
Stats315a Problem Set 3

Due Date: Friday, March 22, 11:59pm

Question 3.1 (A semiparametric least squares model, 30 points): Consider the model that
predicts ŷ via

ŷi = xTi β + f(xi)

where f : Rp → R belongs to an RKHS with reproducing kernel k : Rp × Rp → R. We have a
sample (xi, yi) ∈ Rp × R of size n, and solve the least-squares estimation problem

(β̂, f̂) = argmin
β,f

{
1

2
∥Xβ − f(X)− y∥22 +

λ0

2
∥β∥22 +

λ1

2
∥f∥2

}
, (3.1)

where f(X) = [f(x1) · · · f(xn)]
T ∈ Rn denotes the vector of predictions of f and ∥f∥2 is the

squared RKHS norm of f .

(a) If K = [k(xi, xj)]i,j≤n is the Gram (Kernel) matrix, describe with a few words (literally) why
problem (3.1) is equivalent to the problem

minimize
β∈Rp,α∈Rn

1

2
∥Xβ −Kα− y∥22 +

λ0

2
∥β∥22 +

λ1

2
αTKα. (3.2)

(b) Show that the minimizers for problem (3.2) satisfy the consistency conditions

Hλ0 β̂ = XT (y − f̂)

Sλ1 f̂ = y −Xβ̂

where f̂ = [f̂(x1) · · · f̂(xn)]T = Kα̂ is the semiparametric part of the model. Give the matrices
Hλ0 and Sλ. (You may assume that K is invertible.)

(c) Show that we may solve problem (3.2) via the block matrix inversion problem[
Hλ0 XTK
X K + λ1I

] [
β
α

]
=

[
XT y
y

]
.

Question 3.2 (Fitting a semiparametric model, 50 points): The datasets adult train.csv,
adult val.csv, and adult test.csv in the data directory contain random subsets of 2000 data-
points (each) from the Folktables package, with a full description available at https://github.

com/socialfoundations/folktables. This consists of data with covariates for several categori-
cal and numerical characteristics, including hours-per-week of work, educational attainment, and
income. Treating income as the response, you will fit a semiparametric model as in Question 3.1.

For the non-income covariates, you should standardize the numerical covariates to have mean-
zero and variance 1 across the data; for the non-numerical covariates, use a 1-hot encoding. (So if a
categorical covariate has k distinct values, which may include missing, expand it into k positions in
your vectors x with 1 in the position corresponding to the present category.) Note that this dataset
has a few idiosyncrasies of which you ought to be aware: first, it is part of the census data from
1990 (updated through 1994), and so incomes were lower; it censors the highest income at 99999.
You may ignore that censoring in your modeling. Second, we consider the following covariates in
the model:
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i. hours per week, a numerical covariate of the number of hours worked
ii. age, numerical, the age of the individual
iii. workclass, a binary variable of whether someone works in the private or public sector
iv. education num, which is (related to) the number of years of education an individual has, with

modifications, as 13 corresponds to completing a Bachelors, 10 some college, 9 finishing high
school, among other strata.

v. marital status, which is categorical
vi. relationship, which is categorical
vii. race, which includes mostly “White” and “Black” but three less common categories (which

you may wish to group into “non-white-black”)
viii. sex, which in this dataset is binary.

Use the Gaussian kernel function k(x, z) = exp(− 1
2τ2

∥x− z∥22), for τ > 0 to be chosen, and
regularization λ0 = 0 to fit the model as in (3.2). Use the adult val.csv data to perform held-
out validation to choose the regularizer λ1 and τ for the kernel, selecting values for each in the
exponentially spaced range {2−2.5, 2−2, . . . , 22, 22.5} = {2i/2}5i=−5.

(a) What is the root-mean-square error on the data in adult test.csv for the model you have
selected?

(b) Assume that the estimate f̂ is sufficiently consistent that solving

β̂ = argmin
β

1

n

n∑
i=1

(yi − f̂(xi)− xTi β)
2

is equivalent to the “oracle” solution

β̂oracle = argmin
β

1

n

n∑
i=1

(yi − f⋆(xi)− xTi β)
2,

where (β⋆, f⋆) = argminβ,f E[(y − f(x) − xTβ)2] + λ ∥f∥2, using the notation of problem 3.1.
Using this, give a sandwich covariance estimate, computable from the data, for the covariance
in the approximation

β̂ − β⋆ �∼ N(0, Σ̂). (3.3)

(c) For the preceding covariance, give a 95% confidence interval for the component β⋆
j associated

to the sex variable.

(d) For the preceding covariance, give a 95% confidence interval for the variable corresponding to
being married.

Question 3.3 (Reproducing Kernel Hilbert Spaces, 20 points): In this question we explicate
some of the conditions required for a symmetric K : X × X → R to be a valid kernel function.
Recall that K is a valid kernel if for all sets of points {xi}ni=1 ⊂ X , the Gram matrix

G := [K(xi, xj)]
n
i,j=1 ∈ Rn×n

is positive semidefinite, that is, G ⪰ 0. An equivalent statement is that K(x, z) = ⟨ϕ(x), ϕ(z)⟩ for
some feature mapping ϕ and inner product ⟨·, ·⟩.
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(a) Let K1,K2 be valid kernel functions. Show that K1 +K2 is a valid kernel.

(b) Let K1 be a kernel on R×R and let K2 be a kernel on R×R. Define the “direct sum” kernel
K : R2 × R2 → R by

K((x1, x2), (z1, z2)) = K1(x1, z1) +K2(x2, z2).

Show that K is a valid kernel.

(c) Let K1,K2 be valid kernel functions. Show that K1 · K2, that is, the function K(x, z) =
K1(x, z)K2(x, z) is a valid kernel.

Question 3.4 (A direct sum Hilbert space, 20 points): Let X1, . . . ,Xd be arbitrary spaces (for
example, each could be just a copy of R), and let X d = X1×X2×· · ·×Xd be their Cartesian product.
(So x ∈ X d has the form x = (x1, . . . , xd) for xj ∈ Xj .) Suppose that Ki is the reproducing kernel
for a Hilbert space Hi of functions from spaces Xi → R, where Hi has inner product ⟨·, ·⟩i. That is,
⟨K(x, ·), f⟩i = f(x) for any f ∈ Hi and x ∈ Xi. Let F be the space of functions mapping X d → R
of the form

f(x) =
d∑

j=1

fj(xj),

where fj ∈ Hj . Define the direct sum inner product for f, g ∈ F by

⟨f, g⟩ =
d∑

j=1

⟨fj , gj⟩j ,

noting that if f ∈ F , then the reproducing property becomes ⟨f,Kj(xj , ·)⟩ = ⟨fj ,Kj(xj , ·)⟩j =

fj(xj), and for K =
∑d

j=1Kj we have the coordinate-wise reproducing inner product

⟨f,K(x, ·)⟩ =
d∑

j=1

⟨fj ,Kj(xj , ·)⟩ =
d∑

j=1

fj(xj) = f(x).

(a) Write ∥f∥2 = ⟨f, f⟩ in terms of the norms ∥h∥2Hi
:= ⟨h, h⟩i, defined for h ∈ Hi.

(b) Now you will demonstrate a variant of the representer theorem specialized to such direct sums.
Consider the problem

minimize
f∈F

1

n

n∑
i=1

ℓ(f(xi), yi) +
λ

2
∥f∥2 , (3.4)

where λ > 0, ∥·∥ is the norm from part (a), and ℓ : R × Y → R is some loss function. Show
that it is no loss of generality to assume that the minimizer of this problem takes the form

f(x) =

d∑
j=1

n∑
i=1

αijKj(xi, x),

and rewrite the problem (3.4) as an nd-dimensional optimization problem.
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(c) Consider an extension of the previous part in which we model predictions of a response y ∈ R
given x ∈ Rd as

ŷθ,f (x) = θ0 + xT θ +

d∑
j=1

fj(xj).

Show that for λ0 ≥ 0, λ1 > 0, it is no loss of generality assume that the minimizers (in f) of
the problem

minimize
θ∈Rd+1,f∈F

1

n

n∑
i=1

ℓ(ŷθ,f (xi), yi) + λ0 · reg(θ) + λ1 ∥f∥2 (3.5)

take the form f(x) =
∑d

j=1

∑n
i=1 αijKj(xi, x).

Question 3.5 (ℓ1-regularization and forward-selection, 20 points): Consider a forward-selection-
or boosting-type procedure for predicting targets y from x ∈ X , where at iteration k we have a
feature mapping ϕk : X → {−1, 1}k, ϕk(x) = (ϕ1(x), . . . , ϕk(x)), and we wish to add a new feature
ϕk+1 : X → {−1, 1}. At iteration k, our predictive model is thus

fk(x) = ⟨θk, ϕk(x)⟩ =
k∑

j=1

θjϕj(x).

We assume we are minimizing a loss ℓ : R× Y → R, convex in its first argument, so that this new
feature should (approximately) minimize

1

n

n∑
i=1

ℓ(fk(xi) + θk+1ϕk+1(xi), yi)

jointly in θk+1 ∈ R and ϕk+1.
At each iteration, we conduct a hypothesis test to assess whether to add a prospective new

feature ϕk+1. Say that the null at iteration k + 1 is that

H0,k+1 : argmin
θ

{E[ℓ(fk(x) + θϕk+1(x), y)]} = 0

(where the expectation is over (x, y) drawn from the population being sampled).

(a) Show that the null H0,k+1 equivalent to the equality

E[ℓ′(fk(x), y)ϕk+1(x)] = 0,

where ℓ′(t, y) = ∂
∂tℓ(t, y).

(b) Ignoring the issue that fk depends on the sample, an approximation to the preceding condition
is that

1

n

n∑
i=1

ℓ′(fk(xi), yi)ϕk+1(xi)
�∼ N

(
0,

1

n

(
1

n

n∑
i=1

ℓ′(fk(xi), yi)
2

))
(3.6)

(because ϕk+1(xi)
2 = 1 for each xi). Give an (approximate) level 1 − α test of H0,k+1 using

the approximation (3.6), that is, test whether θ⋆k+1 = 0.
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(c) Suppose we are given the potential new feature mapping ϕk+1 and choose the value θk+1 as

θk+1 = argmin
θ

{
1

n

n∑
i=1

ℓ(fk(xi) + θϕk+1(xi), yi) + λ|θ|

}
.

Give the value λ > 0 such that θk+1 ̸= 0 if and only if your test from part (b) rejects that
θ⋆k+1 = 0.

(d) Assume now that ℓ(t, y) has M -Lipschitz continuous derivative in t, or, equivalently, that
ℓ′′(t, y) ≤ M for all t. Show that with your value λ from part (c), the alternative update

θk+1 = argmin
θ

{(
1

n

n∑
i=1

ℓ′(fk(xi), yi)ϕk+1(xi)

)
· θ + M

2
θ2 + λ|θ|

}
,

which arises by upper bounding ℓ with a quadratic, satisfies θk+1 ̸= 0 if and only if your test
from part (b) rejects that θ⋆k+1 = 0.

(e) Let ℓ(t, y) = log(1 + et−y) + log(1 + ey−t) be a smooth robust regression loss. Give M =
supt∈R ℓ′′(t, y).
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