
Stats315a Problem Set 1
Due: Friday, October 8 by 11:59pm on Gradescope.

Question 1.1 (Ridge regression risks, 20pts): Consider the ℓ2-regularized (ridge) regression
estimator

β̂λ := argmin
b

{
1

2
∥Xb− y∥22 +

λ

2
∥b∥22

}
,

where X = [x1 · · · xn]
T ∈ Rn×p is the (fixed) design matrix and y ∈ Rn is the response. Let

Hλ = X(XTX + λI)−1XT , and assume that

yi = f(xi) + εi (1.1)

where E[εi] = 0 and E[ε2i ] = σ2. (Note that we do not assume that yi = xTβ⋆ + εi.) Recall also

that the in-sample risk of an estimate f̂ of f is

Rin(f̂) :=
1

n

n∑
i=1

E[(f̂(xi)− f(xi))
2] =

1

n

n∑
i=1

(
Bias(f̂(xi))

2 +Var(f̂(xi))
)

where the expectation is taken over yi drawn in model (1.1). Define the mean values of y by

µ := E[y] = [f(xi)]
n
i=1.

Throughout the remainder of the question, let f̂λ be the linear function f̂λ(x) = xT β̂λ given by the
ridge estimator.

(a) Show that
n ·Rin(f̂λ) = ∥(I −Hλ)µ∥22 + σ2 tr(HT

λ Hλ).

(b) Show that the residual sum of squares RSS =
∑n

i=1(f̂λ(xi) − yi)
2 (this is just the training

squared error) satisfies
E[RSS] = nRin(f̂λ) + σ2(n− 2 tr(Hλ)).

For the remainder of the question, assume that the design X ∈ Rn×p has rank p, that is, it is full
column rank.

(c) Let X = UΓV T be the singular value decomposition (SVD) of X, where U ∈ Rn×p satisfies
UTU = Ip and Γ = diag(γ1, . . . , γp) is the diagonal matrix of singular values. Using this SVD,
give as explicit a formula as you can for the derivative matrix

Ḣλ :=
∂

∂λ
Hλ ∈ Rn×n.

(d) Let r(λ) = n · Rin(f̂λ) be the in-sample risk as a function of λ ≥ 0. Give a formula for the
derivative r′(λ) = ∂

∂λr(λ).

(e) Using your preceding two answers, show that r′(0) < 0, that is, there is always some λ > 0 so
that the in-sample risk of the ridge estimator is smaller than unregularized least squares.
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Question 1.2 (The choice of loss functions, 20pts): Consider the margin-based classification
problem with data in pairs (x, y) ∈ X × {−1, 1}, where we seek a predictor f : X → R with large
margin yf(x). Let the loss

ℓ(s, y) = ϕ(sy)

for a convex ϕ : R → R+. The loss is infinite sample consistent (or just consistent) for the zero-one
error if for any distribution on Y , where p = P(Y = 1), the minimizer

s⋆ϕ(p) := argmin
s∈R

{E[ℓ(s, Y )] = pϕ(s) + (1− p)ϕ(−s)}

satisfies
sign(s⋆ϕ(p)) = sign(2p− 1)

whenever p ∈ (0, 12) ∪ (12 , 1). In the case that p ∈ {0, 1}, we require that

inf
s(2p−1)≤0

{pϕ(s) + (1− p)ϕ(−s)} > inf
s∈R

{pϕ(s) + (1− p)ϕ(−s)} ,

but we will ignore that for this question.

(a) Show that if ϕ is differentiable and ϕ′(0) < 0, then the loss is consistent.

(b) Let ϕ be differentiable with ϕ′(0) < 0 and lims→∞ ϕ(s) = 0. Give a transformation h : R → [0, 1]
from scores s to probabilities such that

s⋆ = argmin {pϕ(s) + (1− p)ϕ(−s)} if and only if p = h(s⋆).

Hint. You may use that for a convex ϕ, the derivative ϕ′ is non-decreasing.

(c) Let ϕlog(s) = log(1 + e−s) be the logistic loss. Give s⋆ϕ(p) and the transformation h.

(d) Let ϕexp(s) = exp(−s) be the exponential loss. Give s⋆ϕ(p) and the transformation h.

(e) Let ϕ be the hinge loss ϕ(s) = (1− s)+. Give s⋆ϕ(p), and show that there is no transformation
of the form in part (b).

Question 1.3 (The curse of dimensionality and distances in high dimensions, 15pts): Let Xi ∈
{−1, 1}p be uniformly distributed on the hypercube, and let P be the uniform distribution on

{−1, 1}p, so that Xi
iid∼ P .

(a) Show that for any vector v ∈ Rp,

E[exp(XT v)] ≤ exp

(
1

2
∥v∥22

)
.

It may be useful to use that 1
2(e

t + e−t) ≤ et
2/2, valid for all t ∈ R.

(b) Show that for any independent X1, X2
iid∼ P and λ ∈ R,

E[exp(λXT
1 X2)] ≤ exp

(
λ2p

2

)
.
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(c) Using a Chernoff bound, show that for any t ≥ 0,

P
(
∥X1 −X2∥22 ≤ 2p(1− t)

)
≤ exp

(
−pt2

2

)
and P

(
∥X1 −X2∥22 ≥ 2p(1 + t)

)
≤ exp

(
−pt2

2

)
.

(d) Let Xi
iid∼ P for i = 1, . . . , N and δ ∈ (0, 1). Show that if

N ≤ exp

(
pt2

4
− 1

2
log

1

δ

)
then 2p(1− t) ≤ ∥Xi −Xj∥22 ≤ 2p(1 + t) for all i ̸= j with probability at least 1− δ.

(e) Conclude that even if we draw a sample of size N exponential in the dimension p, we expect
each pair Xi, Xj , i ̸= j, to have ℓ2 distance ∥Xi −Xj∥2 ≈

√
2p with high probability.

Question 1.4 (Limiting ridge solutions, 10pts): Let β̂λ = argminb{∥Xb− y∥22 + λ ∥b∥22} be the
ridge regression estimator. Let X ∈ Rn×p and assume p > n, where X has rank n. Using the SVD
of X, give a closed form for limλ↓0 β̂λ.

Question 1.5 (Linear regression versus k-nearest neighbors, 30pts): You compare k-nearest
neighbors (knn) and linear regression in terms of their classification performance in the presence of
increasing numbers of noise variables. The setup is as follows, and mimics the mixture simulation
in class. The 20 × 2 data matrix mixturemeans.csv is available on the course website; the first
10 rows are for class 1, the next 10 for class 2. Let M1 = [µ1 · · · µ10]

T ∈ R10×2 and M2 =
[µ11 · · · µ20]

T ∈ R10×2 be these matrices of means, where µi ∈ R2.

(a) Write a function to generate a sample of N points from a uniform mixture of Gaussians in R2,
with each Gaussian N(µi, σ

2I) having diagonal covariance σ2I for a fixed σ2 > 0. The function
takes as inputs the centroid matrix M , sample size N and σ, and outputs a matrix X ∈ RN×p

whose rows are i.i.d. draws from this mixture of Gaussians.

(b) Use your function to generate a dataset of size Ntrain = 100 for each of the two classes, with
σ2 = 1

5 , as well as a test set of size Ntest = 104 for each class. Create the corresponding response
vectors for each. This should leave you with matrices Xtrain ∈ R2N×2, Xtest ∈ R2Ntest×2 and
responses ytrain and ytest.

(c) What is the Bayes (optimal) classifier for this problem? Write this in terms of the densities
fi, i = 1, . . . , 20 for each of the mixture components.

(d) Write a function to compute the Bayes classifier for this setup. It should take as input the two
matrices M0,M1 of means, variance σ2, and an input matrix X to be classified. Your function
should classifiy all the rows of X.

(e) Write an evaluation function that takes as input your training data, test data, and a vector of
values for k, the knn neighborhood size parameter. Your function should

i. Estimate the Bayes error using the test data using your function from part (d).

ii. Estimate the test error of a linear classifier fit by least squares.

iii. Estimate the test errors for knn at each of the values of k (in R, the package class has a
knn function).
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Run your function using k = 1, 3, 5, 7, 9, 11, 13, 15.

(f) Write a new function that expands the evaluation function in the part (e) to take two extra
parameters: the number noise of noise variables and a variance τ2noise. This function adds
additional Gaussian noise columns to Xtrain and Xtest, where the noise columns have i.i.d.
N(0, τ2noise) entries. This function should produce the same outputs as that in part (e). Run
your function with pnoise = 1, 2, . . . , 10 noise variables with τ2noise = 1. Summarize its outputs.

Question 1.6 (Causal estimation, 10pts): Consider the potential outcomes framework for a real-
valued response Y with randomized treatment assignments W ∈ {0, 1}, so that (Y (0), Y (1)) ⊥ W .
Let

τ⋆ := E[Y (1)]− E[Y (0)]

be the average treatment effect, which is the variable of interest. Assume there are covariates
X ∈ Rp, which may (or may not) be related to the responses Y , but where W is also independent
of X. Let the population mean-square-error estimates be

(τmse, αmse, βmse) = argmin
τ,α,β

E
[
(Y − α−XTβ − τW )2

]
,

so that αmse ∈ R is an intercept, βmse ∈ Rp, and τmse is the coefficient of W in the model Yi =
α+XT

i β + τWi + εi. Show that
τmse = τ⋆.
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