Description of statistic - In the sport of golf, 1-putt percentage (1-PP abbreviation used throughout) represents the percentage of holes for which the golfer made his / her first putt attempt on the hole. Calculated as total 1-putts / total holes played.

The stats page of PGAtour.com includes 1-PPs for all players with at least 50 rounds of golf on the PGA tour in 2015. 1-PP is a good statistic at measuring the quality of a golfer's putting abilities. Although the statistic has certain limitations, (for example, 1-PP is also partially a function of how good a golfer's approach shot is, that is how close to the hole a golfer puts the ball with their previous shot), a good 1-PP tends to accurately reflect the golfers who putt best on tour.
*note, PGAtour.com does not indicate whether an adjustment is made to 1-PP for holes whereby a golfer "holes out" from off the green (doesn't need to use the putter), nor does it mention whether a putt from "off the green" (when a putter is used in place of a chip / wedge club) counts as a putt. Both may affect 1-PP, the latter more likely than the former.

Regression and standard deviation - Regression to the mean has been performed. See R code. The population variance and standard deviation were calculated using the formula from class, using an iterative process that initializes the population variance at zero, and updates the variance each iteration based on the previous estimate of

	observed_1PP	true_1PP
Jordan Spieth	44.3%	42.7%
Andrew Putnam	43.6%	41.9%
PhilMickelson	43.4%	41.9%
Brendon Todd	43.0%	41.9%
Danny Lee	42.6%	41.8%
Jerry Kelly	43.0%	41.8%
Charles Howell III	35.0%	36.2%
Jim Renner	34.1%	36.0%
Lucas Glover	34.2%	35.8%
Alex Prugh	33.9%	35.6%
Jim Herman	33.6%	35.3%
J.J. Henry	32.8%	34.7%

As an example of its use, the population standard deviation can be used to create confidence intervals that estimate the distribution of 1-PP's on the PGA tour. Using the mean 1-PP of 39.2%, and a rule of thumb 2 standard errors for a 95% confidence interval, we would estimate that 95% of golfers on the PGA tour have a 1-PP between $39.2 \%+2 * 1.8 \%$, or (35.6% to 42.8%). This can be done with confidence intervals of any size.
*note, the actual percentage of golfers within this range is 89.1%, not 95%, which hints that 1PPs may not follow a Gaussian distribution, but rather follows a fatter-tail distribution. Note further that the table above shows the top and bottom 6 golfers by putt percentage, so specifically those golfers not likely to fall within the 95% confidence interval (ie. not a random same of golfers on tour).

Plot / Interpret Single (3) Athlete -

True vs. Observed 1-Putt Percentage,

Observed 1-Putt Percentage

The scatterplot to the left highlights the effect of regression to the mean in order to estimate a golfer's true (or regressed) 1-PP, given their observed 1-PP. Using the $y=x$ line as a reference, we can see that golfers with 1-PPs below the tour-mean are regressed towards the mean, and vice versa for golfers above the mean. Golfers with 1-PPs close to the tourmean are not impacted much by regression to the mean. This effect is highlighted most using Jordan Spieth, who led the tour in 1-PP, and J.J. Henry, who was last in 1-PP amongst qualified golfers. Spieth's observed 1PP was 44.3% and his true / regressed 1-PP was 42.7% whereas Henry's observed 1-PP was 32.7% and his true / regressed 1-PP was 34.73%. As a comparison, Justin Rose's 1-PP of 39.9% is slightly above but still close to the tour mean, and his true / regressed 1PP of 39.6% is therefore very close to his observed 1-PP.

Dist of 1-putt \% on PGA tour, 2015

Additional Plot - the density plot to the left shows the distributions of observed 1-PP as well as true / regressed 1-PP.

These are PDFs of the distributions, so the area under each of these curves is 1 , and the graphs give an indication of how concentrated the 1-PPs are. Notice that the true 1-PP distribution is more compact around the distribution's mean, which is expected as a result of regressing 1 -PPs to the mean.

