3 is sufficient to fully suppress the fea-

ture associated with the nematic phase transition. Considering
the evolution of the feature of the nematic phase transition
in our B1g data presented in the paper (and the rotated
compliance tensor), we estimate a misalignment of 2.25◦. As
the feature associated with the nematic phase transition stays
sharp and clearly observable within the whole investigated
strain range, the contamination (which to some extent might
also originate from our voltage contacts) has no significance
for our results.

2. Hydrostatic pressure experiments

Hydrostatic pressure experiments were performed using a
Quantum Design HPC-30 Cu-Be based self-clamping pres-
sure cell. Although this version is no longer commercially
available, information on the very similar updated version,
HPC-33, can be found on the Quantum Design website. Hy-
drostatic pressure up to ∼3 Gpa is applied using a hydraulic
press. Daphne Oil 7373 is used as a pressure transfer medium.
Note that the freezing point of the Daphne oil is always
below room temperature for pressures less than 2 GPa. This
ensures a high degree of hydrostaticity throughout the exper-
imental range [40]. Pressure measurements were performed
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by probing the superconducting transition temperature of a
lead manometer [41]. In addition, the temperature dependence
of the hydrostatic pressure within the HPC-30 pressure cell
was determined by calibration measurements using both a
lead and a manganin manometer [42]. Below 100 K the
hydrostatic pressure was found to be almost independent of
temperature.

APPENDIX C: FINITE ELEMENT SIMULATIONS

The goal of our finite element simulation was to estimate
the strain relaxation effects in the glue layers as well as the Ti
mounting plates. The mechanical properties used within our
simulations are summarized in Table I below.

The elastic properties of Ba(Fe0.975Co0.025)2As2 were es-
timated using the elastic stiffness tensor for 3.7% Co doped
BaFe2As2 at 100 K [30]. The mechanical properties of the
epoxy were estimated to lie in between the properties of
filled Stycast 2850FT and unfilled Stycast 1260 [27]. To our
knowledge, the actual mechanical properties of Devcon two-
ton epoxy are not characterized down to 100 K. To justify
the assumed mechanical properties we compared measure-
ments on samples mounted using Devcon two-ton epoxy to
measurements using Stycast 2850FT. Judged from the strain
dependence of the structural and magnetic transition tempera-
ture of Ba(Fe0.975Co0.025)2As2, Devcon two-ton epoxy yields
only a moderately smaller strain transmission as compared
to Stycast 2850FT. Since the exact mechanical properties
are unknown, we estimated the associated systematic error
by varying the mechanical properties used within our finite
element simulations by ±50%.

In order to minimize the computational requirements, the
model shown in Fig. 9 was cut along mirror planes such
that effectively only 25% of the model had to be meshed
and simulated. The model has been constrained such that the
mounting plates were free to move only along a path parallel
to x. A symmetric displacement corresponding to a reduction
in the distance of the mounting plates by 8 μm (corresponding
to a nominal ε

disp
xx of 1%) was applied. For meshing, brick

shaped elements were chosen. The element size was set to
be 15 μm. The contacts between the sample and the epoxy as
well as the epoxy and the mounting plates were chosen to be
perfectly rigid.

The strain within the sample along x was found to be nearly
constant 100 μm away from the mounting plate edges. As can
be seen from the results shown in Fig. 9, out-of-plane shear
strain (introduced by the asymmetric glue layer thickness on
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FIG. 9. (a) Model used for the finite element simulations pre-
sented here. The dashed-dotted blue lines on the top view show the
mirror planes m1 and m2 used to reduce the model size. (b) Results
of our finite element simulation shown on the cross section of our
model. (c) Normal strain εxx along the center line in the x direction
on the top and bottom surface of the sample. The vertical black
solid lines mark the position of the mounting plate edges. Nominally,
a strain of εxx = 1% was applied. The strain relaxation within the
mounting plates and the glue result in a strain transfer ratio of 0.7.

top and bottom) is small, resulting in a difference of εxx

on the top and bottom surface of the sample of only about
2% [Fig. 9(c)]. The strain transfer ratio εxx/ε

disp
xx used for

analyzing our data was found to be 0.7 ± 0.07. The error bar
was estimated from varying the mechanical properties of the
epoxy within ±50% as well as the thickness of the bottom
glue layer by ±15 μm.

1. Elastic properties of Ba(Fe0.975Co0.025)2As2

Since we focus on vertical shear-free deformations (as
indicated by our finite element simulations), the elastic con-
stants Cij with i, j � 3 (Voigt notation: 1 ≡ xx, 2 ≡ yy, 3 ≡
zz) fully describe the stress-strain relations relevant for our
experiments. Out of the four independent elastic constants

TABLE I. Summary of the mechanical properties used for our finite element simulations. For the tetragonal Ba(Fe0.975Co0.025)2As2, the
Young’s modulus is given for stress along [100] (E) and [001] (E

′
). In addition, the table also shows the in-plane (ν) and out-of-plane

Poisson ratio (ν
′
), as well as the in-plane (C66) and out-of plane shear moduli (C44). These properties correspond to the mechanical properties

of Ba(Fe0.963Co0.0375)2As2 at 100 K, as found by resonant ultrasound spectroscopy [30]. The mechanical properties of the mounting epoxy
(Devcon 2-ton epoxy) at 100 K were assumed to be slightly softer compared to filled Stycast 2850FT [27].

Material E (GPa) E
′

(GPa) C66 (GPa) C44 (GPa) ν ν
′

Titanium grade2 105 39.5 0.33
Epoxy 10 3.8 0.3
Ba(Fe0.975Co0.025)2As2 82 82 10 39 0.26 0.164
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[43], C11, C12, and C33 have recently been reported by a
resonant ultrasound spectroscopy (RUS) study [30] for 3.7%
Co doped BaFe2As2 as a function of temperature. We here
determine the missing C13 by assuming an equal in- and
out-of-plane Young’s modulus (as suggested by a recent in-
strumented indentation experiment [44]) and arrive at

C =

⎛
⎜⎝

92.5 27.3 19.7

27.3 92.5 19.7

19.7 19.7 88.3

⎞
⎟⎠GPa

for 3.7% Co doped BaFe2As2 at 100 K. Using this tensor as
an estimation for the shear-free mechanical properties of 2.5%
Co doped BaFe2As2 in the vicinity of its structural transition,
it is straightforward to calculate the symmetry decomposed
strain fields from the measured hydrostatic pressure and εxx

for the two sets of experiments.

APPENDIX D: STRAIN DECOMPOSITION

The relation between εA1g,1 = 1/2(εxx + εyy) and εA1g,2 =
εzz under the two stress conditions studied here is determined
by the elastic properties (the elastic stiffness tensor) of the
investigated material. For hydrostatic pressure (σxx = σyy =
σzz), εA1g,2 = 1−2ν ′

1−ν−ν ′ εA1g,1 , for uniaxial stress (σxx �= 0, σyy =
σzz = 0), εA1g,2 = −2ν ′

1−ν
εA1g,1 , where ν and ν ′ are the in- and

out-of-plane Poisson ratio.

Using these relations the total response of TS to εA1g,1 can
be written as(

dTS

dεA1g,1

)hyd

= ∂TS

∂εA1g,1

+ 1 − 2ν ′

1 − ν − ν ′
∂TS

∂εA1g,2(
dTS

dεA1g,1

)uni

= ∂TS

∂εA1g,1

− 2ν ′

1 − ν

∂TS

∂εA1g,2

(D1)

for the hydrostatic pressure and the uniaxial stress experi-
ment, respectively. Using the in- and out-of-plane Poisson
ratio determined from the elastic stiffness tensor C (ν = 0.26
and ν ′ = 0.164) as well as the experimentally determined

responses ( dTS
dεA1g,1

)
hyd

and ( dTS
dεA1g,1

)
uni

, the above equations can

be solved for ∂TS
∂εA1g,i

. We find ∂TS
∂εA1g,1

= −6.35 K
% and ∂TS

∂εA1g,2
=

+16.7 K
% for the investigated Ba(Fe0.975Co0.025)2As2 confirm-

ing the largest linear contribution comes from εA1g,2 .
Errors reported in the paper represent statistical

uncertainty. A full error analysis considering also systematic
uncertainty yields ∂TS

∂εA1g,1
= −6.35 ± (0.23 K

% )
statistical ±

(2.28 K
% )

systematic
and ∂TS

∂εA1g,2
= 16.7 ± (0.32 K

% )
statistical ±

(1.45 K
% )

systematic
. The main systematic errors considered

are a 5% uncertainty in the elastic constants as well as the
measured hydrostatic pressure and a 10% uncertainty in
the strain relaxation factor. All errors were assumed to be
uncorrelated. As the sign of our measured responses is robust
within the error bars, our main results and discussion are
unaffected by the systematic errors mentioned here.
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