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Lecture #8 
Redfield theory of NMR relaxation

• Topics
– Redfield theory recap
– Relaxation supermatrix
– Dipolar coupling revisited
– Scalar relaxation of the 1st kind

• Handouts and Reading assignments
– van de Ven, Chapters 6.2.
– Kowalewski, Chapter 4.
– Abragam Chapter VIII.C, pp 289-305, 1955.



…and we were 
happy!
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Redfield theory
• We ended the last lecture with the following master equation

dσ̂
dt

= −i ˆ̂H0σ̂ − ˆ̂Γ σ̂ − σ̂ B( )

relaxation superoperator
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Redfield theory
ˆ̂Γ = Jq eq( ) ˆ̂A−q ˆ̂Aq

q
∑• The relaxation superoperator was defined as:

- spectral density functions: Jq eq( ) = Gq τ( )e−ieqτ
0

∞

∫ dτ .

- correlation functions:

Random functions of time

eigenoperatorsˆ̂H0

• Recipe:
Ĥ t( ) = Ĥ0 + Ĥ1 t( ).1. Given 

3. Plug and chug.

2. Express          as a linear combination of eigenoperators of  Ĥ1 t( ) ˆ̂H0,

Ĥ1 t( ) = Fq t( )
q
∑ Âq. But how do we 

compute T1 or T2?

Gq τ( ) = F−q "t( )Fq "t −τ( )
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The Relaxation Supermatrix
• Rather than directly solving the master equation, we often just want 

to calculate the time dependence of particular coherences, e.g. 

Î x ,  Î y , or   Îz .
• Express the density operator in the product operator basis…

€ 

ˆ σ = ˆ C j ˆ C j
j
∑

�vector� in a 16-D coherence 
(Liouville) space

€ 

ˆ C = Tr( ˆ σ ˆ C )

  

€ 

ˆ C j ∈ {1
2

ˆ E , ˆ I x, ˆ S x, ˆ I y, ˆ S y,…,2ˆ I z ˆ S z}
Two-spin case

• Rewrite the master equation as a vector/matrix equation:
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The Relaxation Supermatrix
• Rewrite the master equation as a matrix equation:

ˆ̂Γ R
trace

“Supermatrix” with elements Rjk = Tr Ĉ j
ˆ̂ΓĈk( ) = Ĉ j

ˆ̂Γ Ĉk

Notation used in van de Ven.  Don’t  
confuse with expected value. 

- Relaxation supermatrix, R, is 
block diagonal (secular approx).

• If we reorder     to first list 
populations, then single-
quantum terms, then double-
quantum terms, ...

!
σ

- Cross relaxation only occurs for 
coherences with degenerate 
eigenvalues of ˆ̂H0.

From Problem Set 1, these eigenvalues are 
the transition frequencies, i.e. sums and 
differences of the system energy levels 

ˆ̂H0eigenvalue 

0

�(ωI-ωS)

�ωI, �ωS

�(ωI+ωS)
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Calculating Relaxation Times
• Rewrite the master equation in terms of the operator coefficients:

d
dt

Ĉj = −i Ĉ j
ˆ̂H0 Ĉk Ĉk − Ĉk − Ĉk B( ) Ĉ j

ˆ̂Γ Ĉk
#
$
%

&
'
(

k
∑

1
T1,I

= Îz ˆ̂Γ Îz

• Examples

1
T1,S

= Ŝz ˆ̂Γ Ŝz
1

T1,cross
= Îz ˆ̂Γ Ŝz

1
T2,I

= Î x ˆ̂Γ Î x = Î y ˆ̂Γ Î y …we just need to compute 
some (a bunch) of commutators.

Rotations Relaxation 
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Relaxation due to a random field 
(or hints for Problem Set #5)

• Consider a Hamiltonian of the form

Ĥ = Ĥ0 + Ĥ1 t( ) = −γB0 Îz −γΔB t( ) Îz

• Noting that ˆ̂H0 Îz = 0 ⋅ Îz
Eigenvalue Eigenoperator

ΔB t( ) = 0
with

ΔB t( )ΔB t −τ( ) = B2e−τ τ c

then            ,                           , and  Â0 = Îz F0 t( ) = −γΔB t( ) J0 ω( ) = γ 2B2 τ c
1+ω 2τ c

2

= J0 0( )B2 ˆ̂Iz ˆ̂Izˆ̂Γ = Jq eq( ) ˆ̂A−q ˆ̂Aq
q
∑

1
T2
= γ 2B2τC

1
T2
= Î x ˆ̂Γ Î x = γ 2B2τ cTr Î x ˆ̂Iz ˆ̂Iz Î x( )= γ 2B2τ cTr −iÎ x ˆ̂Iz Î y( ) = γ 2B2τ cTr Î x Î x( )

1
T1
= ?Hence:

Assumed to be 
normalized



Dipolar Coupling Revisited

Ĥdipole = −
γ IγS!
r3

µ0
4π
!̂
I ⋅
!̂
S − 3

r2
(
!̂
I ⋅ !r )(

!̂
S ⋅ !r )

#
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where     vector from 
spin I to spin S

  

€ 

! r 

•  The complete dipolar coupling Hamiltonian is given by

With tumbling, both q and 
f are functions of time.

Â0 = 1
6 2 ÎzŜz − 1

2 Î+Ŝ− − 1
2 Î−Ŝ+( )

Â±1 = ± 1
2 Î±Ŝz + ÎzŜ±( )

Â±2 = 1
2 Î±Ŝ±

•  This can be written as:

ĤD t( ) = −γ IγS!
r3

µ0
4π

Fq t( ) Âq
q
∑ where 

F0 (t) = 3
2 3cos

2θ −1( )

F±1(t) = ±3sinθ cosθe
∓iφ

F±2 (t) =
3
2 sin

2θe∓2iφ

and 

Hey! These look like 
rank 2 spherical 

harmonics.



Eigenoperator Eigenvalue

Dipolar Coupling Revisited
• Noting the following are eigenoperators of         (see Problem Set #1)ˆ̂H0

Fq
*Fq

  =
6
5

Together with

ÎzŜz
Î+Ŝ+
Î−Ŝ−
Î+Ŝ−
Î−Ŝ+
Î+Ŝz
Î−Ŝz
ÎzŜ+
ÎzŜ−

ω I +ωS

− ω I +ωS( )

ω I −ωS

− ω I −ωS( )

ω I

−ω I

ωS

−ωS

0

• We can now compute ˆ̂Γ.



Dipolar coupling superoperator
• Case 1: unlike spins, after much algebra…

ˆ̂Γ = 4 γ I
2γS
2!2

10r6
2J 0( ) ÎzŜz

 ̂
ÎzŜz
 ̂"

#

$
$

%

&

'
'

(
)
*

+*

      +  1
4
J ω I −ωS( )+ 3

2
J ω I +ωS( )

"

#
$

%

&
' Î xŜx

 ̂
Î xŜx
 ̂
+ Î yŜy
 ̂
Î yŜy
 ̂
+ Î xŜy
 ̂
Î xŜy
 ̂
+ Î yŜx
 ̂
Î yŜx
 ̂"

#

$
$

%

&

'
'

      +  3
2
J ω I( ) Î xŜz

 ̂
Î xŜz
 ̂
+ Î yŜz
 ̂
Î yŜz
 ̂"

#

$
$

%

&

'
'
+  3
2
J ωS( ) ÎzŜx

 ̂
ÎzŜx
 ̂
+ ÎzŜy
 ̂
ÎzŜy
 ̂"

#

$
$

%

&

'
'

      −  1
4
J ω I −ωS( )− 3

2
J ω I +ωS( )

"

#
$

%

&
' Î xŜx

 ̂
Î yŜy
 ̂
+ Î yŜy
 ̂
Î xŜx
 ̂
− Î xŜy
 ̂
Î yŜx
 ̂
− Î yŜx
 ̂
Î xŜy
 ̂"
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'
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ÎzŜz
 ̂
≠ ˆ̂Iz ˆ̂SzNote: 



Dipolar coupling superoperator

ˆ̂Cq
ˆ̂CqĈp =

0     if  ˆ̂CqĈp = 0 

Ĉp  if   ˆ̂CqĈp ≠ 0

"

#
$

%
$ Remember all product operators cyclically 

commute.

• Before calculating a bunch of commutators, we should note that there are 

multiple terms of the form          , and this can make things easier…ˆ̂Cq
ˆ̂Cq

• Terms of the form           give rise to cross relaxationˆ̂Cq
ˆ̂Cr

Example: Î xŜy
 ̂
Î yŜx
 ̂
Îz = 1

4 Ŝz



Dipolar coupling – unlike Spins  

ˆ̂ΓÎ x = q 2J 0( )+ 1
2 J ω I −ωS( )+3J ω I +ωS( )+ 3

2 J ω I( )+3J ωS( )( ) Î x
1
T2,I

= Î x ˆ̂Γ Î x = q
2 4J 0( )+ J ω I −ωS( )+ 6J ω I +ωS( )+3J ω I( )+ 6J ωS( )( )

• Let’s calculate T1.

ˆ̂ΓÎz =q J ω I −ωS( )+ 6J ω I +ωS( )+3J ω I( )( ) Îz + J ω I −ωS( )− 6J ω I +ωS( )( ) Ŝz"
#

$
%

1
T1,I

= Îz ˆ̂Γ Îz = q J ω I −ωS( )+ 6J ω I +ωS( )+3J ω I( )( )

• Calculating T2.   Let q = µ 20
16π 2

γ I
2γS
2!2

10r6

• And the cross relaxation term is:

1
T1,IS

= Ŝz ˆ̂Γ Îz = q 6J ω I +ωS( )− J ω I −ωS( )( )



Dipolar coupling – like spins   
• Case 2:  The equation for spins with the same (or nearly the same) chemical 

shift, ~ω0, is even longer due to cross terms between         and  ÎzŜz Î±Ŝ∓.

• But now there is also transverse cross relaxation between spins I and S.

1
T2,I

= Î x ˆ̂Γ Î x = q
2 5J 0( )+ 9J ω0( )+ 6J 2ω0( )( )

1
T2,IS

= Ŝx ˆ̂Γ Î x = q 2J 0( )+3J ω0( )( )

This effect is exploited in some spin lock experiments.

ˆ̂Γ =  see van de Ven p. 355 1
T1
= q 3J(ω0 )+12J(2ω0 )( )
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Summary of Redfield theory 
dσ̂
dt

= −i ˆ̂H0σ̂ − ˆ̂Γ σ̂ − σ̂ B( )

• Although Redfield theory may seem much more complicated than the 
Solomon equations for dipolar relaxation, it is actually very useful.

• For example, T1 and T2 due to chemical shift anisotropy or scalar relaxation 
of the 1st and 2nd kind are readily calculated.

• Relaxation arises from perturbations having energy at the transition frequencies. 
That is, if the eigenvalues of       (= energies of the system/   ) are e1, e2, etc.  
Then, the spectral density function is probed as frequencies �(ei – ej).

Ĥ0 !

• Cross relaxation only occurs between coherences with the same transition 
frequencies.



Example: Scalar relaxation of the 1st kind
• Consider a J-coupled spin pair with the following Hamiltonian:

Ĥ = Ĥ0 + Ĥ1 = −ω I Îz −ωSŜz + 2π J ÎzŜz + Î xŜx + Î yŜy( )
• We would normally expect a doublet from the I spin, however chemical 

exchange by the S spin can become a relaxation mechanism.

• Under exchange, with an exchange time of τex, the coupling constant between 
the I spin and a spin Si becomes a random function of time.  Rewriting the 
perturbing Hamiltonian:

Ĥ1 t( ) = Ai t( ) ˆ
!
I ⋅ ˆ
!
S

where A2
i =

A2 = 4π 2J 2   if I  and Si  are on the same molecule
0   otherwise

!
"
#

$#

Ai t( )Ai t +τ( ) = A2e−τ τ ex = probability the I and Si spins are on the same 
molecule at time t + τ, given that they are at time t.



Example: Scalar relaxation of the 1st kind

• Noting the eigenoperators and corresponding eigenvalues of ˆ̂H0

Eigenoperator Eigenvalue

ÎzŜz 0
Î+Ŝ− − ω I −ωS( )
Î−Ŝ+ ω I −ωS

Ĥ1 t( ) = Ai t( ) ÎzŜz + 1
2 Ai t( ) Î+Ŝ− + 1

2 Ai t( ) Î−Ŝ+

• Written as a sum of eigenoperators of      , the perturbing Hamiltonian becomesˆ̂H0

• Thus we have: Ĥ0 = −ω I Îz −ωSŜz Ĥ1 t( ) = Ai t( ) ÎzŜz + Î xŜx + Î yŜy( ).and

• All we need now is the spectral density function, which we’ll denote Jex ω( ).
Let Pi be the probability spins I and Si are on the same molecule, then

Jex ω( ) = Pi Ai t( )Ai t +τ( )
0

∞

∫
i
∑ cosωτdτ .

Assume the I spin is always coupled to some S spin, i.e. Pii∑ =1

Jex ω( ) = A2 τ ex
1+ω 2τ ex

2



Example: Scalar relaxation of the 1st kind
• Hence:

ˆ̂Γ = A2Jex 0( ) ÎzŜz
 ̂
ÎzŜz
 ̂
+ 1
4 A

2Jex ω I −ωS( ) Î+Ŝ−
 ̂
Î+Ŝ−
 ̂
+ 1
4 A

2Jex ω I −ωS( ) Î−Ŝ+
 ̂
Î−Ŝ+
 ̂

• From which it follows

1
T2,I

= Î x ˆ̂Γ Î x

1
T1,I

= Îz ˆ̂Γ Îz = 2A2
S S +1( )
3

τ ex
1+ ω I −ωS( )2 τ ex2

= Î y ˆ̂Γ Î y = Î+ ˆ̂Γ Î+ =
4π 2J 2S S +1( )

3
τ ex +

τ ex
1+ ω I −ωS( )2 τ ex2

"

#
$
$

%

&
'
'

Note: the S(S+1)/3 factor comes from                 

where S = spin of the unpaired electron system or nucleus.

Tr Ŝp
2( ) = S(S +1)

3
, p = product operator

• For those who complete the homework, we note that these equations have the 
same form as scalar relaxation of the 2nd kind with the correlation time given 
by T1,S and T2,S instead of τex.

=
8π 2J 2S S +1( )

3
τ ex

1+ ω I −ωS( )2 τ ex2
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Next Lecture: Redfield theory-
Examples


