Stats315a Problem Set 3

Due Date: Friday, March 22, 11:59pm

Question 3.1 (A semiparametric least squares model, 30 points): Consider the model that predicts \widehat{y} via

$$
\widehat{y}_{i}=x_{i}^{T} \beta+f\left(x_{i}\right)
$$

where $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ belongs to an RKHS with reproducing kernel $\mathrm{k}: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$. We have a sample $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}$ of size n, and solve the least-squares estimation problem

$$
\begin{equation*}
(\widehat{\beta}, \widehat{f})=\underset{\beta, f}{\operatorname{argmin}}\left\{\frac{1}{2}\|X \beta-f(X)-y\|_{2}^{2}+\frac{\lambda_{0}}{2}\|\beta\|_{2}^{2}+\frac{\lambda_{1}}{2}\|f\|^{2}\right\}, \tag{3.1}
\end{equation*}
$$

where $f(X)=\left[f\left(x_{1}\right) \cdots f\left(x_{n}\right)\right]^{T} \in \mathbb{R}^{n}$ denotes the vector of predictions of f and $\|f\|^{2}$ is the squared RKHS norm of f.
(a) If $K=\left[\mathrm{k}\left(x_{i}, x_{j}\right)\right]_{i, j \leq n}$ is the Gram (Kernel) matrix, describe with a few words (literally) why problem (3.1) is equivalent to the problem

$$
\begin{equation*}
\operatorname{minimize}_{\beta \in \mathbb{R}^{p}, \alpha \in \mathbb{R}^{n}} \frac{1}{2}\|X \beta-K \alpha-y\|_{2}^{2}+\frac{\lambda_{0}}{2}\|\beta\|_{2}^{2}+\frac{\lambda_{1}}{2} \alpha^{T} K \alpha . \tag{3.2}
\end{equation*}
$$

(b) Show that the minimizers for problem (3.2) satisfy the consistency conditions

$$
\begin{aligned}
H_{\lambda_{0}} \widehat{\beta} & =X^{T}(y-\widehat{f}) \\
S_{\lambda_{1}} \widehat{f} & =y-X \widehat{\beta}
\end{aligned}
$$

where $\widehat{f}=\left[\widehat{f}\left(x_{1}\right) \cdots \widehat{f}\left(x_{n}\right)\right]^{T}=K \widehat{\alpha}$ is the semiparametric part of the model. Give the matrices $H_{\lambda_{0}}$ and S_{λ}. (You may assume that K is invertible.)
(c) Show that we may solve problem (3.2) via the block matrix inversion problem

$$
\left[\begin{array}{cc}
H_{\lambda_{0}} & X^{T} K \\
X & K+\lambda_{1} I
\end{array}\right]\left[\begin{array}{c}
\beta \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
X^{T} y \\
y
\end{array}\right] .
$$

Question 3.2 (Fitting a semiparametric model, 50 points): The datasets adult_train.csv, adult_val.csv, and adult_test.csv in the data directory contain random subsets of 2000 datapoints (each) from the Folktables package, with a full description available at https://github. com/socialfoundations/folktables. This consists of data with covariates for several categorical and numerical characteristics, including hours-per-week of work, educational attainment, and income. Treating income as the response, you will fit a semiparametric model as in Question 3.1.

For the non-income covariates, you should standardize the numerical covariates to have meanzero and variance 1 across the data; for the non-numerical covariates, use a 1-hot encoding. (So if a categorical covariate has k distinct values, which may include missing, expand it into k positions in your vectors x with 1 in the position corresponding to the present category.) Note that this dataset has a few idiosyncrasies of which you ought to be aware: first, it is part of the census data from 1990 (updated through 1994), and so incomes were lower; it censors the highest income at 99999. You may ignore that censoring in your modeling. Second, we consider the following covariates in the model:
i. hours_per_week, a numerical covariate of the number of hours worked
ii. age, numerical, the age of the individual
iii. workclass, a binary variable of whether someone works in the private or public sector
iv. education_num, which is (related to) the number of years of education an individual has, with modifications, as 13 corresponds to completing a Bachelors, 10 some college, 9 finishing high school, among other strata.
v. marital_status, which is categorical
vi. relationship, which is categorical
vii. race, which includes mostly "White" and "Black" but three less common categories (which you may wish to group into "non-white-black")
viii. sex, which in this dataset is binary.

Use the Gaussian kernel function $\mathrm{k}(x, z)=\exp \left(-\frac{1}{2 \tau^{2}}\|x-z\|_{2}^{2}\right)$, for $\tau>0$ to be chosen, and regularization $\lambda_{0}=0$ to fit the model as in (3.2). Use the adult_val.csv data to perform heldout validation to choose the regularizer λ_{1} and τ for the kernel, selecting values for each in the exponentially spaced range $\left\{2^{-2.5}, 2^{-2}, \ldots, 2^{2}, 2^{2.5}\right\}=\left\{2^{i / 2}\right\}_{i=-5}^{5}$.
(a) What is the root-mean-square error on the data in adult_test.csv for the model you have selected?
(b) Assume that the estimate \widehat{f} is sufficiently consistent that solving

$$
\widehat{\beta}=\underset{\beta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{f}\left(x_{i}\right)-x_{i}^{T} \beta\right)^{2}
$$

is equivalent to the "oracle" solution

$$
\widehat{\beta}^{\text {oracle }}=\underset{\beta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f^{\star}\left(x_{i}\right)-x_{i}^{T} \beta\right)^{2},
$$

where $\left(\beta^{\star}, f^{\star}\right)=\operatorname{argmin}_{\beta, f} \mathbb{E}\left[\left(y-f(x)-x^{T} \beta\right)^{2}\right]+\lambda\|f\|^{2}$, using the notation of problem 3.1. Using this, give a sandwich covariance estimate, computable from the data, for the covariance in the approximation

$$
\begin{equation*}
\widehat{\beta}-\beta^{\star} \dot{\sim} \mathrm{N}(0, \widehat{\Sigma}) \tag{3.3}
\end{equation*}
$$

(c) For the preceding covariance, give a 95% confidence interval for the component β_{j}^{\star} associated to the sex variable.
(d) For the preceding covariance, give a 95% confidence interval for the variable corresponding to being married.

Question 3.3 (Reproducing Kernel Hilbert Spaces, 20 points): In this question we explicate some of the conditions required for a symmetric $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ to be a valid kernel function. Recall that K is a valid kernel if for all sets of points $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathcal{X}$, the Gram matrix

$$
G:=\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \in \mathbb{R}^{n \times n}
$$

is positive semidefinite, that is, $G \succeq 0$. An equivalent statement is that $K(x, z)=\langle\phi(x), \phi(z)\rangle$ for some feature mapping ϕ and inner product $\langle\cdot, \cdot\rangle$.
(a) Let K_{1}, K_{2} be valid kernel functions. Show that $K_{1}+K_{2}$ is a valid kernel.
(b) Let K_{1} be a kernel on $\mathbb{R} \times \mathbb{R}$ and let K_{2} be a kernel on $\mathbb{R} \times \mathbb{R}$. Define the "direct sum" kernel $K: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
K\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right)=K_{1}\left(x_{1}, z_{1}\right)+K_{2}\left(x_{2}, z_{2}\right) .
$$

Show that K is a valid kernel.
(c) Let K_{1}, K_{2} be valid kernel functions. Show that $K_{1} \cdot K_{2}$, that is, the function $K(x, z)=$ $K_{1}(x, z) K_{2}(x, z)$ is a valid kernel.

Question 3.4 (A direct sum Hilbert space, 20 points): Let $\mathcal{X}_{1}, \ldots, \mathcal{X}_{d}$ be arbitrary spaces (for example, each could be just a copy of \mathbb{R}), and let $\mathcal{X}^{d}=\mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{d}$ be their Cartesian product. (So $x \in \mathcal{X}^{d}$ has the form $x=\left(x_{1}, \ldots, x_{d}\right)$ for $x_{j} \in \mathcal{X}_{j}$.) Suppose that K_{i} is the reproducing kernel for a Hilbert space \mathcal{H}_{i} of functions from spaces $\mathcal{X}_{i} \rightarrow \mathbb{R}$, where \mathcal{H}_{i} has inner product $\langle\cdot, \cdot\rangle_{i}$. That is, $\langle K(x, \cdot), f\rangle_{i}=f(x)$ for any $f \in \mathcal{H}_{i}$ and $x \in \mathcal{X}_{i}$. Let \mathcal{F} be the space of functions mapping $\mathcal{X}^{d} \rightarrow \mathbb{R}$ of the form

$$
f(x)=\sum_{j=1}^{d} f_{j}\left(x_{j}\right),
$$

where $f_{j} \in \mathcal{H}_{j}$. Define the direct sum inner product for $f, g \in \mathcal{F}$ by

$$
\langle f, g\rangle=\sum_{j=1}^{d}\left\langle f_{j}, g_{j}\right\rangle_{j},
$$

noting that if $f \in \mathcal{F}$, then the reproducing property becomes $\left\langle f, K_{j}\left(x_{j}, \cdot\right)\right\rangle=\left\langle f_{j}, K_{j}\left(x_{j}, \cdot\right)\right\rangle_{j}=$ $f_{j}\left(x_{j}\right)$, and for $K=\sum_{j=1}^{d} K_{j}$ we have the coordinate-wise reproducing inner product

$$
\langle f, K(x, \cdot)\rangle=\sum_{j=1}^{d}\left\langle f_{j}, K_{j}\left(x_{j}, \cdot\right)\right\rangle=\sum_{j=1}^{d} f_{j}\left(x_{j}\right)=f(x) .
$$

(a) Write $\|f\|^{2}=\langle f, f\rangle$ in terms of the norms $\|h\|_{\mathcal{H}_{i}}^{2}:=\langle h, h\rangle_{i}$, defined for $h \in \mathcal{H}_{i}$.
(b) Now you will demonstrate a variant of the representer theorem specialized to such direct sums. Consider the problem

$$
\begin{equation*}
\underset{f \in \mathcal{F}}{\operatorname{minimize}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)+\frac{\lambda}{2}\|f\|^{2}, \tag{3.4}
\end{equation*}
$$

where $\lambda>0,\|\cdot\|$ is the norm from part (a), and $\ell: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ is some loss function. Show that it is no loss of generality to assume that the minimizer of this problem takes the form

$$
f(x)=\sum_{j=1}^{d} \sum_{i=1}^{n} \alpha_{i j} K_{j}\left(x_{i}, x\right),
$$

and rewrite the problem (3.4) as an $n d$-dimensional optimization problem.
(c) Consider an extension of the previous part in which we model predictions of a response $y \in \mathbb{R}$ given $x \in \mathbb{R}^{d}$ as

$$
\widehat{y}_{\theta, f}(x)=\theta_{0}+x^{T} \theta+\sum_{j=1}^{d} f_{j}\left(x_{j}\right) .
$$

Show that for $\lambda_{0} \geq 0, \lambda_{1}>0$, it is no loss of generality assume that the minimizers (in f) of the problem

$$
\begin{equation*}
\underset{\theta \in \mathbb{R}^{d+1}, f \in \mathcal{F}}{\operatorname{minimize}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\widehat{y}_{\theta, f}\left(x_{i}\right), y_{i}\right)+\lambda_{0} \cdot \operatorname{reg}(\theta)+\lambda_{1}\|f\|^{2} \tag{3.5}
\end{equation*}
$$

take the form $f(x)=\sum_{j=1}^{d} \sum_{i=1}^{n} \alpha_{i j} K_{j}\left(x_{i}, x\right)$.
Question 3.5 (ℓ_{1}-regularization and forward-selection, 20 points): Consider a forward-selectionor boosting-type procedure for predicting targets y from $x \in \mathcal{X}$, where at iteration k we have a feature mapping $\phi^{k}: \mathcal{X} \rightarrow\{-1,1\}^{k}, \phi^{k}(x)=\left(\phi_{1}(x), \ldots, \phi_{k}(x)\right)$, and we wish to add a new feature $\phi_{k+1}: \mathcal{X} \rightarrow\{-1,1\}$. At iteration k, our predictive model is thus

$$
f_{k}(x)=\left\langle\theta^{k}, \phi^{k}(x)\right\rangle=\sum_{j=1}^{k} \theta_{j} \phi_{j}(x) .
$$

We assume we are minimizing a loss $\ell: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$, convex in its first argument, so that this new feature should (approximately) minimize

$$
\frac{1}{n} \sum_{i=1}^{n} \ell\left(f_{k}\left(x_{i}\right)+\theta_{k+1} \phi_{k+1}\left(x_{i}\right), y_{i}\right)
$$

jointly in $\theta_{k+1} \in \mathbb{R}$ and ϕ_{k+1}.
At each iteration, we conduct a hypothesis test to assess whether to add a prospective new feature ϕ_{k+1}. Say that the null at iteration $k+1$ is that

$$
H_{0, k+1}: \underset{\theta}{\operatorname{argmin}}\left\{\mathbb{E}\left[\ell\left(f_{k}(x)+\theta \phi_{k+1}(x), y\right)\right]\right\}=0
$$

(where the expectation is over (x, y) drawn from the population being sampled).
(a) Show that the null $H_{0, k+1}$ equivalent to the equality

$$
\mathbb{E}\left[\ell^{\prime}\left(f_{k}(x), y\right) \phi_{k+1}(x)\right]=0,
$$

where $\ell^{\prime}(t, y)=\frac{\partial}{\partial t} \ell(t, y)$.
(b) Ignoring the issue that f_{k} depends on the sample, an approximation to the preceding condition is that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(f_{k}\left(x_{i}\right), y_{i}\right) \phi_{k+1}\left(x_{i}\right) \dot{\sim} \mathrm{N}\left(0, \frac{1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(f_{k}\left(x_{i}\right), y_{i}\right)^{2}\right)\right) \tag{3.6}
\end{equation*}
$$

(because $\phi_{k+1}\left(x_{i}\right)^{2}=1$ for each x_{i}). Give an (approximate) level $1-\alpha$ test of $H_{0, k+1}$ using the approximation (3.6), that is, test whether $\theta_{k+1}^{\star}=0$.
(c) Suppose we are given the potential new feature mapping ϕ_{k+1} and choose the value θ_{k+1} as

$$
\theta_{k+1}=\underset{\theta}{\operatorname{argmin}}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(f_{k}\left(x_{i}\right)+\theta \phi_{k+1}\left(x_{i}\right), y_{i}\right)+\lambda|\theta|\right\} .
$$

Give the value $\lambda>0$ such that $\theta_{k+1} \neq 0$ if and only if your test from part (b) rejects that $\theta_{k+1}^{\star}=0$.
(d) Assume now that $\ell(t, y)$ has M-Lipschitz continuous derivative in t, or, equivalently, that $\ell^{\prime \prime}(t, y) \leq M$ for all t. Show that with your value λ from part (c), the alternative update

$$
\theta_{k+1}=\underset{\theta}{\operatorname{argmin}}\left\{\left(\frac{1}{n} \sum_{i=1}^{n} \ell^{\prime}\left(f_{k}\left(x_{i}\right), y_{i}\right) \phi_{k+1}\left(x_{i}\right)\right) \cdot \theta+\frac{M}{2} \theta^{2}+\lambda|\theta|\right\},
$$

which arises by upper bounding ℓ with a quadratic, satisfies $\theta_{k+1} \neq 0$ if and only if your test from part (b) rejects that $\theta_{k+1}^{\star}=0$.
(e) Let $\ell(t, y)=\log \left(1+e^{t-y}\right)+\log \left(1+e^{y-t}\right)$ be a smooth robust regression loss. Give $M=$ $\sup _{t \in \mathbb{R}} \ell^{\prime \prime}(t, y)$.

