CLOSING THE LOOPPRIVATE 

Testing Newtonian Gravity, Then and Now

(1)

I am honored to have been invited to give these inaugural Isaac Newton Lectures for the Patrick Suppes Center for the Interdisciplinary Study of Science and Technology, and in the process to show my gratitude for Professor Suppes’s many contributions to philosophy of science and logic – in my case most especially for the masterpiece on the foundations of measurement that he co-authored with David Krantz, Duncan Luce, and Amos Tversky.  I am going to leave to you whether it is appropriate for me to be giving these lectures in the history and philosophy of science for the Center.  My sole comment about it is that you would be hard-pressed to find anyone more deeply committed to the proposition that philosophy of science without history of science is empty, and history of science without philosophy of science is blind.



The title of the series, “Turning Data Into Evidence,” requires a word of explanation.  Evidence is a two (or more) place relation between data and claims that reach beyond them.  Because data themselves are not such a relation, something beyond data is invariably needed to turn them into evidence.  The role my subtitle refers to is the role of theory in turning data into evidence.  The three lectures will examine some historical cases in which theory has played this role, asking in each case, first, how theory has done this and, second, how the theory itself was tested in the process of doing it.

(2)

There is a standard answer to what turns data into evidence for a hypothesis in science, namely the deduction from that hypothesis of conclu​sions that can be directly compared with the data.  More specifically, in the case of my historical example for today, gravity research, the standard view is that what made celestial observations evidence for Newtonian gravity were the predictions derived from Newton’s theory, predictions that became in increasingly close agreement with observations during the eighteenth and nineteenth centuries.  This view together with the shift from Newton’s to Einstein’s theory of gravity has had a major impact on the philosophy of science over the last 90 years.  All along there was this other undiscovered theory that could yield predictions that were no less in agreement with obser​vations than the predictions from Newton’s theory.  But then, all along, the evidence based on those predictions was being over-valued, for the most it was showing was that Newton’s theory was one among many possible theories that could make comparably accurate predictions.  And that has led some to argue that we are undoubtedly now also over-valuing the evidence for Einstein’s theory, and for theories in science generally.  I am going to be offering a very different view of the evidence over the course of the history of gravity research, a view that I hope some of you will find responsive to those who challenge the epistemic authority of science.   

(3)

I am not the first to question the usual view of evidence in celestial mechanics.  As Michael Friedman pointed out to me some time ago, one its leading pro​ponents, Carl Hempel, called attention to a problem with it some twenty five years ago.  In deri​ving predictions from the theory of gra​vity, one has to assume that no other forces are at work besides those expressly taken into account in the derivation.  This pro​viso is in no way a part of the theory of gravity, and hence one can legi​ti​mately ask, what evi​dence is there for it?  The obvi​ous answer is, the close agree​​ment of the predictions with ob​ser​va​tion.  But then what is really being tested when astronomers compare their orbital cal​cu​lations with observations, the theory or the rather brazen claim that all important forces have been iden​ti​fied?  To give you a preview of my talk, my answer to this is that the primary question astronomers ad​dress when they com​pare calculations with observations is, What, if any, further forces are at work?; from this it will follow that the way in which gravity theory has actually been tested, then and now, not only has involved a more intri​cate logic, but has also deli​vered far more powerful evidence than is apparent under the standard hypothesis testing picture of the logic.

(4)

The rest of this talk will consider first how Newton’s Prin​cipia dictated a particular logic of testing the theory of gravity and then, in two steps, how this logic has played out in gravity research ever since.

(5)

By gravity research, I mean two fields, celestial mechanics and physical geodesy, that now lie in the separate depart​ments of astronomy and earth science.  The central questions in celes​tial mechanics concern the motions of planets, their satel​lites, and comets and the forces governing these motions.  The central questions in physical geodesy concern the non-spherical shape of the Earth, the variation of surface gravity around it, and the density distribution within the Earth that produces this varia​tion in surface gravity.  Laplace's five volume Celestial Mech​anics treated both of these, and hence that title origin​ally covered both.  They migrated apart during the second half of the nineteenth century, mostly because of differ​ences in the math​ematics they employ.  The important point for me is that the Princi​pia addres​sed every one of the questions listed here, and sub​sequent research on every one of them unfolded from what the Principia said.  Indeed, the question that led Newton into the Principia ‑- the question put to him by Robert Hooke and then by Edmund Halley -- was, what orbital motion occurs under inverse-square central forces?

(6)

This question needs to be put into historical context.  At the time Newton started on the Principia he knew of seven distinct approaches to calculating planetary motion.  The main difference among these seven was the way of locating planets on their orbits versus time: Johannes Kepler and Jeremiah Horrocks following him used the area rule -- planets sweep out equal areas in equal times -- while Ismaël Boulliau and Thomas Streete used a geometrical construction, Vincent Wing initially used equal angular motion around a point oscillating about the empty focus and then switched to his own geometric construction, and Nicholaus Mercator added still another geometric con​struc​tion.  All seven yielded more or less the same level of accuracy -- within five or so minutes of arc, where the width of the Moon is 30 minutes of arc.  Streete's tables were on the whole the most accurate, but none of them were entirely within the accuracy of Tycho Brahe’s observations, and none of them worked for the Moon.  The one thing on which they all agreed was the ellipse, which is striking for two reasons.  First, all the orbits are so nearly circular; the most ellip​tical by far, Mer​cury's, has a minor axis only 2 percent shorter than its major axis.  Second, the ellipse was something Newton thought that only he had established;
 from his point of view all that Kepler and the others had shown is that the trajec​tor​ies are approxi​mated by ellipses.  The question that Hooke and Halley put to Newton concerned the true motions, with Hooke ex​pressly challen​ging the astronomers' ellipse.  The issue of astronomical prac​tice lying be​hind this question was to find some empirical basis for deciding which, if any, of these alternatives was to be preferred.

(7)
 
Even before he began writing the Principia, Newton had concluded this was a profoundly more difficult issue than anyone had realized, for none of the approaches gave the true motions.  The quotation is part of a para​​graph Newton added to the eight page tract he had registered with the Royal Society in December 1684, a paragraph that didn't become public until 1893:



By reason of the deviation of the Sun from the center of gravity, the centripetal force does not always tend to that immobile center, and hence the planets neither move exactly in ellipses nor revolve twice in the same orbit.  Each time a planet revolves it traces a fresh orbit, as in the motion of the Moon, and each orbit depends on the combined motions of all the planets, not to mention the actions of all these on each other.  But to consider simultaneously all these causes of motion and to define these motions by exact laws admitting of easy calcula​tion exceeds, if I am not mis​taken, the force of any human mind.


The difficulty Newton sees here is not planets interacting with one another.  The difficulty is that the center of gravity of the system should neither gain nor lose motion, and the problem of simultaneously solving for the motions of six planets and the Sun under this constraint is what Newton was finding intract​able.  Think of the challenge he saw in undertaking the Princi​pia: the complexity of the real motions was always going to leave room for com​pet​ing theories if only because the true motions were always going to be be​yond precise description, and hence there could always be multiple theories agreeing with ob​ser​​va​tion to any given level of approximation.  On my reading, the Principia is one sustained response to this evidence problem.

(8)

Sorry about so much on one slide, but the point here is crucial.  As we know, Newton claimed that his law of gravity was not put forward as a hypothesis, but was deduced from phenomena of planetary motion.  At each juncture, however, his actual deduc​tion from phe​nomena makes allow​ances for imprecision in the phenomena them​selves.  Newton's "pheno​mena" are descriptions of regu​lari​​ties that hold at least quam proxime over a finite body of ob​serva​tions.  The peculiar double-superlative phrase quam proxime (which occurs 139 times in the Principia) roughly translates "very, very nearly."
   Every "if-then" proposition that Newton uses to draw conclusions from phe​nomena he takes the trouble to show still holds in an "if quam proxime, then quam proxime" form, here illus​trated by a corol​lary to Proposi​tion 3: if an orbi​ting body sweeps out equal areas in equal times to very high appro​xi​mation with respect to some body, then the force governing its motion is directed to very high appro​ximation toward that body.  This is why Newton, un​like modern textbooks, never inferred the in​verse-square from Kepler's ellipse: he knew that the proposition, if a Kep​lerian ellipse quam proxime, then inverse-square quam proxime, is not true.



Strictly speaking, therefore, what Newton deduced from the pheno​mena were conclusions that hold only quam proxime over a finite set of observations -- here illustrated by the conclu​sion that the forces on the planets over the period beginning with Tycho's data were directed at least quam proxime toward the Sun.  This deduction was sound, but limited.  The most that Newton could have truly deduced from phenomena was that his law of gravity held to high approximation over a parti​cular period of time.

(9)

Newton gives Rules of Reasoning in the Principia for going beyond such limited conclusions.  Rule 3 authorizes open-ended projections beyond the finite body of data, and Rule 4 author​izes the leap from approximate to exact "until yet other pheno​​mena make such propositions either more exact or liable to ex​ceptions."  Notice that the main verb in both of these rules is "should be regarded" -- in Latin, a form of the verb habere, "to hold."  The rules are not saying that "propositions gathered from phenomena by induc​tion" are exactly or very, very nearly true, but that they should be taken to be so.  Newton was per​fectly aware that he was taking a leap from the approxi​mate to the exact when he concluded, as he did at the end of Book 3 Pro​po​sition 8, that the law of universal gravity should be taken as exact.  The leap was part of a research strategy -- a research strategy that I claim was in direct response to the evidence problem posed by the inor​dinate complexity of the true motions.  What we need to see now is how this research strategy works in response to this problem.  What advantage was there in taking the law of gravity to be exact?  For that matter, what did he mean by propo​sitions gathered from phenomena by induction?

(10)

Judging from the Principia
, Newton imposes two demands before taking a theory gathered from quam proxime phenomena to be exact.  First, the theory must give specific conditions under which the phenomena from which it was inferred would hold exactly without restriction of time.  Thus, he concludes in Book 3 Proposition 13 that Kepler's area rule would hold exactly in the absence of forces from other orbiting bodies, and in Proposition 14 that the orbits would be station​ary instead of precessing -- a phenomenon from which he infers the inverse-square -- if there were no perturbing forces acting on the orbiting bodies.  This gives these quam proxime phe​nomena a preferred status, legi​ti​mating their role in "deducing" the theory.  The subjunctives here are New​ton's, not mine; he knew that the assertions were counter​fact​ual.  Second, the theory must give a specific con​figuration for bodies in which the inferred macro​scopic force would result ex​actly from composition of forces arising from their microphy​si​​cal parts.  Thus, he remarks at the end of Proposition 8 that he had doubts about whether gravity around the Earth and Sun varies exactly as the inverse-square until he had shown that it would do so if they were perfect spheres with spheric​​ally symmetric density.  These are not the only such subjunctives Newton de​duces from the theory of gravity.  Another is that the orbits would be ellipses if no other forces were at work.  Subjunc​tives like these can be contraposed: if the actual orbits are not perfectly stationary Keplerian ellipses, then other forces are at work and if gravity does not vary exactly as the in​verse-square around the Earth -- as it does not -- then either the Earth is not an exact sphere or its density is not spherically symmetric.

(11)

This then is the most important consequence of taking the theory of gravity to be exact: every systematic discrepancy between observation and any result deduced from the theory ought to stem from a physical source not taken into account in the deduction -- either a further density variation or a further celestial force.  The table is one of the most striking examples of this in the Principia -- and also historically among the most important.  For, as Newton knew and Huygens and others were quick to realize, it repre​sents the only result in the book for which universal gravity is indispens​able -- that is, inverse-square gravity between every particle of matter, and not just macro​sco​pic inverse-square gravity between celestial bodies.  The column on the right gives the variation in the length of one degree along a meridian for a non-spherical oblate Earth, and the pen​dulum-length column gives the variation of surface gra​vity with lati​tude.  The standard value for the length of a one-second pen​​dulum in Paris was 3 feet 8.5 lines (where a line is 1/12 of an inch). The table offers two signi​ficant fig​ures beyond this.  The table gives what the figure of the Earth and the vari​ation in surface gravity would be if the Earth were a uni​formly dense body of rotating fluid matter held together in equilibrium by (Newtonian) gravity.  To the extent that the actual shape and variation of gravity dif​fer from the tabulated values, one can conclude that the den​sity of the Earth is not uniform.  In the first edition of the Prin​ci​pia, Newton even proposed that, should the need arise, a linear variation of density with radius be tried as the next approxima​tion.  Thus was physi​cal geodesy born. 

(12)

Taking the theory of gravity to be exact is part of a research strategy that allows the complexities of the true orbital motions to become continuing evidence for the theory.  Taking the theory to be exact allows claims about the world to be deduced that would hold exactly under spe​cific cir​cumstan​ces. I call such claims "Newton​ian idea​l​izations" because they are so central to the Principia and its aftermath.  There are many differ​ent kinds of idealiza​tions in science.  This kind, by defi​ni​tion, consists of approxi​mations that, according to theory, would hold exactly in certain specifiable circumstan​ces, inclu​ding pro​visos of no further forces or density varia​tions.  The purpose of comparing any such deduced idealization with observa​tion is not to test the theory directly, for the calcula​tion is presum​ed to be repre​senting a counterfactual situ​a​​tion.  The pur​​pose is to shift the focus of ongoing research onto sys​te​matic discrepancies between the ideali​za​tions and observation, asking in a sequence of successive approxi​ma​tions, what further forces or density variations are affecting the actual situation?  The theory of gravity and deductions from it become not so much expla​na​tions or repre​sen​ta​tions of known phenomena, but instru​ments in ongoing research, revealing new discrepancies between, for example, true and idea​lized orbital motions.  I call discre​pancies of this sort "second-order phenomena" because they are not something anyone can observe.  They are what you get by subtrac​ting observations from idealized calcu​lated results.  They are second-order because they categorically pre​sup​pose the theory of gravity, taken as holding exactly.

(13)

The theory of gravity gets tested in this process through its requiring that every deviation from any Newtonian idealiza​tion be physically signifi​cant -- that is, every deviation has to result from some unaccounted for density variation or force, gra​vitational or other​wise.  So the test question is not whether calculation agrees with observation, but whether robust physical sources can be found for the discrepancies between calculation and observa​tion.  It is a failure of this test, and only of this test, that falsifies Newton’s theory.  Testing of this sort can take two forms.  In the basic form the requirement is to pin down sources of the discrepancies and confirm they are robust and physically significant (within the context of the theory) while progressing toward smaller and smaller discrepancies between calculation and observa​tion.  In the ramified form the previously discovered physical sources become incorporated into the calculations in such a way that new second-order pheno​mena presuppose them as well as the theory of gra​vity; this makes subse​​quent testing ever more stringent by con​straining the freedom to find physical sources of further devi​ations.  The extent to which the testing of Newtonian gra​vity has actually been ramified is a historical question.  To the extent it has, the history of the testing has itself become a form of evi​dence.  That is, a history of success in pinning down robust phy​sical sources, one after another, under increasingly strin​gent physical constraints, is evi​dence that the theory is more than just a curve-fit or mathema​tical rep​resentation that happens to agree with obser​va​tion to high precision.  Such a history is giving increasing reason to think that the theory of gravity really does hold of the phy​sical world.  For if it does not, second-order pheno​mena should be emerging for which no robust physical source can be found.

(14)

Let me illustrate what I mean by "physically significant."  The easiest example is Neptune.  William Herschel dis​covered the seventh planet, Uranus, in 1781.  Over the next decades an anomaly emerged in its motion that by the mid-1840s had reached 120 seconds, that is, 2 minutes, of arc.  The per​tur​bations of Uranus by Saturn and Jupiter are larger than this, and hence the pattern shown in the graph would have been masked had these effects not been taken into account first.
  In the mid-1840s Urbain Jean Joseph Leverrier and John Couch Adams independently pursued the hypothesis of an eighth planet as the source of the anomaly, inferring from the pattern where in the sky it should be.  Astronomers looked, and discovered Neptune.  It is an easy to under​stand example because Neptune has proved to be robust in many different ways, including producing theretofore unnoted small per​​tur​bations of Saturn.  It is not a typi​cal example of what I mean by "physically significant," how​ever, because it remains the only case of a new planet being discovered from second-order phenomena.

(15)

A far more typical example is the "Great Inequality" in the motions of Jupiter and Saturn.  The anomalous motions of Jupi​ter and Saturn had become a prize prob​​lem by the 1740s.  Laplace finally solved it in 1785 by deriving higher-order perturbations in their gravitational interaction, revealing an 880 year fluctuation in their motion that peaks at 60 minutes -- one degree, twice the width of the Moon -- in the case of Saturn and almost half that in the case of Jupiter.  The physical source of this huge inequality is subtle, involving a combination of several factors only one of which I will describe here.  If the two planets were in con​centric circular orbits, then every time Jupi​ter approached conjunction with Saturn, Jupiter would be speeded up and Saturn slowed down; but after con​junc​tion, the opposite would happen and the effect would cancel out because of symmetry before and after conjunction.  The orbits, however, are not quite circular.  In the figure, the major axis of Saturn runs from 12 o'clock to 6, the major axis of Jupiter, from 8:30 to 2:30, and the red line connects the centers, CS and CJ, of the two orbits and hence defines the points where they become nearest to one another, B and F, and farthest, A and E.  In any conjunction to the right of the red line, Jupiter is fur​ther away from Saturn after conjunction than before, and hence its force on Saturn before conjunction is not quite balanced out after con​junc​tion.  The opposite is true to the left of the red line.  Conjunctions occur every 19-plus years, with Saturn progressing a little more than two-thirds around its orbit between them.  As a conse​quence, two out of every three conjunctions take place on one side of the red line, resulting in a net perturbation of both planets over the course of every 59 years.  It takes 440 years of conjunc​tions before the two out of every three switch to the oppo​site side of the red line, and the effect reverses itself.  The physical source of the great in​equality, therefore, involves their re​spec​tive periods and the relative locations of the centers of the two orbits, and hence their eccen​tri​cities and the angle between their major axes.  If the centers were nearer one another, this inequality would smaller, while if the eccentricities were larger, it would be all the greater.



Notice how I am run​ning counterfactuals off of this source.  Also notice that it does not represent a discovery of something new in the world.  The angle between the major axes and the eccentricities were known before​hand.  What was dis​covered was that certain subtle physical details make a difference.  This is how this example is typical: what is generally dis​cov​ered in pinning down the phy​sical source of a dis​crepancy is that some one among the indef​i​nitely many physical details in the world is making a parti​cular detectable difference.

(16)

So, that is the logic of testing that Newton's Principia forced onto the history of gravity research.  Let me now turn to how this logic has played out, looking first at complications that have made it difficult to see.

(17)

One complication is that discrepancies between observation and New​tonian idealizations usually underdetermine their physical source.  For example, the anomaly in the motion of Uranus was not enough to determine both the mass of the hypothe​sized eighth planet and its distance from Uranus.  As the dia​gram shows, the highly elliptical orbits of Leverrier and Adams were both far off the near perfect circular orbit of Neptune.  Even more so, as Georg Kreisel finally proved, the deviation of surface gravity from the table of Newton's that I showed before is not enough to deter​mine the variation of density inside the Earth.  The deviation does determine a correction to the difference (C-A) between the princi​pal moments of inertia implied by Newton's table; and the lunar-solar preces​sion similarly determines the ratio C/A of the two moments of iner​tia, and hence a correction to the polar moment implied by Newton's table.
  But many different den​sity distributions in​side the Earth can result in the same values for the Earth's moments of inertia and mass.  As a con​​sequence, from Newton until the 20th century hypotheses were put forward for the density vari​ation inside the Earth and tested against one another as best one could.  In general, when the second-order phenomenon is not sufficient to determine its source, hypotheses and hypo​the​sis testing become the norm in pursuing the source, and this tends to reinforce the idea that the underlying logic is hypo​thesis testing as well.

(18)

Hypothe​sis testing in response to underdetermination has been espe​cially dominant in physical geodesy.  The problem of the density distri​bu​tion inside the Earth was finally solved during the twentieth century by resorting to a new source of data, seismic waves.  This is one of the great stories in how to deal with underdetermination in science.  From mea​sured times of propagation from an earthquake site, the velo​cities of compression P-waves and transverse S-waves were infer​red.  The variation of density with radius was then inferred from these velocities, using assump​tions about the elastic moduli of the material.  Discontinuities were identified from re​flec​tion, refraction, and diffraction of waves at abrupt changes in den​sity.  Notice how many discontinuous jumps in density there are in the current model, which is still a work in progress.  This will be the subject of my third lecture.    



Phy​si​cal geodesy has throughout had to grapple with underdeter​mi​na​tion.  As a con​se​​​quence, anyone engaged in research or reading origi​nal sources in the field is going to get an impression that the main form of evi​dence in it has been hypo​thesis testing.  This makes the underlying logic of the test of gravity theory hard to see.

(19)

A second complication comes from the process of confirming the ro​bust​ness of proposed sources of second-order phenomena, which amounts to the same thing as testing the proposed sources.  Let me start with some historical examples.  The mass of the Moon, which Jean d'Alembert had inferred from the then recently discovered 18-year nutational wobble of the Earth, was sup​por​ted by his derivation of the 26,000 year precession of the equinoxes as well as by Laplace's subsequent calculations of the tides.  The mass of Venus, which until space flight was inferred from an inequality in the motion of Mars, was supported by the full range of gra​vi​tational effects of Venus on Mercury, Earth, and Mars.  These are examples of Glymour boot-strapping.  The far reach of the gravity of Jupiter and Saturn has been supported by the irregularities in the period of return of Halley's comet.  And evidence for the robustness of the source of the Great Inequality came from various predic​tions implied by this source, such as what the locations of conjunctions are going to be when the inequality in the motions of Jupiter and Saturn reaches its maximum and begins to decline.



What these examples bring out is that many different forms of logic enter into evidence for the robustness of the sources of second-order pheno​mena.  Gravity research has involved many different kinds of evidence, including everyday hypo​thesis testing, in addition to the logic of theory testing that has been at its core throughout.

(20)

Still another complication that has consumed huge amounts of effort in gravity research stems from problems in isolating discrepancies and getting them precise.  The quotation from Hill, which comes from the very beginning of his work on the Moon, points to one problem.  He was respon​ding to lingering discrepancies in the precession of the Moon's apogee, which from Newton forward has been the most sensitive measure we have of the exponent, -2, in the law of gravity.  The question he poses is "whether the discrepancy should be attributed to the fault of not having carried the approximation far enough, or is indicative of forces acting on the moon which have not yet been con​sidered."  I have been talking all along about exact Newtonian idealizations, but owing to the mathematics of the three-body problem the calcula​tions are generally only approximations to such idealizations.  So, discrepancies can arise from inexact mathema​tics as well as from unaccounted for forces.  Over the course of the twenty years between this quotation and Simon Newcomb's 1895 monograph a team of people put a monumental amount of effort into produc​ing the most exact calcu​la​tions for the four inner planets that they could.  Newcomb singled out four residual discrepancies that emerged from this effort.  The Mercury peri​helion I will turn to shortly.  As we will see then, his value for the dis​crepancy in the perihelion of Mars was way too large.  The most strik​ing case, however, is the motion of the nodes of Venus.  At least one physicist of note, Harold Jeffreys, questioned general relativity during the late teens because it offered nothing to account for this discordance.
  When R. L. Dun​comb redid the motion of Venus in the early 1950s, this dis​cordance simply disap​peared, for reasons he could not find.

(21)

An even more striking example of a second-order phenomenon simply disappearing came out in 1993.  For a long time there had been systematic residual discrepancies in the motion of Uranus.  During the second half of the twentieth century this had spawned research looking for a tenth planet.  Myles Standish, the person who is now in charge of the official calculation of planetary motions, recalculated Uranus following the Pioneer spacecraft fly-by of Neptune, which provided a more accurate mass for the combina​tion of Neptune and its satellites.  He found, to quote his abstract, "the alleged 'unexplained anomalies in the motion of Ura​​nus' disappear when one properly accounts for the correct value of the mass of Neptune and properly adjusts the orbit of Uranus for the observational data."  His article ends with the point I really want to quote:



Many professional lives have been dedicated to the long series of meridian circle (transit) observations of the stars and planets throughout the past three centuries.  These observations represent some of the most accurate scientific measurements in existence before the advent of electronics.  The numerous successes arising from these instruments are certainly most impressive.  However, as with all measurements, there is a limit to the accuracy beyond which one cannot expect to extract valid informa​​tion. There are many cases where that limit has been ex​ceeded; Planet X has surely been such a case.

(22)

Limits of observational precision are just one source of spurious second-order phenomena.  There are several others.  On the observa​tional side, the most important, beyond the usual culprits, are inadequate cor​rec​tions for such sources of sys​tematic error as atmospheric refraction and the need to trans​form observations made on the moving Earth to the frame of the fixed stars.  Some of these corrections are sensitive to the values of such funda​mental constants as the speed of light, the aberration constant, the horizontal solar parallax, and the obli​quity of the ecliptic.  And there is always the possibility of some yet un​identified source of systematic obser​vation error that needs to be corrected for.  On the calculation side, ele​ments of the Kep​lerian orbits like the eccentri​city and orien​ta​tion of the major axis are needed, and gravitational pertur​ba​tions re​quire the masses of the planets.  Both the orbital ele​ments and the masses have to be inferred from obser​va​tions.  There is also the ques​tion raised by Hill about whe​ther the in​finite-series calcu​la​​tions in the perturba​tion solu​​tions have converged suffi​cient​ly, not to mention the question whether the perturbation solu​tion has to be carried out to higher order in the manner Laplace did in discov​ering the Great Inequa​l​ity.  In the slide the items colored in black are of no physi​cal inter​est. The items in brown concern physi​cal matters, but gener​ally involve only refinement of existing values, as illustrated by Planet X.  The items in blue lead to new discoveries about the world, and the one in red, a discovery that, to use Newton's words, makes the theory "more exact or liable to excep​tions."  Only the bottom two items on the right directly concern Poin​caré's "great question whether Newton's law by itself accounts for all the astrono​mical phenomena."

(23)

One final example of all this.  In the early 1690s Halley announced that ancient eclipses indicate some sort of secular -- that is, non-periodic -- acceleration of the Moon.  By the 1770s this discrepancy was the subject of many proposals, including Leonhard Euler's suggestion that it is evidence for a Cartesian fluid in space.  Laplace thought he had solved the problem in 1787 when he showed that planetary perturbations of the Earth were alter​​ing the eccentricity of its orbit, resulting in a small differ​ence in the Sun's gravitational force on the Moon that produces a roughly 10 arc seconds per century change in its motion.
  Seventy years later, however, Adams carried out Laplace's cal​culation to higher order, discovering that the further terms cancel roughly half of Laplace's number, leaving half of the effect unaccounted for.  A proposal Immanuel Kant had offered a century earlier was then pursued: tidal friction delays the location of the tidal bulge, producing a small torque slowing the rotation of the Earth, with the angular momentum in question transferred to the Moon.
  There are two things to notice about this.  First, half of the phenomenon involves a real change in motion of the Moon, while the other half is only apparent, arising from a slow​ing of the Earth and hence an imprecision in sidereal time.  Second, tidal friction is a non-gravitational force; Newton's theory does not require only gravitational forces to be at work.  



Tidal slowing, which took several decades to confirm, did not end the story, however.  Already in the early 1870s Simon Newcomb had noted yet a further anomaly in the Moon's motion, which he was still trying to sort out when he died in 1909.

(24)

Part of Newcomb's difficulty in characterizing this anomaly was the need for a better lunar theory.  The Hill-Brown theory, with its more than 1400 separate perturbational terms, finally came out in 1919.  The solid curve in Harold Spencer Jones's figure represents the unaccounted-for deviation of the longitude of the Moon from Hill-Brown theory from 1680 to 1939.  Notice that the magnitude here is 15 seconds of arc, less than 1 percent of the width of the Moon.  What Spencer Jones then did was to take Newcomb's theory for Mercury, with its perihelion precession corrected, and derived corresponding deviations for it.  He then renorma​lized these small deviations by the ratio of Mercury's period to the Moon's, roughly a factor of 4, to obtain many of the dots on the plot.  The rest of the dots represent the same moves with the Earth's orbit.  His figure displays the close correlation in the residual discrepancies of the Moon, Mercury, and the Earth.  Using same- effect, same-cause reason​ing, he concluded that these results establish a common source for all these residual discrepancies, namely fluctuations in the rotation of the Earth -- a still further source of systematic error in astronomical observations. On the basis of his find​ings, sidereal time was replaced by "ephemeris time" in 1950, obtained by taking his curve as a cor​​rection of sidereal time.  Ephemeris time has subsequently given way to atomic clocks.  The robust​ness of the variable rotation of the Earth has been confirmed by means of these clocks and very-long-baseline-inter​ferometry and other measure​ments.  The physical sources of the differ​ent fluctuations in the rotation of the Earth have been a prime research topic for the last 35 years.  The important point to realize here is that the figure presupposes not only the theory of gravity, but literally hundreds of separate details of the physical world that had been shown to make a difference by research predicated on this theory, taken to be exact.

(25)

Needless to say, the point I intend this example to il​lus​​trate is that evidence of the sort I have been discussing can be very strong.  It is evidence aimed primarily at the question of the physical exactness of the theory of gravity and secon​darily at the question of its somehow holding only in re​stric​ted cir​cum​stances.  Gravity research has produced a se​quence of suc​cessive approximations that continually re​vealed new second-order phenomena of progressively smaller magnitude.  The new second-order pheno​​mena have presupposed not only the theory, but also previously iden​tified sources of ear​lier second-order phe​no​mena, and these sources have increasingly constrained the pur​suit of sources producing the new pheno​mena.  The theory became deeply entrenched from the history of its sus​tained suc​cess in exposing more and more subtle details of the physical world without having to backtrack and reject the sources dis​covered earlier.  In particular, the history of pinning down pro​gres​sively more constrained physical source after physical source gave increa​singly strong reason to think that the theory of gravity really must be capturing the physical world, at least to very, very high approximation.

(26)

To make sure I am being clear, let me recap the basic pattern evidence has taken in orbital mechanics.  The process starts with a calculation of orbital motion that gravity theory entails would hold exactly if no other forces are at work.  Comparison with observation then yields a discrepancy with a clear signature – that is, with a sufficiently distinct character that it amounts to a phenomenon.  The next step is to find a physical source for this dis​cre​pancy, a physical source whose further implications are at least compatible with the prior calculation.  This physical source, with all its further conse​quences, is then incorporated into a new calculation of the orbital motions, closing the loop and reinitiating the process.  Evidence emerges at three points in this diagram.  First, a discrepancy with a clear signature – in contrast to random looking deviations – is evidence that the idealized cal​culation is in some respects physically correct.  For the calculation is putting us in a position where the empirical world is, so to speak, telling us some​thing.  Second, finding a robust physical source compatible with the theory of gravity for such a discrepancy is evidence for the theory.  If the theory is false, that should ultimately show up in the form of a discrepancy for which no physical source can be found compatible with the theory.  And third, closing the loop and repeating the process, yielding still smaller discre​pancies and increasingly subtle sources for them provides evidence for both the theory and all the previously identified details – the more times the loop is traversed, the tighter the error bands on both the theory and the previously identified details, and the evidence for these details and the counterfactuals involving them becomes ever stronger.

(27)

So, let me turn to the anomaly in the precession of the peri​helion of Mercury, the second-order phenomenon that finally revealed that Newton's theory is not exact, but only appro​xi​mate, and indeed approximate only in quite restric​ted circumstances.

(28)

Leverrier announced a 38 arc-second per century anomaly in the pre​cession of Mercury's perihelion in 1859, based on observations of Mer​cury's transits across the Sun dating back to 1631.  Newcomb published the revised number of 43 arc seconds per century in 1882, and this number held up through the huge study of the orbits of the four inner planets that cul​mina​ted in his 1895 monograph and his subsequent orbi​​tal tables.  The numbers shown are from Newcomb's mono​graph.  The first thing to notice is that the perihelia precessions observed from the Earth are greater than 5000 arc seconds per century.  Almost all of this comes from the 26,000 year wobble of the Earth -- that is, it is an obser​vational "error" that requires correction in order to refer the motions to the fixed stars.  Once that is removed, the precession of the perihelion of Mercury, versus the fixed stars, Newcomb found to be 575.1 arc seconds per century, versus a calculated value from the gravitational perturbations of the planets on Mercury of 531.7 arc seconds.  The difference of 43.4 arc seconds for Mer​cury and the smaller values for the other planets are of course not some​thing anyone could observe.  They are second-order pheno​me​na that pre​suppose not only Newton’s law of gravity, but also the New​ton​ian gravitational effects of all the other planets on the precession of each of these perihelia.  Newcomb re​viewed several possible sources that had been proposed in response to the anomaly in Mercury's pre​cession, rejecting them because they violated constraints imposed by the orbits of the other three planets.  He finally chose to introduce a fudge for all four planets that would enable his tables to predict Mercury and, he hoped, the others accur​ately.  This fudge, he thought, might be physically realistic because it corres​ponds to a very small change in the exponent of the law of gravity.  In the first decade of the twentieth century, however, E. W. Brown's efforts on the Hill-Brown theory eli​mi​nated this possibility by showing that the precession of the Moon's peri​gee would not permit anything like this large of a change in the exponent.  In other words, constraints from gravity research were making it impossible to find a physical source for the 43 arc-second anomaly. 

(29)

Ninety one years ago, Einstein announced that his general theory of relativity gives the mis​sing 43 arc seconds on the nose.  The numbers in the table are of​fi​cial values as of 1999.  Myles Standish com​puted the general relativity effect by numerically integrating the paramaterized post-Newtonian equations of motion twice for the entire planetary system over 2000 years, once for general relativity and then for Newtonian gravity.  The progressive differences in perihelia locations be​tween the two inte​gra​tions are shown in the plots, with the slopes giving the increments in the rates of precession from general relativity.  As the table indicates, the general relativity effect is within the error bounds of the discrepancy for all four planets.  Notice also how exces​sive Newcomb's fudged corrections were for the three other pla​nets.  They provide a good example of why fudged corrections to achieve accurate predictions are no sub​​sti​tute for pinning down physical sources of discrepancies.

(30)

Increased precision over the last ninety years, indicated by the arrows in the slide, has, if any​thing, strengthened the evidence Mercury's perihelion pro​vides for general rela​tivity.  One might ask how a num​ber that presup​poses Newton's theory of gravity can be the basis for a test of Einstein's theory of gravity.  The answer is: as Ein​stein re​quired throughout, Newton's theory of gra​​vity holds in the sta​tic, weak-field limit of Einstein's theory, and conse​quently the Newtonian calculation of the perturbations of Mer​cury's perihelion by the other planets is accurate to a precision well beyond the level of com​parison here.  From the perspective of general relativity, then, New​tonian gravity is what I call a limit-case idealiza​tion.  This is an entirely different kind of idealiza​tion from the "Newtonian" idea​lizations I've been talk​ing about so far.  Newtonian idea​li​zations would hold exactly in cer​tain speci​fic circumstances.  A limit-case idealization would never hold exactly in any relevant circum​stances whatever.  It must always hold only appro​xi​mately, though to asymptotically higher approximation as the limit is ap​proached -- in this case, as the strength of a static gravi​ta​tional field ap​proaches zero.  Ein​stein's derivation thus did more than show that New​ton's theory holds in the limit; it specified cir​cumstances under which Newton's theory is accur​ate to any given level of approximation.



This relationship between Newtonian and Einsteinian gravity is illus​trated in the equation for orbital motion.  The high​light​ed term is the general relativity correction to the New​​ton​ian equation for the two-body problem that yields the Keplerian ellipse.  The three dots stand for much smaller contri​butions from terms in still higher powers of mu over the speed of light squared.  Because the mass of our Sun is not that large, even in the case of Mer​cury the correction is seven orders of magnitude smaller than the second term on the left,
 and of course it gets still smaller at greater dis​tances from the Sun.  Two-thirds of the correction, by the way, comes from the slight curvature of space near the Sun, and the remaining third comes from gravitational time dilation and non-linear effects on the space-time metric produced by the Sun's mass.
  These are the phy​si​cal sources of the anomaly in Mercury's orbit.

(31)

Because Newtonian theory holds in the static, weak-field limit, evidence remained continuous across the large conceptual gap between it and Einsteinian theory.  "Continuity of evi​dence" here refers to four elements in ascending order of importance.  First, as already noted, the limit-case reasoning legitimates the use of a Newtonian second-order pheno​menon as evidence for Einstein's theory.  Indeed, paradoxical though it may seem, the 43 arcseconds turned out to be at the same time evidence against Newtonian theory and evidence for it over a restricted domain.  Second, thanks to the limit-case reasoning, the evidence for New​tonian gravity, as a matter of historical fact, simply carried over to Einsteinian gra​​vity with at most qualifying remarks about degrees of precision.  Gravity research did not have to go back and restart from the eighteenth century for​ward.  Third, even though Einstein's theory limited, for example, the preci​sion of perihelion precession as a measure of the exponent in the in​verse-square law, it did not invalidate or nul​li​fy the rea​​son​ing underlying the evidence for Newtonian gravity -- that is, it did not entail that the evidence was never really evi​dence at all.  Indeed, gravity research is still being predi​ca​ted on New​tonian theory in areas like geo​phy​sics in which the degree of approximation far exceeds the accu​racy of ob​ser​va​tion; the one difference is that the exactness of Newton​ian the​ory is no longer being tested, but instead whether it is approxi​mate in the right way. Fourth, and most important, the my​ri​ad of physical details that Newtonian theory had shown to make a dif​ference are still there, making the very same dif​feren​ces that they did before.  Ein​steinian theory has merely continued the process, singling out fur​ther physi​cal details.

(32)

In one of the more famous quotes from The Structure of Sci​en​​tific Revolutions, Tom Kuhn spoke of the need to make sense of the idea that scientists worked in a different world after the transition to general relativity. The fact that all the physi​cal details revealed as important by Newtonian theory remained in place after Einstein, with new details being added to them, points to a very important sense in which scientists con​tinued to work in the same world.  I am not just being cute here.  Phy​sicists like Steven Weinberg complain that philosophers and historians of science have more of a problem with the relation between theory and the physical world than they should.  In conjunction with this, they think philo​sophers and historians have over​re​ac​ted to the Einsteinian revolution and the realization that New​tonian science, after two hundred years, turned out not to be exact after all.  Maybe what lies behind the intuitions of phy​sicists here is the extent to which the aggregate of physical details that gravitation theory has revealed as making a dif​​fer​​ence has simply continued to grow during the twentieth cen​tury.  I cannot think of any better reason for taking gravity theory to be exact or very, very nearly so than the sustained success it has exhibited across now three cen​turies in revealing which physical details make a difference and what differences they make.

(33)

Let me draw this to a close.  I see this talk as making three primary claims.  First, by far the most important evidence in gravity research before Einstein came from the inordinate com​plexities of the actual orbital motions, and the com​plexities of the gravitational field surrounding the Earth.  Second, the form this evidence took was not numerical agreement between theory and observation, but success in pinning down sources of deviations from what I have called Newtonian idea​​​li​zations in a cumulative sequence of increasingly precise suc​cessive approximations.  Third, this evidence -- in particular, physical details that make a difference and the differences they make -- carried forward, con​tinuously and cumulatively, across the transi​tion from Newton to Einstein. 

(34)

I want to end with two philosophical points.  You have seen this dia​gram earlier, but it is now revised to include the shift to Einstein’s theory.  I bring it back here not merely to emphasize that we are still closing the same loop that we have been closing since the eighteenth century.  All along it was the closing of this loop that provided the evidence that Newtonian theory was achieving more than just close agreement with observation.  Each time a new systematic discrepancy emerged and a robust source was identified for it, the evidence was growing that the previously identified sources presupposed in the new discrepancy really do make the differences Newtonian theory says they make.  The fact that all the prior Newtonian sources remained in place in the transition to Einsteinian gravity, and new systematic discrepancies like the one resolved by Spencer Jones continued to emerge, confirms anew that the evidence for Newtonian gravity was, all along, showing that it was achieving more than just close agreement with observation.  The transition to Einsteinian theory therefore did not reveal that the evidence for Newtonian theory had all along been over-valued.  To the contrary, it was the force of that prior evidence that gave Einstein compelling reason to insist that Newtonian theory be a limiting case of any new theory.
(35)

And finally the point I consider most important, in part because it concerns the central question of philosophy of science, the nature of the knowledge achieved in science at its most successful.  We make a mistake when we overstate the extent to which the knowledge generated in gravity research has centered on theory.  This knowledge is better described as an interpenetration of theory and the details that make a difference together with the differences they make.  The details have provided both continuing evi​dence for the theory and increasingly precise values for its many parameters.  The theory has been indispensable for identifying which details make a difference and the differences they make.  For, the theory has provided lawlike genera​lizations supporting counterfactual conditionals that have licensed conclusions about what differences each detail makes.  As we have seen, the difference-making details established with Newtonian theory proved to be more robust than this theory.  That tells us something important about the knowledge achieved.  The lawlike generalizations needed to establish the details and the differences they make do not have to be the final word.  These genera​li​za​tions have to meet two requirements: they have to hold to high approximation over the restricted domain from which the evidence has come and they must be lawlike – that is, projectible – over that domain.  This is precisely what Einstein showed about Newtonian gravity, and it just so happens to be what Newton took the trouble to show with similar limit-case reasoning about Galilean gravity.  As a consequence, both Newtonian gravity and Galilean gravity still remain part of the knowledge attained in four centuries of gravity research.




�. 	    Judging from his notebooks while reading the Principia, Huygens, too, credited Newton      with the ellipse:





		    The famous M. Newton has brushed aside all the diffi��cul�ties together with the Cartesian vortices; he has shown that the planets are retained in their orbits by their gravitation toward the Sun.  And that the excen�trics necessarily become elliptical.  (Huygens Oeuvres Complètes de Christiaan Huygens, vol. XXI.  The Hague: Martinus Nijhoff, 1944, p. 143; translation adapted from Koyré 1968, p. 116.)


�.	    Proxime is the superlative of prope.  Proxime, when used for degree, translates literally as "most nearly", "most pre�cisely" or "most closely to exactness".  Quam preceding a comparative literally means "to the highest degree possible." So, quam proxime as used by Newton literally means "as (most) closely to exactness as possible" or "most nearest as possible."  The count on the number of occurrences of the phrase in the Principia is complicated by the fact that Newton more often than not spells quam proxime, quamproxime.  Quampro�xime occurs 88 times in (the third edition of) the Princi�pia; proxime occurs 66 times, 51 of which are as quam pro�xime, and all but 2 of the others not applying to degree.  The English transla��tions of the Principia have translated proxime as "nearly" or "approximately" and quam proxime as "very nearly".  Since Newton uses the strong form 139 times and the weak form only twice in the Principia, this transla�tion is reasonable.  I employ the more emphatic form in the text to underscore the literal meaning, though it is quite possible that "very nearly" fits Newton's intent more closely than "very, very nearly."


3.	     I am here referring to Book 2 as well, where Newton imposes parallel requirements  in concluding in Section 7 that his relationship characterizing the contribution fluid inertia makes to resistance forces is exact.





�.	    For details on the determination of the residual discrepancy in the motion of Uranus, see Tables astronomique: publiées par le Bureau des longitudes de France, contenant les tables de Jupiter, de Saturn et d'Uranus, construites d'après la théorie de la mécanique céeleste by M. A. Bouvard as updated in the 1821 edition; and John Couch Adams, "An Explanation of the Observed Irregularities in the Motion of Uranus, on the Hypothesis of Disturbances Caused by a More Distant Planet; With a Determination of the Mass, Orbit, and Position of the Disturbing Body," Memoirs of the Royal Astronomical Society, v. xvi (1847).





	    This example brings out a need to distinguish between two forms in which the testing logic can be ramified, a strong form and a weak form.  In the strong form, further physical conse��quences of the identified source of a previous second-order phenomenon - -that is, consequences beyond its pro�duc�ing that phenomenon -- constrain the freedom to postulate physical sources of new second-order phenomena.  In the weak form, a second-order phenomenon, and hence its physical source, masks a further second-order phenomenon.  Thus, the larger perturbations of Uranus by Jupiter and Saturn masked the perturbations by Neptune.  Because of the differences in the periods of the various perturbations, harmonic analysis of Uranus's deviations from Keplerian motion could, in prin�ciple, have ultimately exposed the unaccounted for dis�cre�pancy shown in the figure even without first having to eli�minate the perturbations by Jupiter and Saturn.  Even with the weak form, however, the logic is generally still pro�perly called 'ramified," for whatever the source may be of the further discrepancy, that source will not usually be physically independent of pre�viously determined sources -- e.g., Neptune also per�turbs the motion of Saturn and Jupi�ter, and they perturb its motion.





	    The example of Neptune calls attention to another distinc�tion involving physical consequences of identified sources.  That Neptune exists (and continues to do so) can be deter�mined independently of the theory of gravity, but the mag�ni�tude of its mass cannot be so deter�mined.  


�.	    This geometric account of the "Great Inequality" is adapted from Curtis Wilson's "The Great Inequality of Jupiter and Saturn: from Kepler to Laplace," Archive for History of Exact Sciences, vol. 33, 1985, pp. 15-290, especially pp. 28-33.  Wilson's account in turn derives from Airy's account in Gravitation (London, 1834), pp. 143-155.  My account represents a gross simplification -- for purposes of illus�tration -- of a far more complicated situation.  First, of all, the two orbits are inclined with respect to one ano�ther, with the line CGHD defining the intersection of the two planes.  Hence, there is another asymmetry in each conjunction.  Second, the forces of Jupiter and Saturn on one another cause perturbations of the eccentricities, inclina�tions, and location of the perihelia of the two orbits.  These changes in orbital elements contribute deci�sively to the Great Inequality, which is precisely why higher-order perturbational terms have to be taken into account in order to define it.  A more complete speci�fi�ca�tion of the physical details contributing to just this one inequality would have taken several pages in the text.


�.	    The polar moment and the difference between the moments, together with Cavendish's 1798 measurement of the mean density of the Earth, were enough to show that the density is (almost certainly) greater at the center, but this still left the specific distribution open.  Thus we see Laplace remarking at the end of the second volume of CM (1799):





		    The same phenomena indicate also a decrease in the densities of the strata of the terrestrial spher�oid, from the centre to the surface, without giving the precise law of the variation of the density....





		    Thus every phenomenon, depending on the figure of the earth, throws light upon the nature of the magnitude of its radius; and we see that all these results agree with each other.  These observations are not, however, sufficient to make known the interior constitution of the earth; but they indi�cate the most probable hypothesis of a density decreasing from the centre to the surface.  Uni�versal gravitation is therefore the true cause of all these phenomena; and if its effects are not so precisely verified in this case, as in the motion of the planets, it arises from the circumstance, that the inequalities of the attractive forces of the planets, depending on the small irregularities in their surfaces, and in their internal parts, disappear at great distances; so that we only per�ceive the simple phenomenon of the mutual attrac�tions of these bodies toward their centres of gravity. (p. 931)





	    Laplace himself proposed a density variation in volume 5 of CM, with a ratio of 2.8 to 11 of the density at the surface to the density at the center.  See Harold Jeffreys, The Earth: Its Origin, History and Physical Constitution, 1st edition, (Cambridge University Press, 1924), p. 197.





	    A second point worth noting is that the measurement of the quantity (C-A)/Ma2 has a more complicated history than the text begins to suggest.  Since the advent of artificial satellites about the Earth, it has been measured, to higher and higher accuracy, by the motion of the nodes of the satellite orbits.  Before artificial satellites, it was being measured by a residual inequality in the motion of the lunar nodes -- that is, a discrepancy remaining after the effects of the Sun (and planets) on the motion of the lunar nodes is taken into account.  But the theory of the Moon was too imprecise to permit this approach until after the Hill-Brown theory was developed, culminating in Brown's tables and substantial further work by Brown, De Sitter, and others.  For more details see the sequence of papers on the subject by Harold Jeffreys entitled "On the Figures of the Earth and Moon," Monthly Notices of the Royal Astronomical Society, vol. 97, 1937, pp. 3-15; vol. 101, 1941, pp. 34-36; and Monthly Notices of the Geographical Society, vol. 5, 1948, pp. 219-247.  Before that efforts were made to derive the value for this parameter from surface gravity measurements, such as by Bowie in U.S. Coast and Geodetic Survey, Special Publication 40, 1917, as discussed in Jeffreys, 1924. p. 189.


�.	    See Jeffreys, "The Secular Perturbations of the Four Inner Planets," Monthly Notices of the Royal Astronomical Society, vol. 77, 1916, pp. 112-118, and "The Secular Perturbations of the Inner Planets," Philosophical Magazine, vol. 36, 1918, pp. 203-205.


�.	    The quotation is from the second paragraph of the Introduction to Poincaré's Les Méthodes Nouvelles de la Mécanique Céleste of 1892.  The point Poincaré was making becomes clearer from the full first two paragraphs:





		    The Three--Body Problem is of such importance in astronomy, and at the same time so difficult, that all efforts of geometers have long been directed toward it.  A complete and rigorous integration being manifestly impossible, we must turn to the processes of approximation.  The methods first employed consisted of seeking developments in terms of powers of the masses.  At the beginning of this century the achievements of Lagrange and Laplace and, more recently Le Verrier's calcu�la�tions, have added such a degree of perfection to these methods that until now they have been suf�fi�cient for practical use.  I may add that they will suffice for some time to come in spite of some divergences in details.  It is certain, neverthe�less, that they will not always be adequate, which a little reflection makes easily understandable.





		    The ultimate goal of celestial mechanics is to resolve the great question whether Newton's law by itself accounts for all the astronomical phenomena ; the sole means of doing so is to make observa�tions as precise as possible and then to compare them with the results of calculation.  The calcu�lations can only be approximate, and moreover, it would serve no purpose to calculate more decimal places than the observations can make known.  It is thus useless to require more precision from the calculation than from the observations; but one must not, one the other hand, require less.  Furthermore, the approximation wit which we can content today will be insufficient in several centuries.  And, in fact, even admitting the im�pro�bability of perfecting measurement instru�ments, the very accumulation of observations over several centuries will permit us to know the coefficients of the various inequalities with greater preci�sion.





	    Poincaré goes on to explain that the purpose of his book and new methods was to obviate this by pursuing ways of cal�cu�lating for which the level of approximation would not be so limiting.  Poincaré expressly mentions Hill's work on the Moon in this regard, though his focus in the Introduction is less on Hill than on Gyldén.


�.	    Richard Dunthorne had announced the number of 10 arc seconds per century as the "acceleration" in 1749 -- see Philosophi�cal Transactions, vol. 46, pp. 162-172.  This value actually represents the change in angular location over a Julian cen�tury, and not the acceleration, which is twice the value.





	    Laplace's explanation of the secular motion, by the way, removed it from this category, for after a period of the order of 100,000 years the diminution of the eccentricity was to reverse itself.


�.	    Invoking the transfer of angular momentum here involves much more than is immediately obvious.  Neither angular momentum nor its conservation can be found in Newton's Principia.  The principle that supplies the assurance that angular momentum is conserved in orbital motion -- more accurately, in motion under purely centripetal forces -- is Kepler's area rule.  For a point mass moving under centripetal forces, the area rule mathematically amounts to a notational variant of conservation of angular momentum.  As deployed in the Principia, however, the area rule is by no means suffi�cient to cover the transfer of angular motion between a body in orbit and a central rotating body, the purpose to which conservation of angular momentum is being invoked in the text.  Whittaker (a Treatise on the Analytical Dynamics of Particles and Rigid Bodies) remarks, "Kepler's law, that the radius from the sun to a planet sweeps out equal areas in equal times, was extended by Newton to all cases of motion under a central force: from this the general theory of conservation of angular momentum has gradually developed" (4th edition, p. 60).  Clifford Truesdell has examined that process of development in his "Whence the Law of Moment of Momentum" in his Essays in the History of Mechanics.  A point to emphasize here is that the generalizing of the law of areas into the conser�vation of angular momentum did not arise from the investigation of orbital motion under gra��vity, the topic of the present paper.  Rather, it came out of work in other areas of mechanics, the motion of rigid bodies and deformable bodies.


�.	    Ohanian and Ruffini, p. 403.


�.	    See Ciufolini and Wheeler, pp. 138-144.  Comment of PPN gauge, and isotropic coordinates.







