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Basic approach

Supervised learning with a qualitative or categorical response.

Just as common, if not more common than regression:



1. Medical diagnosis: Given the symptoms a patient shows, predict which of 3 conditions they are attributed

to.

2. Online banking: Determine whether a transaction is fraudulent or not, on the basis of the IP address,

client’s history, etc.

3. Web searching: Based on a user’s history, location, and the string of a web search, predict which link a

person is likely to click.

4. Online advertising: Predict whether a user will click on an ad or not.



Bayes classifier

Suppose  is known. Then, given an input , we predict the response

The Bayes classifier minimizes the expected 0-1 loss:

This minimum 0-1 loss (the best we can hope for) is the Bayes error rate.
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Basic strategy: estimate 

If we have a good estimate for the conditional probability , we can use the classifier:

Suppose  is a binary variable. Could we use a linear model?

Problems:

This would allow probabilities  and .

Difficult to extend to more than 2 categories.
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Logistic regression

We model the joint probability as:

This is the same as using a linear model for the log odds:

Fitting logistic regression

The training data is a list of pairs .

We don’t observe the left hand side in the model

 We cannot use a least squares fit.
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Likelihood

Solution: The likelihood is the probability of the training data, for a fixed set of coefficients :

We can rewrite as

Choose estimates  which maximize the likelihood.

Solved with numerical methods (e.g. Newton’s algorithm).
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Logistic regression in R

##  
## Call: 
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +  
##     Volume, family = binomial, data = Smarket) 
##  
## Deviance Residuals:  
##    Min      1Q  Median      3Q     Max   
## -1.446  -1.203   1.065   1.145   1.326   
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|) 
## (Intercept) -0.126000   0.240736  -0.523    0.601 
## Lag1        -0.073074   0.050167  -1.457    0.145 
## Lag2        -0.042301   0.050086  -0.845    0.398 
## Lag3         0.011085   0.049939   0.222    0.824 
## Lag4         0.009359   0.049974   0.187    0.851 
## Lag5         0.010313   0.049511   0.208    0.835 
## Volume       0.135441   0.158360   0.855    0.392 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 1731.2  on 1249  degrees of freedom 
## Residual deviance: 1727.6  on 1243  degrees of freedom 
## AIC: 1741.6 
##  
## Number of Fisher Scoring iterations: 3

library(ISLR2)  

glm.fit = glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,  

              family=binomial, data=Smarket) 

summary(glm.fit)



Inference for logistic regression

1. We can estimate the Standard Error of each coefficient.

2. The -statistic is the equivalent of the -statistic in linear regression:

3. The -values are test of the null hypothesis  (Wald’s test).

4. Other possible hypothesis tests: likelihood ratio test (chi-square distribution).
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Example: Predicting credit card default

Predictors:

student: 1 if student, 0 otherwise

balance: credit card balance

income: person’s income.



Confounding

In this dataset, there is confounding, but little collinearity.

Students tend to have higher balances. So, balance is explained by student, but not very well.

People with a high balance are more likely to default.

Among people with a given balance, students are less likely to default.



Results: predicting credit card default

Confounding in Default data



Using only balance

##  
## Call: 
## glm(formula = default ~ balance, family = binomial, data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.2697  -0.1465  -0.0589  -0.0221   3.7589   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 *** 
## balance      5.499e-03  2.204e-04   24.95   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 1596.5  on 9998  degrees of freedom 
## AIC: 1600.5 
##  
## Number of Fisher Scoring iterations: 8

summary(glm(default ~ balance,  

        family=binomial, data=Default))



Using only student

##  
## Call: 
## glm(formula = default ~ student, family = binomial, data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.2970  -0.2970  -0.2434  -0.2434   2.6585   
##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -3.50413    0.07071  -49.55  < 2e-16 *** 
## studentYes   0.40489    0.11502    3.52 0.000431 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 2908.7  on 9998  degrees of freedom 
## AIC: 2912.7 
##  
## Number of Fisher Scoring iterations: 6

summary(glm(default ~ student,  

        family=binomial, data=Default))



Using both balance and student

##  
## Call: 
## glm(formula = default ~ balance + student, family = binomial,  
##     data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.4578  -0.1422  -0.0559  -0.0203   3.7435   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -1.075e+01  3.692e-01 -29.116  < 2e-16 *** 
## balance      5.738e-03  2.318e-04  24.750  < 2e-16 *** 
## studentYes  -7.149e-01  1.475e-01  -4.846 1.26e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 1571.7  on 9997  degrees of freedom 
## AIC: 1577.7 
##  
## Number of Fisher Scoring iterations: 8

summary(glm(default ~ balance + student,  

        family=binomial, data=Default))



Using all 3 predictors

##  
## Call: 
## glm(formula = default ~ balance + income + student, family = binomial,  
##     data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.4691  -0.1418  -0.0557  -0.0203   3.7383   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 *** 
## balance      5.737e-03  2.319e-04  24.738  < 2e-16 *** 
## income       3.033e-06  8.203e-06   0.370  0.71152     
## studentYes  -6.468e-01  2.363e-01  -2.738  0.00619 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 1571.5  on 9996  degrees of freedom 
## AIC: 1579.5 
##  
## Number of Fisher Scoring iterations: 8

summary(glm(default ~ balance + income + student,  

        family=binomial, data=Default))



Multinomial logistic regression

Extension of logistic regression to more than 2 categories

Suppose  takes values in , then we can use a linear model for the log odds against a baseline

category (e.g. 1): for 

In this case  is a matrix of coefficients.

Y {1, 2, … , K}

j ≠ 1

log[ ] = + + ⋯ +
P(Y = j ∣ X)

P(Y = 1 ∣ X)
β0,j β1,jX1 βp,jXp

β ∈ ℝ
p×(K−1)



Some potential problems

The coefficients become unstable when there is collinearity. Furthermore, this affects the convergence of

the fitting algorithm.

When the classes are well separated, the coefficients become unstable. This is always the case when 

. In this case, prediction error is low, but  is very variable.p ≥ n − 1 β ̂ 



Linear Discriminant Analysis (LDA)

Strategy: Instead of estimating  directly, we could estimate:

1. : Given the response, what is the distribution of the inputs.

2. : How likely are each of the categories.

Then, we use Bayes rule to obtain the estimate:

P(Y ∣ X)

(X ∣ Y)P̂ 

(Y)P̂ 

(Y = k ∣ X = x)P̂  =
(X = x ∣ Y = k) (Y = k)P̂  P̂ 

(X = x)P̂ 

=
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(X = x ∣ Y = j) (Y = j)∑K
j=1 P̂  P̂ 



LDA: multivariate normal with equal covariance

LDA is the special case of the above strategy when .

That is, within each class the features have multivariate normal distribution with center depending on the

class and common covariance .

The probabilities  are estimated by the fraction of training samples of class .

P(X ∣ Y = k) = N( , Σ)μk

Σ

P(Y = k) k



Decision boundaries

Density contours and decision boundaries for LDA with three classes.



LDA has (piecewise) linear decision boundaries

Suppose that:

1. We know  exactly.

2.  is Mutivariate Normal with density:

3. Above:  Mean of the inputs for category  and  covariance matrix (common to all categories)

Then, what is the Bayes classifier?
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P(X = x|Y = k)
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By Bayes rule, the probability of category , given the input  is:

The denominator does not depend on the response , so we can write it as a constant:

Now, expanding :

Let’s absorb everything that does not depend on  into a constant :
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Take the logarithm of both sides:

This is the same for every category, .

We want to find the maximum of this expression over .

log P(Y = k ∣ X = x) = log + log − (x − (x − ).C ′ πk

1

2
μk)T

Σ
−1 μk

k

k



Goal is to maximize the following over :

We define the objectives (called discriminant functions):

At an input , we predict the response with the highest .
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Decision boundaries

What are the decision boundaries? It is the set of points  in which 2 classes do just as well (i.e. the discriminant

functions of the two classes agree at ):

This is a linear equation in .
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Decision boundaries revisited

Density contours and decision boundaries for LDA with three classes.



Estimating 

In English: the fraction of training samples of class .

Estimating the parameters of 

Estimate the center of each class :

Estimate the common covariance matrix :

One predictor ( ):

Many predictors ( ): Compute the vectors of deviations  and use an

unbiased estimate of its covariance matrix, .
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Final decision rule

For an input , predict the class with the largest:

The decision boundaries are defined by .
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Quadratic discriminant analysis (QDA)

Comparison of LDA and QDA boundaries

The assumption that the inputs of every class have the same covariance  can be quite restrictive.

Bayes boundary ( ), LDA ( ), QDA ( ).

Σ

− − − − −− ⋅ ⋅ ⋅ − − − − − − −−



QDA: multivariate normal with differing covariance

In quadratic discriminant analysis we estimate a mean  and a covariance matrix  for each class

separately.

Given an input, it is easy to derive an objective function:

This objective is now quadratic in  and so the decision boundaries are 0s of quadratic functions.
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Evaluating a classification method

We have talked about the 0-1 loss:

It is possible to make the wrong prediction for some classes more often than others. The 0-1 loss doesn’t

tell you anything about this.

A much more informative summary of the error is a confusion matrix:

Confusion matrix for a 2 class problem

1( ≠ ).
1

m ∑
i=1

m

yi y ̂ i



Confusion matrix for Default example

##  
## Attaching package: 'MASS'

## The following object is masked from 'package:ISLR2': 
##  
##     Boston

##       
##         No  Yes 
##   No  9644  252 
##   Yes   23   81

1. The error rate among people who do not default (false positive rate) is very low.

2. However, the rate of false negatives is 76%.

3. It is possible that false negatives are a bigger source of concern!

4. One possible solution: Change the threshold

library(MASS) # where the `lda` function lives

lda.fit = predict(lda(default ~ balance + student, data=Default))  

table(lda.fit$class, Default$default)



Changing decision rule

##           
## new.class   No  Yes 
##       No  9432  138 
##       Yes  235  195

Predicted Yes if .

Changing the threshold to 0.2 makes it easier to classify to Yes.

Note that the rate of false positives became higher! That is the price to pay for fewer false negatives.

new.class = rep("No", length(Default$default)) 

new.class[lda.fit$posterior[,"Yes"] > 0.2] = "Yes" 

table(new.class, Default$default)

P(𝚍𝚎𝚏𝚊𝚞𝚕𝚝 = yes|X) > 0.2



Let’s visualize the dependence of the error on the threshold:

Error rates for LDA classifier on Default dataset

 False negative rate (error for defaulting customers),  False positive rate (error for non-defaulting
customers),  Overall error rate.
− − − − −− ⋅ ⋅ ⋅

− − − − − − −−



The ROC curve

ROC curve for LDA classifier on Default dataset.

Displays the performance of the method for any choice of threshold.

The area under the curve (AUC) measures the quality of the classifier:

1. 0.5 is the AUC for a random classifier



2. The closer the AUC is to 1, the better.



Comparing classification methods through simulation

Simulate data from several different known distributions with  predictors and a binary response variable.

Compare the test error (0-1 loss) for the following methods:

1. KNN-1

2. KNN-CV (“optimally tuned” KNN)

3. Logistic regression

4. Linear discriminant analysis (LDA)

5. Quadratic discriminant analysis (QDA)

2



Scenario 1

Instance for simulation scenario #1.

 normal with identical variance.

No correlation in either class.

,X1 X2





Scenario 2

Instance for simulation scenario #2.

 normal with identical variance.

Correlation is -0.5 in both classes.

,X1 X2





Scenario 3

Instance for simulation scenario #3.

 student .

No correlation in either class.

,X1 X2 T





Results for first 3 scenarios

Simulation results for linear scenarios #1-3.



Scenario 4

Instance for simulation scenario #4.

 normal with identical variance.

First class has correlation 0.5, second class has correlation -0.5.

,X1 X2





Scenario 5

 normal with identical variance.

Response  was sampled from:

The true decision boundary is quadratic but this is not QDA model. (Why?)

,X1 X2

Y

P(Y = 1 ∣ X) = .
e + + +β0 β1X 2
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β2X 2

2
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Scenario 6

 normal with identical variance.

Response  was sampled from:

The true decision boundary is very rough.

,X1 X2

Y

P(Y = 1 ∣ X) = .
e ( , )fnonlinear X1 X2

1 + e ( , )fnonlinear X1 X2



Results for scenarios 4-6

Simulation results for nonlinear scenarios #4-6.


