
Stats 50
Week 5: Bradley-Terry models

1 Introduction

The Bradley-Terry model is used to form rankings from pair-wise comparisons (like matchups pitting
one team or athlete against another). It simultaneously estimates how good each team is while adjusting
the teams’ results for how good their opponents are.

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

Hogwarts quidditch data are woefully incomplete. The Inter-House Quidditch Cup is a
round-robin (each team plays each other team once) tournament in which the winner is deter-
mined by total number of points scored. We know the results of four of the six matches from the
1995–96 cup:

Gryffindor def. Slytherin, 200–20*
Hufflepuff def. Gryffindor, 240–230

Hufflepuff def. Ravenclaw, 230–210*
Gryffindor def. Ravenclaw, 190–40*

*Result known but exact score unknown. Most likely score inferred from Rowling JK (2003) Harry
Potter and the Order of the Phoenix. For details, see
http://harrypotter.wikia.com/wiki/Inter-House_Quidditch_Cup.

2 The normal Bradley-Terry model

2.1 Data

For game i = 1, ..., n;

• Si: home score minus away score in game i

• Hi: identity of home team in game i

• Ai: identity of away team in game i

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

It would seem that in Hogwarts Inter-House Quidditch Cup matches there are no home
teams. So let’s treat the first team alphabetically as the home team.

n = 4 S1 = 180 H2 = Gryffindor A3 = Ravenclaw
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2.2 Model

Si = α+ βHi − βAi + εi εi
i.i.d.∼ Normal(0, σ2)

In matrix notation:

X =



1 X12 X13 ... X1p

1 X22 X23 ... X2p

1 X32 X33 ... X3p

... ... ... ... ...
1 X(n−1)2 X(n−1)3 ... X(n−1)p

1 Xn2 Xn3 ... Xnp


n×p

where Xij =


1 if ith home team is Team j − 1
−1 if ith away team is Team j − 1

0 otherwise

y =



S1

S2

S3

...
Sn−1

Sn


n×1

β =


α
β1

β2

...
βp−1


p×1

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

X =


0 1 0 0 −1
0 1 −1 0 0
0 0 1 −1 0
0 1 0 −1 0

 y =


180
−10

20
150

 β =


α
βGryffindor

βHufflepuff

βRavenclaw

βSlytherin


Note that we have made the first column of X all zero instead of all one. This reflects the fact that
neither team is home in each match, hence no home-field advantage. We may as well omit this
column (and the corresponding α parameter). Furthermore, there is an identifiability issue here.
Adding the same constant to the coefficient corresponding to each team would result in the exact
same score differential prediction. To resolve this, we must define the coefficient for one team to
be exactly zero. The choice is arbitrary, so let’s choose Slytherin.

X =


1 0 0
1 −1 0
0 1 −1
1 0 −1

 y =


180
−10

20
150

 β =

 βGryffindor

βHufflepuff

βRavenclaw



2.3 Solution

β̂ = arg min
{
||y −Xβ||2

}
= (XTX)−1XTy (1)

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

β̂ =


 1 1 0 1

0 −1 1 0
0 0 −1 −1




1 0 0
1 −1 0
0 1 −1
1 0 −1




−1 1 1 0 1
0 −1 1 0
0 0 −1 −1




180
−10

20
150

 =

 180.0
143.3
76.7
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β̂Gryffindor

β̂Hufflepuff

β̂Ravenclaw

β̂Slytherin

 =


180.0
143.3
76.7

0



2.4 Prediction

ŷ = Xβ̂

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

ŷ =


1 0 0
1 −1 0
0 1 −1
1 0 −1


 180.0

143.3
76.7

 =


180.0
36.7
66.7

103.3


And if Ravenclaw were to play against Slytherin, according to this model Ravenclaw would be
favored by β̂Ravenclaw − β̂Slytherin = 76.7− 0 = 76.7 points.

3 The regularized normal Bradley-Terry model

3.1 Solution

Instead of solving equation (1) to estimate β, the regularized version of the model solves:

β̂λ = arg min
{
||y −Xβ||2 + λ||β||2

}
= (XTX + λI)−1XTy (2)

for some λ > 0. The idea is that the penalty encourages the estimated β’s to be close to zero. Note
that the identifiability issue of the Bradley-Terry model is resolved because equation (2) has a unique
solution for any X. Furthermore, it can be shown that the average β̂j in the unique solution is zero.
Hence encouraging the estimated β’s to be close to zero can be interpreted as doing something similar
to regression to the mean. To choose the appropriate value for λ, we use a procedure called cross
validation (see Section 6).

3.2 R

To fit the regularized normal Bradley-Terry model in R, you will need to have installed (the first time)
and loaded (every time) the glmnet package. To fit the model with cross validation to choose λ, use
the cv.glmnet() function:

> model = cv.glmnet(X, y, alpha = 0, intercept = FALSE, standardize = FALSE)

To use the model to predict score differentials, use the predict() function:

> pred = predict(model, X, s = ‘lambda.min’)

To extract the estimated β’s from the model, it is easiest to again use the predict() function (and
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the fact that if X = I, then the prediction is ŷ = Iβ̂ = β̂):

> beta = predict(model, diag(ncol(X)), s = ‘lambda.min’)

Note that the diag() function returns the identity matrix I.

4 The binomial Bradley-Terry model

4.1 Data

Wi =

{
1 if the home team won game i
0 if the away team won game i

Example: 1995–1996 Hogwarts Inter-House Quidditch Cup

W4 = 1

4.2 Model

P (Wi = 1) ≡ pi =
eα+βHi

−βAi

1 + eα+βHi
−βAi

4.3 Solution

β̂ = arg max

n∏
i=1

(
pWi
i · (1− pi)

1−Wi

)
= arg min−

n∑
i=1

(Wi log pi + (1−Wi) log(1− pi)) (3)

The optimization problem (3) is solved using gradient descent.

5 The regularized binomial Bradley-Terry model

5.1 Solution

Instead of solving (3), solve:

β̂λ = arg min

−
n∑
i=1

(Wi log pi + (1−Wi) log(1− pi)) + λ

p∑
j=1

β2
j


5.2 R

In R, we use the same function (cv.glmnet()) to fit the model, but we specify family = ‘binomial’:

> model = cv.glmnet(X, y, alpha = 0, intercept = FALSE,

+ standardize = FALSE, family = ‘binomial’)

Predictions are obtained similarly, but we specify type = ‘response’ to get probabilities:

> pred = predict(model, X, s = ‘lambda.min’, type = ‘response’)
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To extract β̂, do not specify type = ‘response’:

> beta = predict(model, diag(ncol(X)), s = ‘lambda.min’)

6 Cross validation

1. Randomly partition data into 10 pieces.

2. For piece k = 1, ..., 10:

(a) Using all data except piece k, solve equation (2) for many different values of λ.

(b) Use the result for each value of λ to predict the score differentials for piece k.

(c) For each λ, assess the accuracy of the predictions using total squared error.

3. For each λ, add up the total error across the k pieces. Choose the λ with the smallest error.

6.1 R

The cv.glmnet() function takes care of cross validation for you. The one thing you want to check is
that the default range of λ values is sufficient. To view a diagnostic plot, use the plot() function:

> plot(model)

This plot shows cross validation error as a function of λ. What you want to see is a curve that
decreases and then increases, achieving its minimum value some where in the interior of the range
of λ values considered. If the curve is monotonically increasing or decreasing, that suggests that the
optimal value of λ is outside of the range of values that you considered, and you need to specify a
different sequence of values using the lambda argument to cv.glmnet(). Examples of a bad diagnostic
plot and a good diagnostic plot are below.

log(Lambda)

M
ea

n-
S

qu
ar

ed
 E

rr
or

130 130 130 130 130 130 130 130 130 130 130 130 130

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

130 130 130 130 130 130 130 130 130 130 130 130 130

Example of bad λ range Example of good λ range

5


	Introduction
	The normal Bradley-Terry model
	Data
	Model
	Solution
	Prediction

	The regularized normal Bradley-Terry model
	Solution
	R

	The binomial Bradley-Terry model
	Data
	Model
	Solution

	The regularized binomial Bradley-Terry model
	Solution
	R

	Cross validation
	R


