Stats 50

Week 6: Rasch models

1 Introduction

The Rasch model is just like the Bradley-Terry model, but the difference is that the adversaries do not appear on both sides of the matchup. In the Bradley-Terry model, each adversary is sometimes the home team and sometimes the away team. But in the Rasch model, each adversary is only ever on offense or only ever on defense. Whereas the Bradley-Terry model is more appropriate for making team rankings, the Rasch model is more appropriate for separately estimating the offensive and defensive skills of individual players.

2 The (regularized) normal Rasch model

Example: Offensive-Defensive Plus-Minus for NBA player evaluation

The following model is very close to the (non-SportVU) state of the art, ESPN's Real Plus-Minus, for evaluating the contributions of NBA players to their teams' chances of winning. For each possession over the course of the nba season, we observe the five offensive players on the floor, the five defensive players on the floor and whether the offensive team is the home team, as well as the number of points scored on the possession (typically $0,1,2$ or 3).

Note that this is a special version of the Rasch model that includes five offensive adversaries and five defensive adversaries for each matchup, instead of just one each.

2.1 Data

For possession $i=1, \ldots, n$:

- For $j=1, \ldots, 5$:
- $O_{i j}=$ identity of $j^{\text {th }}$ offensive player on $i^{\text {th }}$ possession
- $D_{i j}=$ identity of $j^{t h}$ defensive player on $i^{\text {th }}$ possession
- $H_{i}=$ indicator of whether offense is home team on $i^{\text {th }}$ possession
- $P_{i}=$ number of points scored on $i^{\text {th }}$ possession

Throughout Section 2 we will use p to denote the number of unique players in our dataset, and we will assume that each player appears on both offense and defense.

2.2 Model

$$
\mathbb{E}\left[P_{i}\right]=\alpha+\sum_{j=1}^{5} \beta_{O_{i j}}+\sum_{j=1}^{5} \delta_{D_{i j}}+\theta H_{i}
$$

Example: Offensive-Defensive Plus-Minus for NBA player evaluation
The Golden State Warriors have the ball on the road against the Portland Trail Blazers. The players on the floor and the relevant coefficients are:

$$
\begin{array}{rlrl}
\alpha & =1.00 & \theta & =+.03 \\
\beta_{\text {Stephen Curry }} & =+.04 & \delta_{\text {Damian Lillard }} & =-.03 \\
\beta_{\text {Klay Thompson }}=+.02 & \delta_{\text {C.J. McCollum }} & =-.02 \\
\beta_{\text {Harrison Barnes }} & =+.03 & \delta_{\text {Al-Farouq Aminu }} & =-.01 \\
\beta_{\text {Draymond Green }} & =+.02 & \delta_{\text {Maurice Harkless }} & =-.01 \\
\beta_{\text {Andrew Bogut }} & =-.01 & \delta_{\text {Mason Plumlee }} & =+.02
\end{array}
$$

The expected number of points per possession in this situation is

$$
1.00+.04+.02+.03+.02-.01-.03-.02-.01-.01+.02=1.05 \text {. }
$$

The β 's represent the offensive skills of the players, with larger being better. The δ 's represent the defensive skills of the players, with smaller (i.e. more negative) being better.

In matrix notation:
$\mathbf{X}=\left(\begin{array}{lllllll}X_{11} & \ldots & X_{1 p} & & & X_{1(p+1)} & \ldots \\ X_{21} & \ldots & X_{2 p} & X_{2(p+1)} & \ldots & X_{2(2 p)} & H_{1} \\ X_{31} & \ldots & X_{3 p} & & X_{3(p+1)} & \ldots & X_{3(2 p)} \\ \ldots & \ldots & \ldots & \ldots & H_{3} \\ \ldots & \ldots & \ldots & \ldots \\ X_{(n-1) 1} & \ldots & X_{(n-1) p} & X_{(n-1)(p+1)} & \ldots & X_{(n-1)(2 p)} & H_{n-1} \\ X_{n 1} & \ldots & X_{n p} & X_{n(p+1)} & \ldots & X_{n(2 p)} & H_{n}\end{array}\right)_{n \times(2 p+1)}$ Defense
where for $j=1, \ldots, p$:

$$
X_{i j}= \begin{cases}1 & \text { if player } j \text { is on offense on possession } i \\ 0 & \text { otherwise }\end{cases}
$$

and for $j=p+1, \ldots, 2 p$:

$$
X_{i j}= \begin{cases}1 & \text { if player } j-p \text { is on defense on possession } i \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbf{y}=\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3} \\
\ldots \\
P_{n-1} \\
P_{n}
\end{array}\right)_{n \times 1} \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\ldots \\
\beta_{p} \\
\delta_{1} \\
\ldots \\
\delta_{p} \\
\theta
\end{array}\right)_{p \times 1}
$$

2.3 Solution

$$
\begin{equation*}
\left(\hat{\alpha}, \hat{\beta}_{\lambda}\right)=\arg \min \left\{\left\|\mathbf{y}-\left(\alpha \mathbf{1}_{n}+\mathbf{X} \beta\right)\right\|^{2}+\lambda\|\beta\|^{2}\right\} \tag{1}
\end{equation*}
$$

2.4 Prediction

$$
\hat{y}_{\lambda}=\hat{\alpha} \mathbf{1}_{n}+\mathbf{X} \hat{\beta}_{\lambda}
$$

2.5 R

As with the (regularized) normal Bradley-Terry model, we will fit the (regularized) normal Rash model in R by using the $\mathrm{cv} . \mathrm{glmnet}$ () function from the R package glmnet. Unlike the B-T model, we will allow glmnet to fit its own intercept, which it does by default. This means we will NOT specify intercept = FALSE.

```
> model = cv.glmnet(X, y, alpha = 0, standardize = FALSE)
```

To extract the estimated regression coefficients from the model, use the coef () function:
> beta $=$ coef(model, s = 'lambda.min')[, 1]
To use the model to predict points per possession, use the predict() function:
> pred = predict(model, X, s = 'lambda.min')

3 The (regularized) binomial Rasch model

Example: Batting average based on batter-pitcher matchup in baseball

3.1 Data

For at bat $i=1, \ldots, n$:

- $B_{i}=$ identity of batter in $i^{\text {th }}$ at bat
- $P_{i}=$ identity of pitcher in $i^{\text {th }}$ at bat
- $y_{i}=$ indicator of whether $i^{\text {th }}$ at bat results in hit

3.2 Model

$$
P\left(y_{i}=1\right)=p_{i}=\frac{e^{\alpha+\beta_{B_{i}}+\delta_{P_{i}}}}{1+e^{\alpha+\beta_{B_{i}}+\delta_{P_{i}}}}
$$

Example: Batting average based on batter-pitcher matchup in baseball
Mike Trout bats against Clayton Kershaw. The relevant regression coefficients are:

$$
\alpha=-1.10 \quad \beta_{\text {Mike Trout }}=+0.25 \quad \delta_{\text {Clayton Kershaw }}=-0.30
$$

Trout's expected batting average against Kershaw is

$$
\frac{e^{-1.10+0.25-0.30}}{1+e^{-1.10+0.25-0.30}}=\frac{e^{-1.15}}{1+e^{-1.15}}=.240 .
$$

3.3 Solution

$$
\hat{\beta}_{\lambda}=\arg \min \left\{-\sum_{i=1}^{n}\left(y_{i} \log p_{i}+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right)+\lambda\left(\sum_{j} \beta_{j}^{2}+\sum_{j} \delta_{j}^{2}\right)\right\}
$$

3.4 R

In R, we use the same function (cv.glmnet()) to fit the model, but we specify family = 'binomial':

```
> model = cv.glmnet(X, y, alpha = 0, standardize = FALSE, family = 'binomial')
```

To extract $\hat{\beta}$, again use coef ():
> beta $=$ coef(model, $s=$ 'lambda.min') [, 1]
Predictions are obtained similarly, but we specify type = 'response' to get probabilities:
> pred $=$ predict(model, $X, s=$ 'lambda.min', type $=$ 'response')

3.5 Extending the model

The model could be extended to account for such factors as ballpark, home-field advantage and whether the batter and pitcher have opposite handedness:

- $S_{i}=$ identity of stadium in $i^{\text {th }}$ at bat
- $H_{i}=$ indicator of whether batter's team is home in $i^{t h}$ at bat
- $O_{i}=$ indicator of whether batter, pitcher have opposite handedness in $i^{\text {th }}$ at bat

Model:

$$
p_{i}=\frac{e^{\eta_{i}}}{1+e^{\eta_{i}}} \quad \text { where } \quad \eta_{i}=\alpha+\beta_{B_{i}}+\delta_{P_{i}}+\tau_{S_{i}}+\theta H_{i}+\zeta O_{i}
$$

4 Sparse matrix representation

As we move from modelling game results to modelling the outcomes of matchups between individual players, we can expect to be dealing with larger datasets. For both the examples presented in these notes, if we were to fit the model to a whole season's worth of data, we can expect hundreds of thousands of matchups featuring close to one thousand unique players. This presents a computational challenge.

Our matrix X will have over one hundred million entries, but 99% or more of those entries are zero, with the rest being one. We say that X is "sparse". In R, we can leverage this fact to make the computations much faster, using the sparseMatrix() function in the package Matrix. This function takes two arguments, i and j which are vectors of the same length, and builds a sparse matrix filled with zero everywhere, except the entries specificied by the pairs (i, j). From here, X can be used in cv.glmnet() just like a matrix that had been constructed without sparse representation.

Example: Batting average based on batter-pitcher matchup in baseball
Suppose we observe the following matchups between batters and pitchers:

Batter
Andrew McCutchen
Nelson Cruz
Buser Posey
Jose Altuve
Nelson Cruz
Buster Posey
Jose Altuve
Andrew McCutchen
Buster Posey
Jose Altuve Madison Bumgarner
Andrew McCutchen
Nelson Cruz Madison Bumgarner

Then our matrix

$X=$| $J A$ | $A M$ | $N C$ | $B P$ | $D K$ | $G C$ | $F H$ | $M B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

can be constructed as a sparse matrix with
$>i=c(1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12)$
$>j=c(2,3,4,1,3,4,1,2,4,1,2,3,5,5,5,6,6,6,7,7,7,8,8,8)$
> $\mathrm{X}=\operatorname{sparseMatrix}(\mathrm{i}, \mathrm{j})$
Because the pairs $(1,2),(2,3),(3,4),(4,1), \ldots,(12,8)$ represent the nonzero entries of X.

