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� Warning: these notes may contain factual errors

1 The game of (one-day) cricket
Two teams play one innings each, trying to score as many runs as possible. An innings
ends after all eleven players are out or 50 overs (sets of six deliveries) have been bowled.
The first team to bat sets the target number of runs that the second team to bat must
reach is win the game.
Now, even one-day cricket matches take a long time, and it often rains in England, so

cricket matches are often interrupted before both teams have completed their innings.
This creates a need to predict the number of runs a team would have scored if they were
able to complete their innings.

2 The Duckworth-Lewis method
Frank Duckworth and Tony Lewis introduced a system based on “resources”, which are
the number of wickets and overs the batting team has left in its innings. The idea is
that regardless of the total number of total overs in an innings, two teams that have the
same number of these two resources are fairly matched, as they would be at the start of
the game, before any runs have been scored.
We want to estimate the expected number Z(u,w) of runs that a team with u overs

and w wickets remaining will score. In fig. 2, we see why simply taking the average of
all remaining runs among games with that particular configuration of resources is not
a good idea. In particular, Z(u,w) should be decreasing both u and w — otherwise a
team might be incentivised to give away resources to increase their expected score!
Duckworth and Lewis’s proposal was to model the expected number of runs remaining

by the following formula, which obeys our monotonicity requirement.

Z(u,w) = aw(1− e−bwu), (1)

where u and w are the remaining numbers of overs and wickets respectively, and aw, bw

are model parameters.
Based on this model, tables of “remaining resource precentage” like the one in fig. 2

are released to the public. The entries of the table denote the percentage of resource
remaining, given by the normalisation of Z:

p(u,w) = Z(u,w)
Z(50, 0) · 100. (2)
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Figure 1: Mean runs scored with given resources and fitted model.

Figure 2: A typical D/L resource table.

2.1 Setting the target based on the resource table
We calculate R1 and R2, the available resources of the teams batting first and second
respectively. The target for team 2 is then set as

T =
{

SR2
R1

if R2 ≤ R1,

S +G50
R2−R2

100 if R2 > R1.
(3)

Here, G50 is the expected number of runs that a team scores over a whole match. This
is the most controversial part of the Duckworth-Lewis method.

2.2 Simple estimation of the coefficients
The Duckworth-Lewis method is proprietary, and the method of computing the coef-
ficients is not publicly known, but we can present various reasonable methods of our
own.

2



Figure 3: A scoreboard displaying a D/L par score

We have only specified a mean function, but a possible model might be something like

yi = Z(ui, wi) + εi

= awi
(1− ebwi ui) + εi,

where εi ∼ N(0, σ2). This allows us to use a decreasing mean function Z(u, v) while
still explaining the erratic non-monotonicity of the observed data. Fitting this model
amounts to performing our familiar least-squares optimization:

minimize
aw,bw:w=0,...,9

n∑
i=1

(awi
(1− e−bwi ui)− yi)2, (4)

which is similar in principle to regular-old linear regression.
Since there are no terms in the sum that contain two different values of w, we can split

the above optimisation into 10 different, easier problems. That is, for each k = 0, . . . , 9,
we compute

minimize
ak,bk

∑
i:wi=k

(ak(1− e−bkui)− yi)2. (5)

2.3 Weighted least-squares
The above model does reasonably well on its own. However, like all models, it is imperfect
and making it more complex might make better at prediction. Of course, this is not a
given, as more complexity can also lead to overfitting and worse prediction, but as long
as we keep this in mind, it’s worth trying something.
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One flaw with our current model is that the variances of runs scored is constant over
all u and v. This is convenient for computation, but not at all realistic — usually, larger
observations have more variance, so we would like to update our model:

yi = Z(ui, wi) + εi, εi ∼N(0, σ2
ui,wi

). (6)

That is, the variance of each observation depends on specific number of resources.
When this variance is small, we have good reason to trust the observations are close
to the mean, whereas when the variance is large, we are much mroe uncertain. Thus,
it makes sense (and is principled) to perform a weighted minimisation according to the
variances:

minimize
aw,bw:w=0,...9

n∑
i=1

1
σ2

ui,wi

(awi
(1− e−bwi ui)− yi)2. (7)

Since we don’t know the variances exactly, we must estimate them, so we might instead
minimise

minimize
aw,bw:w=0,...9

n∑
i=1

1
s2

ui,wi

(awi
(1− e−bwi ui)− yi)2. (8)

This is better, but there are still problems
• What if s2

u,w is a poor estimate? This can easily happen when nu,w is small and
can introduce a serious bias.

• What if nu,w = 1? Then no variance estimate is possible at all.

• What if errors have some non-normal distribution?
There are many things we can do to address these problems, and all have their own

advantages and drawbacks. For example:
• Split the data and estimate the variances and coefficients with separate halves.

This reduces the bias, but also reduces the effective available data, increasing the
model variane.

• Ignore (u,w) combinations with fewer than, say, 10 observations. This might
substantially affect constant-w curves with few observations.

• We can estimate the error variance in non-parametric ways, for example the boot-
strap...

• We can use a totally different loss function, perhaps penalising outliers less. For
example

minimize
aw,bw:w=0,...9

n∑
i=1

1
s2

ui,wi

|awi
(1− e−bwi ui)− yi|. (9)

To compare predictive models, we should split the data into a training and validation
set, fitting each model on the training set, and then estimating how well the fitted
models would do on new data by evaluating the RSS on the validation set. The model
that minimises validation error is then a good candidate for the best model, and a good
way of determining how much complexity it is appropriate to include.
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