
Stats315a Problem Set 2

Due Date: Wednesday, March 6, 11:59pm

Question 2.1 (Resampling methods and normal inference, 40 points): In this problem, we
compare three parameter inference methods: (i) model-based inference, which assumes the model is
true, (ii) the “sandwich estimator” we derived in class, and (iii) the bootstrap resampling estimator
of variance. We will do this both for linear and (binary) logistic regression, repeating the following
experimental protocol many times and providing summary results. We first describe the protocol
for the Gaussian linear model case; we then describe modifications for the other cases.

i. For the data model
yi = xTi β

⋆ + εi, εi
iid∼ N(0, σ2),

generate a sample of size n (to be specified) in dimension d = 10, where xi
iid∼ N(0, Id) and

σ2 = 1, and draw β⋆ ∼ Uni(Sd−1), the sphere in Rd.

ii. Compute β̂n minimizing

Ln(β) =
1

n

n∑
i=1

(yi − xTi β)
2.

iii. Consider the following three covariance estimates:

Σn := σ̂2(XTX)−1, σ̂2 =
1

n− d

n∑
i=1

(yi − xTi β̂n)
2 (Fisher)

Σn := (XTX)−1

( n∑
i=1

(yi − xTi β̂n)
2xix

T
i

)
(XTX)−1 (Sandwich)

Σn :=
1

B

B∑
b=1

(β̂b
n − β̂n)(β̂

b
n − β̂n)

T (Bootstrap)

where β̂b
n is a bootstrap resampled least-squares estimate, and B = 200 is the number of

bootstrap replicates.

The first covariance is the classical Fisher information matrix, the second the covariance as per
the standard asymptotic theory we have developed, and the third that of the boostrap. We have

β̂n
�∼ N(β⋆,Σn) for each of these (so long as the data model remains true!), and therefore

Cn :=
{
β ∈ Rd | (β − β̂n)

TΣ−1
n (β − β̂n) ≤ χ2

d,1−α

}
as an asymptotically valid 1 − α confidence set, that is, P(β⋆ ∈ Cn) → 1 − α, where χ2

d,1−α is the

1− α quantile of a χ2 random variable with d degrees of freedom. Use α = .1 for the remainder.

(a) Repeat the experiment i–iii for n = 50, 100, 200, 400 for T = 200 times, and track the fraction
of times that β⋆ ∈ Cn for each of the covariances (Fisher), (Sandwich), and (Bootstrap).
For each covariance approximation, plot your coverage against sample size n.
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(b) Repeat part (a) except for logistic regression. Thus, make the following changes to the pro-
cedure i–iii. Instead of the linear regression model, generate data from the logistic regression
model

Pβ(Y = y | X = x) =
eyβ

T x

1 + exT β
, y ∈ {0, 1},

where xi, β
⋆ are generated identically. In part ii, choose β̂n to minimize the negative log

likelihood, that is, for ℓ(β, x, y) = − log pβ(y | x) = log(1 + ex
T β) − yxTβ, let Ln(β) =

1
n

∑n
i=1 ℓ(β, xi, yi). In part iii, replace the Fisher information and Sandwich covariances with

their counterparts

Σn := (XTWX)−1, W = diag([p̂i(1− p̂i)]
n
i=1)

Σn :=
1

n
∇2Ln(β̂n)

−1Ĉov(∇ℓ(β̂n(X,Y )))∇2Ln(β̂n)
−1,

respectively (the bootstrap covariance does not change).

(c) Repeat part (a) with faulty linear modeling assumptions, so that we evaluate coverage of β̂n
and Cn for the best linear predictor in mean-squared error, βmse = argminβ E[(y − xTβ)2]. To
do so, replace the model in part i with

yi = xTi β
⋆ + (xTi θ

⋆)2 + εi, εi
iid∼ N(0, σ2),

where θ⋆ ∼ Uni(Sd−1) as well. Note that

E[(y − xTβ)2] = E[(ε+ xT (β − β⋆) + (xT θ⋆)2)2]

= σ2 + ∥β − β⋆∥22 + E[(xT θ⋆)4],

because E[vTx(uTx)2] = 0 for any vectors u, v,1 so βmse = argminβ E[(y− xTβ)2] = β⋆ as well.

Question 2.2 (Asymptotics of causal inference, 15 points): As in Question 1.6, consider the
potential outcomes framework for a real-valued response Y with randomized treatment assignments
W ∈ {0, 1}, so that (Y (0), Y (1)) ⊥ W . Let the population mean-square-error estimates be

(τmse, αmse, βmse) = argmin
τ,α,β

E
[
(Y − α−XTβ − τW )2

]
,

so that αmse ∈ R is an intercept, βmse ∈ Rp, and τmse is the coefficient of W in the model
Yi = α + XT

i β + τWi + εi. Given a sample of size n, where each individual is chosen to be in

treatment (W = 1) or control (W = 0) with equal probability 1
2 , let τ̂n, α̂n, β̂n be the empirical

squared error minimizers. Give the limiting distribution of τ̂n. That is, give the value of the
asymptotic variance σ2(τ) in the limiting normal

√
n(τ̂n − τmse)

dist−→ N
(
0, σ2(τ)

)
.

Question 2.3 (Constructions of conformal confidence sets, 15 points): Suppose we have set-valued
mappings Cτ : X ⇒ Y, meaning that Cτ (x) ⊂ Y, indexed by τ ∈ R+, where

Cτ (x) ⊂ Cτ+δ(x)

1We have E[vTx(uTx)2] =
∑d

i=1 viE[xi(u
Tx)2], and (w.l.o.g. taking i = 1) we observe E[x1(u

Tx)2] =∑d
i,j=1 uiujE[x1xixj ]. Then note that E[x1xixj ] = 0 for any coordinates i, j when x ∼ N(0, I).
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for all δ ≥ 0, where limτ→∞Cτ (x) = Y (that is, for large enough τ the confidence set Cτ (x) includes
all of Y). Define

s(x, y) := inf {τ ∈ R | y ∈ Cτ (x)} . (2.1)

You are given a sample (Xi, Yi)
n
i=1

iid∼ P of size n and define Si = s(Xi, Yi) for each i, then set

τ̂n := the (1 + 1/n)(1− α) quantile of {Si}ni=1.

Let Ĉ = Cτ̂n be the associated confidence set.

(a) Using the results from class, show that Ĉ is a valid (1 − α) prediction set, that is, on a new
example (Xn+1, Yn+1) from P ,

P (Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α.

We now explore different constructions of such confidence sets. Each of these will leverage an
already constructed predictor f taking inputs in X .

(b) Let ℓ be a loss function and ℓ(f(x), y) be the loss for predicting f(x) on response y. Set

Cτ (x) = {y ∈ Y | ℓ(f(x), y) ≤ τ}.

Give the value s(x, y) the definition (2.1) yields.

(c) For binary logistic regression, f : X → R, y ∈ {±1}, and ℓ(f(x), y) = log(1+e−yf(x)). Give the
value s(x, y) the definition (2.1) yields for the confidence set in part (b). For a given threshold
τ , when is Cτ (x) a singleton?

(d) For k-class logistic regression, f : X → Rk, y ∈ {1, . . . , k}, and ℓ(f(x), y) = log(1+
∑k

l=1 e
fl(x)−fy(x)).

Give the value s(x, y) the definition (2.1) yields for the confidence set in part (b). For a given
threshold τ , when is Cτ (x) a singleton?

(e) Let Y = R (so we have real-valued responses as in regression), and let l, u : X → R model lower
and upper quantiles of Y given X, respectively. (That is, we wish to have Y ∈ [l(x), u(x)] with
a given probability.) Let

Cτ (x) = [l(x)− τ, u(x) + τ ]

where Cτ (x) = ∅ if l(x) − τ > u(x) + τ , i.e., the lower end of the interval is greater than the
upper. Give the value s(x, y) the definition (2.1) yields for this confidence set.

Question 2.4 (Conformal sets, 20 points): Consider the following heteroskedastic linear model:

y = xTβ⋆ + ∥x∥2 ε, ε
iid∼ N(0, 1), x

iid∼

{
N(e1, Id) w.p. 1

2

N(−e1, 3Id) w.p. 1
2

(2.2)

where e1 is the first standard basis vector. Given a sample of size n from this model, let X ∈ Rn×d

and Y ∈ Rn be the usual design matrix and responses. Consider fitting the following two models
to this data: first, the standard linear regression model

β̂mse := argmin
β

∥Xβ − Y ∥22 .
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This gives predictor f̂(x) = xT β̂mse. Second, a quantile model, which attempts to predict the
lower and upper α quantiles of the responses yi. To do this, define the feature mapping ϕ(x) =
(x, ∥x∥2) ∈ Rd+1, the quantile loss function

ℓα(t, y) := α (y − t)+ + (1− α) (t− y)+ ,

and then find the (d+ 1)-dimensional vectors θ̂α and θ̂1−α solving

θ̂α = argmin
θ

n∑
i=1

ℓα(θ
Tϕ(xi), yi) and θ̂1−α = argmin

θ

n∑
i=1

ℓ1−α(θ
Tϕ(xi), yi).

This gives lower and upper predictors l̂(x) = ϕ(x)T θ̂α and û(x) = ϕ(x)T θ̂1−α.

(a) What is the population counterpart of β̂mse? That is, give β⋆ = argminβ E[(y − xTβ)2].

(b) What are the population counterparts of θ̂α and θ̂1−α? That is, give

θ⋆α = argmin
θ

E[ℓα(θTϕ(x), y)] and θ⋆1−α = argmin
θ

E[ℓ1−α(θ
Tϕ(x), y)].

(c) Generate three datasets from the model (2.2), each in dimension d = 5 with sample size
n = 400: a training set, a validation set, and a test set, where β⋆ ∼ Uni(Sd−1). Now, fit the
linear predictor f̂ and lower/upper predictors l̂, û on the training data. Consider the confidence
sets

Ĉmse
τ (x) :=

[
f̂(x)− τ, f̂(x) + τ

]
and Ĉq

τ :=
[
l̂(x)− τ, û(x) + τ

]
.

Using the validation data, use conformal inference to choose τ so that P(Y ∗ ∈ Ĉτ (X
∗)) ≥ 1−2α

for each of these confidence sets, where α = .025. Repeat this experiment T = 100 times and
give the (empirical) coverage you obtain on the test set for each method.

(d) As in part (c) (with T = 100 experiments), give average the empirical coverage on the following
two subsets of the test set:

Sleft := {i | eT1 xi ≤ 0} and Sright := {i | eT1 xi > 0}.

Explain your result in a few words.

Question 2.5 (A loan data analysis challenge, 40 points): A company in Chile uses crowdsourcing
to fund loans to the public, as a means to offer relief from the high bank interest rates. The data in
this challenge consists of historical loan records for a sample of 9000 past customers. The variables
characterize some aspects of the loan, such as duration, amount, interest rate and many other more
technical features of the loans. There are also a number of qualitative variables, such as reason for
loan, quality rating of the borrower and others. The response variable y of interest is default: a
0-1 variable indicating whether or not the borrower has defaulted on their loan payments.

The company would like to build a default risk score so that they can target high-risk customers
early and perhaps preempt the default event, which ends up costly for all involved. (The fraction
of defaults in the entire population is around 7%.) The training data loan-train.csv represents
a sample of 3000 defaulters, and 6000 non-defaulters, and contains 30 features and the binary
outcome default (in the first column). The file loan-testx.csv consists of a random sample of
10000 other customers from the general pool. For these you are provided only the 30 features.
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Your job is to build a risk score, that is, a model that estimates the probability of default y = 1.
Feel free to use any of the tools discussed in the lectures of this class (or beyond). Some packages
that may be useful include pytorch, xgboost, and just regular old logistic regression. Describe
what you implemented, how you selected your final model. The only thing you need to submit is a
text file with 10000 lines; on each line, your should have your predicted risk estimate for each test
customer, in the same order as loan-testx.csv. Submit this as a .txt file on Gradescope for the
online portion of HW2.
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