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Validation

Thinking about the true loss function is important

=  Most of the regression methods we'’ve studied aim to minimize the RSS, while classification methods aim to

minimize the 0-1 loss.

] In classification, we often care about certain kinds of error more than others; i.e. the natural loss function is not
the 0-1 loss.

=  Even if we use a method which minimizes a certain kind of training error, we can tune it to optimize our true loss

function.

=  Example: in the default study we could find the threshold that brings the False negative rate below an

acceptable level.



How to choose a supervised method that minimizes the test
error

» |n addition, tune the parameters of each method: maybe

* k in k-nearest neighbors.

e The number of variables to include in forward or backward selection.
\

* The order of a polynomial in polynomial regression.
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Validation set approach
Use of a validation set is one way to approximate the test error:

» Divide the data into two parts.
» Train each model with one part.

= Compute the error on the remaining validation data.
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Schematic of validation set approach.



Mean Squared Error

Example: choosing order of polynomial
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Left: validation error as a function of degree. Right: multiple splits into validation and training.

Polynomial regression to estimate mpg from horsepower in the Auto data.

Problem: Every split yields a different estimate of the error.
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Leave one out cross-validation (LOOCYV)

» Foreveryi=1,...,n
* train the model on every point except i,

* compute the test error on the held out point.

= Average the test errors.



Regression

= Qverall error:
1 « (i
CVqy = - Zl(yi - y,(- )2
1=

= Notation )A/g_l): prediction for the i sample when learning without using the ith sample.



Schematic for LOOCV
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Schematic of leave-one-out cross-validation (LOOCYV) set approach.
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Classification
= Overall error:
L PP
CvVy = " ;1(% V)

= Here, )Axl(._i) is predicted label for the i sample when learning without using the ith sample.



Shortcut for linear regression
Computing CV,y can be computationally expensive, since it involves fitting the model n times.

For linear regression, there is a shortcut: - \ 19

h}
1 ¢ Yi gAi 2
CVqy) = " Z (71 _hii>

=
Above, h;; is the leverage statistic.

Approximate versions sometimes used for logistic regression...



K -fold cross-validation

Algorithm 5.3? K-fold CV

= Split the data into K subsets or folds.
= Foreveryi=1,...,K:

* train the model on every fold except the ith fold,

* compute the test error on the ith fold.

= Average the test errors.



Schematic for K-fold CV




LOOCYV vs. K=fold cross-validation

LOOCV
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Comparison of LOOCYV and K-fold CV.
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Comments
K-fold CV depends on the chosen split (somewhat).

In K-fold CV, we train the model on less data than what is available to LOOCYV. This introduces some bias into
the estimates of test error.

In LOOCY, the training samples highly resemble each other. This increases the some variance of the test error
estimate.

n-fold CV is equivalent LOOCV.



Mean Squared Error

Choosing an optimal model
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Comparison of LOOCYV and K-fold CV to test MSE.

Even if the error estimates are off, choosing the model with the minimum cross validation error (
leads to a method with near minimum t»st error.
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Degree=1 Degree=2

Degree=3 Degree=4

In a classification problem, things look similar.

»  Logistic regression with polynomial predictors of increasing degree. (— — — — ——

n - —— = —— Bayes boundary



Choosing an optimal model
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] Cubic model has best test error.
= Quartic has best CV.
] Curves look similar.

=  Q: Why doesn’t training error keep decreasing?



The one standard error (ISE) rule of thumb

Misclassification Error
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Forward stepwise selection (we’ll see in more detail shortly)
| 0-fold cross validation,

| -SE rule of thumb:

* A number of models with 10 < p < 15 have almost the same CV error.

* The vertical bars represent | standard error in the test error from the 10 folds.

* Choose the simplest model whose CV error is no more than one standard error above the model with the lowest CV error.






The wrong way to do cross validation
Reading: Section 7.10.2 of The Elements of Statistical Learning.
We want to classify 200 individuals according to whether they have cancer or not.

We use logistic regression onto 1000 measurements of gene expression.

Proposed strategy:

I. Using all the data, select the 20 most significant genes using z-tests.

2. Estimate the test error of logistic regression with these 20 predictors via |0-fold cross validation.



» To see how that works, let’s use the following simulated data:
|. Each gene expression is standard normal and independent of all others.
2. The response (cancer or not) is sampled from a coin flip — no correlation to any of the “genes”.

= Q: What should the misclassification rate be for any classification method using these predictors?

= A: Roughly 50%.



We run this simulation, and obtain a CV error rate of 3%!
Why!?

* Since we only have 200 individuals in total, among 1000 variables, at least some will appear correlated with the response.

* We had run variable selection using all the data, so the variables we select have some correlation with the response in every subset or fold in
the cross validation.



The right way to do cross validation
|. Divide the data into 10 folds.
2. Fori=1,...,10:

|. Using every fold except i, perform the variable selection and fit the model with the selected variables.
2. Compute the error on fold i.

3. Average the |0 test errors obtained.

In our simulation, this produces an error estimate of close to 50%.

Moral of the story: Every aspect of the learning method that involves using the data — variable selection, for
example — must be cross-validated.



Bootstrap

» Another resampling technique often seen in practice.

Cross-validation vs. the Bootstrap

= Cross-validation: provides estimates of the (test) error

= The Bootstrap: provides the (standard) error of estimates
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Bootstrap

Brad Efron

= One of the most important techniques in all of Statistics.

=  Computer intensive method.

(—\/\—/
»  Popularized by Brad Efron < Stanford pride!



Standard errors in linear regression from a sample of size n

Advertising = read.csv('https://www.statlearning.com/s/Advertising.csv')
M.sales = lm(sales ~ TV, data=Advertising)
summary (M.sales)

##

## call:

## lm(formula = sales ~ TV, data = Advertising)

##

## Residuals:

## Min 10 Median 30 Max

## -8.3860 -1.9545 -0.1913 2.0671 7.2124

##

## Coefficients:

#4# Estimate Std. Error t value Pr(>|t])

## (Intercept) 7.032594 0.457843 15.36 <2e-16 ***
## TV 0.047537 0.002691 17.67 <2e-16 ***
i R

## Signif. codes: 0 '**x' 0.p01 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 31259 on 198 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
## F-statistic: 312.1 on 1 and| 198 DF, p-value: < 2.2e-16
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Classical way to compute Standard Errors

» Example: Estimate the variance of a sample xi, x>, ..., x,:

] Unbiased estimate of 52:

2 1 C 2 R
& = D — %) A%, 9 Sels
n-1& +
= _( . 5 -
C3L \
= What is the Standard Error of 6°? /
e Assume that X1, ..., X, are normally distributed with common mean p and variance ¢°.

e Then 6° (n — 1) has a y-squared distribution with n — 1 degrees of freedom.
e For large n, 6% is normally distributed around &>.

&‘ The SD of this sampling distribution is the Standard Error.

A%W'Y)’*WL o cornd Sels?)



Limitations of the classical approach

= This approach has served statisticians well for many years; however, what happens if:
* The distributional assumption — for example, x, ... , x,, being normal — breaks down?

* The estimator does not have a simple form and its sampling distribution cannot be derived analytically?

= Bootstrap can handle (at least some of) these departures from the usual assumptions!



Example: Investing in two assets
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Suppose that X and Y are the returns of two assets.

These returns are observed every day: (x1,y1), ..., (Xn, Yn)-



We have a fixed amount of money to invest and we will invest a fraction o on X and a fraction (1 — a) on Y.
Therefore, our return will be
aX + (1 — a)Y.

Our goal will be to minimize the variance of our return as a function of a.

One can show that the optimal a is:

Ao 62 — Cov(X, Y)

) a= .
> 0)2( + 612/ — 2Cov(X,Y)
Proposal: Use an estimate:
. 5y — Cov(X,Y)
o =

62 +62 —2Cov(X,Y)
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Suppose we compute the estimate @ = ﬂ‘&sy'%ng the samples (x1,y1), ..., (X, Yn)-
-

How sure can we be of this value? (A little vague of a question.)

If we had sampled the observations in a different 100 days, would we get a wildly different @? (A more precise
question.)



Resampling the data from the true distribution
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In this thought experlment we know the actual joint distribution P(X, Y), so we can resample the n observations
to our hearts’ content.

True distribution of &



Computing the standard error of o

=  We will use S samples to estimate the standard error of Q.

»  For each sampling of the data, for 1 < s < §
NNS

@, x)

we can compute a value of the estimate al.a?, ...

» The Standard Error of @ is approximated by the standard deviation of these values.



In reality, we only have n samples

A single panel of Fig 5.9

= However, these samples can be used to approximate the joint distribution of X and Y. y $Y
Tt Obn o
b}. own

Vor(R) =



= The Bootstrap: Sample from the empirical distribution:
1 n
PX.Y)= - 2:, 2080}
1=

= Equivalently, resample the data by drawing n samples with replacement from the actual observations.

= Why it works: variances computed under the empirical distribution are good approximations of variances
computed under the true distribution (in many cases). (Gﬂ)
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A schematic of the Bootstrap
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Comparing Bootstrap sampling to sampling from the true

distribution
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Left panel is population distribution of @ — centered (approximately) around the true a.

Middle panel is bootstrap distribution of @ — centered (approximately) around observed Q.
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