Lecture \#8

Redfield theory of NMR relaxation

- Topics
- Redfield theory recap
- Relaxation supermatrix
- Dipolar coupling revisited
- Scalar relaxation of the $1^{\text {st }}$ kind
- Handouts and Reading assignments
- van de Ven, Chapters 6.2.
- Kowalewski, Chapter 4.
- Abragam Chapter VIII.C, pp 289-305, 1955.

Redfield theory

- We ended the last lecture with the following master equation

Redfield theory

- The relaxation superoperator was defined as: $\hat{\hat{\Gamma}}=\sum_{q} J_{q}\left(e_{q}\right) \hat{\hat{A}}_{-q} \hat{\hat{A}}_{q}$
- spectral density functions: $J_{q}\left(e_{q}\right)=\int_{q}^{\infty}(\tau) e^{-i e_{q} \tau} d \tau$. $\hat{\hat{H}}_{0}$ eigenoperators
- spectral density functions: $J_{q}\left(e_{q}\right)=\int_{0}^{\infty} G_{q}(\tau) e^{-i e_{q} \tau} d \tau$.
- correlation functions: $G_{q}(\tau)=\overline{F_{-q}\left(t^{\prime}\right) F_{q}\left(t^{\prime}-\tau\right)}$
- Recipe:

Random functions of time

1. Given $\hat{H}(t)=\hat{H}_{0}+\hat{H}_{1}(t)$.
2. Express $\hat{H}_{1}(t)$ as a linear combination of eigenoperators of $\hat{\hat{H}}_{0}$,

$$
\hat{H}_{1}(t)=\sum_{q} F_{q}(t) \hat{A}_{q}
$$

3. Plug and chug.

The Relaxation Supermatrix

- Rather than directly solving the master equation, we often just want to calculate the time dependence of particular coherences, e.g.

$$
\overline{\left\langle\hat{I}_{x}\right\rangle}, \overline{\left\langle\hat{I}_{y}\right\rangle}, \text { or } \overline{\left\langle\hat{I}_{z}\right\rangle} .
$$

- Express the density operator in the product operator basis...

$$
\begin{aligned}
\left.\hat{\sigma}=\sum_{j} \overline{\left\langle\hat{C}_{j}\right\rangle}\right\rangle & \hat{C}_{j}
\end{aligned} \vec{\sigma}^{\prime}=\left(\begin{array}{c}
\frac{1}{\left\langle I_{x}\right\rangle} \\
\frac{\left\langle S_{x}\right\rangle}{} \\
\overline{\langle\hat{C}\rangle}=\operatorname{Tr}(\hat{\sigma} \hat{C}) \\
\frac{\text { Two-spin case }}{\left\langle 2 I_{z} S_{z}\right\rangle}
\end{array}\right) \quad \begin{gathered}
\hat{C}_{j} \in\left\{\frac{1}{2} \hat{E}, \hat{I}_{x}, \hat{S}_{x}, \hat{I}_{y}, \hat{S}_{y}, \ldots, 2 \hat{I_{z}} \hat{S}_{z}\right\} \\
\text { "vector" in a 16-D coherence } \\
\text { (Liouville) space }
\end{gathered}
$$

- Rewrite the master equation as a vector/matrix equation:

The Relaxation Supermatrix

- Rewrite the master equation as a matrix equation:
$\hat{\hat{\Gamma}} \Longleftrightarrow \underline{R} \quad$ "Supermatrix" with elements $R_{j k}=\operatorname{Tr}\left(\hat{C_{j}} \hat{\hat{\Gamma}} \hat{C}_{k}\right)=\left\langle\hat{C}_{j}\right| \hat{\hat{\Gamma}}\left|\hat{C}_{k}\right\rangle$
- If we reorder $\vec{\sigma}$ to first list populations, then singlequantum terms, then doublequantum terms, ...
- Relaxation supermatrix, \underline{R}, is block diagonal (secular approx).
- Cross relaxation only occurs for coherences with degenerate eigenvalues of $\hat{\hat{H}}_{0}$.

From Problem Set 1, these eigenvalues are the transition frequencies, i.e. sums and differences of the system energy levels

Calculating Relaxation Times

- Rewrite the master equation in terms of the operator coefficients:

$$
\frac{d}{d t} \overline{\left\langle\hat{C}_{j}\right\rangle}=\sum_{k}(\underbrace{-i\left\langle\hat{C}_{j}\right| \hat{\hat{H}}_{0}\left|\hat{C}_{k}\right\rangle \overline{\left\langle\hat{C}_{k}\right\rangle}}_{\text {Rotations }}-\underbrace{\left(\overline{\left\langle\hat{C}_{k}\right\rangle}-\overline{\left\langle\hat{C}_{k}\right\rangle}{ }_{B}\right)\left\langle\hat{C}_{j}\right| \hat{\hat{\Gamma}}\left|\hat{C}_{k}\right\rangle}_{\text {Relaxation }})
$$

- Examples

$$
\begin{aligned}
& \frac{1}{T_{1, I}}=\left\langle\hat{I}_{z}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{z}\right\rangle \quad \frac{1}{T_{1, S}}=\left\langle\hat{S}_{z}\right| \hat{\hat{\Gamma}}\left|\hat{S}_{z}\right\rangle \quad \frac{1}{T_{1, \text { cross }}}=\left\langle\hat{I}_{z}\right| \hat{\hat{\Gamma}}\left|\hat{S}_{z}\right\rangle \\
& \frac{1}{T_{2, I}}=\left\langle\hat{I}_{x}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{x}\right\rangle=\left\langle\hat{I}_{y}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{y}\right\rangle \quad \begin{array}{l}
\quad \ldots \text { we just need to compute }
\end{array} \\
& \quad \begin{array}{l}
\text { some (a bunch) of commutators. }
\end{array}
\end{aligned}
$$

Relaxation due to a random field (or hints for Problem Set \#5)

- Consider a Hamiltonian of the form

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{1}(t)=-\gamma B_{0} \hat{I}_{z}-\gamma \Delta B(t) \hat{I}_{z} \text { with } \begin{aligned}
& \langle\Delta B(t)\rangle=0 \\
& \langle\Delta B(t) \Delta B(t-\tau)\rangle=B^{2} e^{-|\tau| / \tau_{c}}
\end{aligned}
$$

- Noting that $\hat{\hat{H}}_{0} \hat{I}_{z}=0 \cdot \hat{I}_{z}$

Eigenvalue \quad Eigenoperator

$$
\begin{aligned}
& \text { then } \hat{A}_{0}=\hat{I}_{z}, F_{0}(t)=-\gamma \Delta B(t) \text {, and } J_{0}(\omega)=\gamma^{2} B^{2} \frac{\tau_{c}}{1+\omega^{2} \tau_{c}^{2}} \\
& \Rightarrow \hat{\hat{\Gamma}}=\sum_{q} J_{q}\left(e_{q}\right) \hat{\hat{A}}_{-q} \hat{\hat{A}}_{q}=J_{0}(0) B^{2} \hat{\hat{I}}_{z} \hat{\hat{I}}_{z} \\
& \frac{1}{T_{2}}=\left\langle\hat{I}_{x}\right| \hat{\hat{\Gamma}}^{\text {Assumed to be }} \text { normalized } \\
& \left.\hat{I}_{x}\right\rangle=\gamma^{2} B^{2} \tau_{c} \operatorname{Tr}\left(\hat{I}_{x} \hat{\hat{I}}_{z} \hat{\hat{I}}_{z} \hat{I}_{x}\right)=\gamma^{2} B^{2} \tau_{c} \operatorname{Tr}\left(-i \hat{I_{x}} \hat{\hat{I}}_{z} \hat{I}_{y}\right)=\gamma^{2} B^{2} \tau_{c} \operatorname{Tr}\left(\hat{I}_{x} \hat{I}_{x}\right)
\end{aligned}
$$

Hence: $\frac{1}{T_{2}}=\gamma^{2} B^{2} \tau_{C} \quad \frac{1}{T_{1}}=$?

Dipolar Coupling Revisited

- The complete dipolar coupling Hamiltonian is given by

$$
\hat{H}_{\text {dipole }}=-\frac{\gamma_{I} \gamma_{S} \hbar}{r^{3}} \frac{\mu_{0}}{4 \pi}\left(\hat{\vec{I}} \cdot \hat{\vec{S}}-\frac{3}{r^{2}}(\hat{\vec{I}} \cdot \vec{r})(\hat{\vec{S}} \cdot \vec{r})\right)
$$

where \vec{r} vector from spin I to $\operatorname{spin} S$

- This can be written as:

$$
\begin{array}{ll}
\hat{H}_{D}(t)=-\frac{\gamma_{I} \gamma_{S} \hbar}{r^{3}} \frac{\mu_{0}}{4 \pi} \sum_{q} F_{q}(t) \hat{A}_{q} & \text { where } \\
\hat{A}_{0}=\sqrt{\frac{1}{6}}\left(2 \hat{I}_{z} \hat{S}_{z}-\frac{1}{2} \hat{I}_{+} \hat{S}_{-}-\frac{1}{2} \hat{I} \hat{S}_{-} \hat{S}_{+}\right) & F_{0}(t)=\sqrt{\frac{3}{2}}\left(3 \cos ^{2} \theta-1\right) \\
\hat{A}_{ \pm 1}= \pm \frac{1}{2}\left(\hat{I}_{ \pm} \hat{S}_{z}+\hat{I}_{z} \hat{S}_{ \pm}\right) \quad \text { and } \quad F_{ \pm 1}(t)= \pm 3 \sin \theta \cos \theta e^{\mp i \phi} \\
\hat{A}_{ \pm 2}=\frac{1}{2} \hat{I}_{ \pm} \hat{S}_{ \pm}
\end{array}
$$

Dipolar Coupling Revisited

- Noting the following are eigenoperators of $\hat{\hat{H}}_{0}$ (see Problem Set \#1)

Eigenoperator	Eigenvalue
$\hat{I}_{z} \hat{S}_{z}$	0
$\hat{I}_{+} \hat{S}_{+}$	$-\left(\omega_{I}+\omega_{S}\right)$
$\hat{I}_{-} \hat{S}_{-}$	$\omega_{I}+\omega_{S}$
$\hat{I}_{+} \hat{S}_{-}$	$-\left(\omega_{I}-\omega_{S}\right)$
$\hat{I}_{S_{S}} \hat{S}_{+}$	$\omega_{I}-\omega_{S}$
$\hat{I}_{+} \hat{S}_{z}$	$-\omega_{I}$
$\hat{I}_{-} \hat{S}_{z}$	ω_{I}
$\hat{I}_{z} \hat{S}_{+}$	$-\omega_{S}$
$\hat{I}_{Z} \hat{S}_{-}$	ω_{S}

Together with $\overline{F_{q}^{*} F_{q}}=\frac{6}{5}$

- We can now compute $\hat{\hat{\Gamma}}$.

Dipolar coupling superoperator

- Case 1: unlike spins, after much algebra...

$$
\begin{aligned}
\hat{\hat{\Gamma}}= & 4 \frac{\gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2}}{10 r^{6}}\left\{2 J(0)\left(\hat{I}_{z} \hat{S}_{z} \hat{I}_{z} \hat{S}_{z}\right)\right. \\
& +\left(\frac{1}{4} J\left(\omega_{I}-\omega_{S}\right)+\frac{3}{2} J\left(\omega_{I}+\omega_{S}\right)\right)\left(\hat{I}_{x} \hat{S}_{x} \hat{I}_{x} \hat{S}_{x}+\hat{I}_{y} \hat{S}_{y} \hat{S}_{y} \hat{I}_{y} \hat{S}_{y}+\hat{I}_{x} \hat{S}_{y} \hat{I}_{x} \hat{S}_{y}+\hat{I}_{y} \hat{S}_{x} \hat{I}_{y} \hat{S}_{x}\right) \\
& +\frac{3}{2} J\left(\omega_{I}\right)\left(\hat{I}_{x} \hat{S}_{z} \hat{I}_{x} \hat{S}_{z}+\hat{I}_{y} \hat{S}_{z} \hat{I}_{y} \hat{S}_{z}\right)+\frac{3}{2} J\left(\omega_{S}\right)\left(\hat{I}_{z} \hat{S}_{x} \hat{I}_{z} \hat{S}_{x}+\hat{I}_{z} \hat{S}_{y} \hat{I}_{z} \hat{S}_{y}\right) \\
& -\left(\frac{1}{4} J\left(\omega_{I}-\omega_{S}\right)-\frac{3}{2} J\left(\omega_{I}+\omega_{S}\right)\right)\left(\hat{I}_{x} \hat{S}_{x} \hat{I_{y}} \hat{S}_{y}+\hat{I}_{y} \hat{S}_{y} \hat{S}_{y} \hat{I}_{x}-\hat{I}_{x} \hat{S}_{x} \hat{I}_{y} \hat{S}_{y}-\hat{I}_{y} \hat{S}_{x} \hat{I}_{x} \hat{S}_{y}\right)
\end{aligned}
$$

Note: $\hat{I}_{z} \hat{S}_{z} \neq \hat{\hat{I}}_{z} \hat{S}_{z}$

Dipolar coupling superoperator

- Before calculating a bunch of commutators, we should note that there are multiple terms of the form $\hat{\hat{C}}_{q} \hat{\hat{C}}_{q}$, and this can make things easier...

$$
\hat{\hat{C}}_{q} \hat{\hat{C}}_{q} \hat{C}_{p}=\left\{\begin{array}{lll}
0 & \text { if } & \hat{\hat{C}}_{q} \hat{C}_{p}=0 \\
\hat{C}_{p} & \text { if } & \hat{\hat{C}}_{q} \hat{C}_{p} \neq 0
\end{array}\right.
$$

Remember all product operators cyclically commute.

- Terms of the form $\hat{\hat{C}}_{q} \hat{\hat{C}}_{r}$ give rise to cross relaxation

$$
\text { Example: } \hat{I}_{x} \hat{S}_{y} \hat{I}_{y} \hat{S}_{x} \hat{I}_{z}=\frac{1}{4} \hat{S}_{z}
$$

Dipolar coupling - unlike Spins

- Calculating T_{2}. Let $q=\frac{\mu_{0}^{2}}{16 \pi^{2}} \frac{\gamma^{2} \gamma_{S}^{2} \hbar^{2}}{10 r^{6}}$

$$
\begin{aligned}
& \hat{\hat{\Gamma}} \hat{I}_{x}=q\left(2 J(0)+\frac{1}{2} J\left(\omega_{I}-\omega_{S}\right)+3 J\left(\omega_{I}+\omega_{S}\right)+\frac{3}{2} J\left(\omega_{I}\right)+3 J\left(\omega_{S}\right)\right) \hat{I}_{x} \\
& \frac{1}{T_{2, I}}=\left\langle\hat{I}_{x}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{x}\right\rangle=\frac{q}{2}\left(4 J(0)+J\left(\omega_{I}-\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)+3 J\left(\omega_{I}\right)+6 J\left(\omega_{S}\right)\right)
\end{aligned}
$$

- Let's calculate T_{1}.

$$
\begin{aligned}
& \hat{\hat{\Gamma}} \hat{I}_{z}=q\left[\left(J\left(\omega_{I}-\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)+3 J\left(\omega_{I}\right)\right) \hat{I}_{z}+\left(J\left(\omega_{I}-\omega_{S}\right)-6 J\left(\omega_{I}+\omega_{S}\right)\right) \hat{S}_{z}\right] \\
& \left.\frac{1}{T_{1, I}}=\langle\hat{I}| \hat{I}|\hat{\Gamma}| \hat{I}_{z}\right\rangle=q\left(J\left(\omega_{I}-\omega_{S}\right)+6 J\left(\omega_{I}+\omega_{S}\right)+3 J\left(\omega_{I}\right)\right)
\end{aligned}
$$

- And the cross relaxation term is:

$$
\frac{1}{T_{1, I S}}=\langle\hat{S}| \hat{\hat{\Gamma}}\left|\hat{I}_{z}\right\rangle=q\left(6 J\left(\omega_{I}+\omega_{S}\right)-J\left(\omega_{I}-\omega_{S}\right)\right)
$$

Dipolar coupling - like spins

- Case 2: The equation for spins with the same (or nearly the same) chemical shift, $\sim \omega_{0}$, is even longer due to cross terms between $\hat{I}_{z} \hat{S}_{z}$ and $\hat{I}_{ \pm} \hat{S}_{\mp}$.

$$
\hat{\hat{\Gamma}}=\text { see van de Ven p. } 355 \Rightarrow \frac{1}{T_{1}}=q\left(3 J\left(\omega_{0}\right)+12 J\left(2 \omega_{0}\right)\right)
$$

- But now there is also transverse cross relaxation between spins I and S.

$$
\begin{aligned}
& \frac{1}{T_{2, I}}=\left\langle\hat{I}_{x}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{x}\right\rangle=\frac{q}{2}\left(5 J(0)+9 J\left(\omega_{0}\right)+6 J\left(2 \omega_{0}\right)\right) \\
& \frac{1}{T_{2, I S}}=\left\langle\hat{S}_{x}\right| \hat{\Gamma}\left|\hat{I}_{x}\right\rangle=q\left(2 J(0)+3 J\left(\omega_{0}\right)\right)
\end{aligned}
$$

This effect is exploited in some spin lock experiments.

Summary of Redfield theory

$$
\frac{d \hat{\sigma}}{d t}=-i \hat{\hat{H}}_{0} \hat{\sigma}-\hat{\hat{\Gamma}}\left(\hat{\sigma}-\hat{\sigma}_{B}\right)
$$

- Relaxation arises from perturbations having energy at the transition frequencies. That is, if the eigenvalues of $\hat{H}_{0}(=$ energies of the system $/ \hbar)$ are $\mathrm{e}_{1}, \mathrm{e}_{2}$, etc. Then, the spectral density function is probed as frequencies $\pm\left(e_{i}-e_{j}\right)$.
- Cross relaxation only occurs between coherences with the same transition frequencies.
- Although Redfield theory may seem much more complicated than the Solomon equations for dipolar relaxation, it is actually very useful.
- For example, T_{1} and T_{2} due to chemical shift anisotropy or scalar relaxation of the $1^{\text {st }}$ and $2^{\text {nd }}$ kind are readily calculated.

Example: Scalar relaxation of the $1^{\text {st }}$ kind

- Consider a J-coupled spin pair with the following Hamiltonian:

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{1}=-\omega_{I} \hat{I}_{z}-\omega_{S} \hat{S}_{z}+2 \pi J\left(\hat{I}_{z} \hat{S}_{z}+\hat{I}_{x} \hat{S}_{x}+\hat{I}_{y} \hat{S}_{y}\right)
$$

- We would normally expect a doublet from the I spin, however chemical exchange by the S spin can become a relaxation mechanism.
- Under exchange, with an exchange time of $\tau_{\text {ex }}$, the coupling constant between the I spin and a spin S_{i} becomes a random function of time. Rewriting the perturbing Hamiltonian:

$$
\hat{H}_{1}(t)=A_{i}(t) \overrightarrow{\hat{I}} \cdot \overrightarrow{\hat{S}}
$$

where $\left\langle A_{i}^{2}\right\rangle=\left\{\begin{array}{l}A^{2}=4 \pi^{2} J^{2} \text { if } I \text { and } S_{i} \text { are on the same molecule } \\ 0 \quad \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
\left\langle A_{i}(t) A_{i}(t+\tau)\right\rangle=A^{2} e^{-\tau / \tau_{e x}} & =\text { probability the } I \text { and } S_{i} \text { spins are on the same } \\
& \text { molecule at time } t+\tau, \text { given that they are at time } t .
\end{aligned}
$$

Example: Scalar relaxation of the $1^{\text {st }}$ kind

- Thus we have: $\hat{H}_{0}=-\omega_{I} \hat{I}_{z}-\omega_{S} \hat{S}_{z}$ and $\hat{H}_{1}(t)=A_{i}(t)\left(\hat{I}_{z} \hat{S}_{z}+\hat{I}_{x} \hat{S}_{x}+\hat{I}_{y} \hat{S}_{y}\right)$.
- Noting the eigenoperators and corresponding eigenvalues of $\hat{\hat{H}}_{0}$
Eigenoperator
$\hat{I}_{2} \hat{S}_{z}$
$\hat{I}_{2} \hat{S}_{-}$
$\hat{I}_{-} \hat{S}_{+}$

Eigenvalue
0

$$
\begin{gathered}
-\left(\omega_{I}-\omega_{S}\right) \\
\omega_{I}-\omega_{S}
\end{gathered}
$$

- Written as a sum of eigenoperators of $\hat{\hat{H}}_{0}$, the perturbing Hamiltonian becomes

$$
\hat{H}_{1}(t)=A_{i}(t) \hat{I}_{z} \hat{S}_{z}+\frac{1}{2} A_{i}(t) \hat{I}_{+} \hat{S}_{-}+\frac{1}{2} A_{i}(t) \hat{I}_{-} \hat{S}_{+}
$$

- All we need now is the spectral density function, which we'll denote $J_{e x}(\omega)$.

Let P_{i} be the probability spins I and S_{i} are on the same molecule, then

$$
J_{e x}(\omega)=\sum_{i} P_{i} \int_{0}^{\infty}\left\langle A_{i}(t) A_{i}(t+\tau)\right\rangle \cos \omega \tau d \tau .
$$

Assume the I spin is always coupled to some S spin, i.e. $\sum_{i} P_{i}=1$

$$
\Rightarrow J_{e x}(\omega)=A^{2} \frac{\tau_{e x}}{1+\omega^{2} \tau_{e x}^{2}}
$$

Example: Scalar relaxation of the $1^{\text {st }}$ kind

- Hence:

$$
\hat{\hat{\Gamma}}=A^{2} J_{e x}(0) \hat{I}_{z} \hat{S}_{z} \hat{I}_{z} \hat{S}_{z}+\frac{1}{4} A^{2} J_{e x}\left(\omega_{I}-\omega_{S}\right) \hat{I_{+}} \hat{S}_{-} \hat{I}_{+} \hat{I}_{+} \hat{S}_{-}+\frac{1}{4} A^{2} J_{e x}\left(\omega_{I}-\omega_{S}\right) \hat{I} \hat{I}_{-} \hat{S}_{+} \hat{I}_{-} \hat{S}_{+}
$$

- From which it follows

$$
\begin{array}{r}
\frac{1}{T_{1, I}}=\left\langle\hat{I}_{z}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{z}\right\rangle=2 A^{2} \frac{S(S+1)}{3} \frac{\tau_{e x}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{e x}^{2}}=\frac{8 \pi^{2} J^{2} S(S+1)}{3} \frac{\tau_{e x}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{e x}^{2}} \\
\text { Note: the } \mathrm{S}(\mathrm{~S}+1) / 3 \text { factor comes from } \operatorname{Tr}\left(\hat{\mathrm{S}}_{p}^{2}\right)=\frac{S(S+1)}{3}, p=\text { product operator } \\
\text { where } \mathrm{S}=\text { spin of the unpaired electron system or nucleus. }
\end{array}
$$

$$
\frac{1}{T_{2, I}}=\left\langle\hat{I}_{x}\right| \hat{\hat{\Gamma}}\left|\hat{I}_{x}\right\rangle=\left\langle\hat{I}_{y}\right| \hat{\hat{\Gamma}}^{\mid}\left|\hat{I}_{y}\right\rangle=\left\langle\hat{I}_{+}\right| \hat{\hat{\Gamma}}_{+}\left|\hat{I}_{+}\right\rangle=\frac{4 \pi^{2} J^{2} S(S+1)}{3}\left(\tau_{e x}+\frac{\tau_{e x}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{e x}^{2}}\right)
$$

- For those who complete the homework, we note that these equations have the same form as scalar relaxation of the $2^{\text {nd }}$ kind with the correlation time given by $T_{1, S}$ and $T_{2, S}$ instead of $\tau_{e x}$.

Next Lecture: Redfield theoryExamples

