Measurement and Meaning

Todd Davies
Symsys 130
April 24, 2013

What do these statements mean?

The box weighs 22 lbs
The box has a mass of 10 kilograms
Gus likes blue better than black
Gus likes blue twice as much as black
Kim thinks there is a 30% chance of rain tomorrow
Kim remembers when it rained on the $4^{\text {th }}$ of July
Sally is very intelligent
Sally has an IQ of 140

"Epochs" in the study of mental life

Introspectionism (Wundt, Titchener)
~1880s-~1920s
Behaviorism (J.B. Watson, Skinner)
~1910s-~1960s
Cognitivism (G. Miller, Chomsky)
~1950s-???
Post-cognitivism?
~1980s-present

A brief history of psychological measurement

Phenomenalism (Kant, Mach) $-\sim 19^{\text {th }}$ Century
Logical positivism and the Vienna Circle (Carnap, Reichenbach, Schlick) - ~1930s

- Verificationism

Norman R. Campbell and the Ferguson Committee's challenge to psychology (~1920~1940s)

Measurement theory (1950s-present)

A model of science underlying MT

Fig. 1.1 Schematic illustration of a scientific investigation.

Elemental problems of measurement theory

The representation problem

The uniqueness problem

The meaningfulness problem

The scaling problem

Representation theorems

Given an empirical relational system
<Set-of-boxes,Heavier-than>
And a formal relational system
<X,R>
<Set-of-boxes,Heavier-than> is represented by
$<X, R>$ if there is a function $f: X->R e+$ such that for all x, y in X, Box-x Heavier than Box-y implies $f(x)$ $R f(y)$.

Representation theorems can be

Constructive (defining a scale)

Empirically verified through experiments

Uniqueness - scale types [admissable transformations] (Stevens' classification, 1951)

Nominal [$x->y$ uniqueness preserving]

Ordinal [$\mathrm{x}->\mathrm{f}(\mathrm{x})$ strictly increasing]

Interval [x->rx+s]

Ratio [x->rx]

Absolute [x->x]

Meaningfulness

A statement involving numerical values is meaningful only if its truth or falsity is invariant under all admissable transformations of the scale values

Probability elicitation methods

Direct response

Choice then confidence procedure

Indifference method

Proper scoring rules (e.g. Brier score

$$
B(\mathbf{r}, i)=\sum_{j=1}^{C}\left(y_{j}-r_{j}\right)^{2}
$$

Utility measurement

Certainty equvalent - What amount for certain would make you indifferent to a gamble or receiving X with probability p ?

