Lecture #5 Chemical Exchange

- Topics
 - Introduction
 - Effects on longitudinal magnetization
 - Effects on transverse magnetization
 - Examples
- Handouts and Reading assignments
 - Kowalewski, Chapter 13
 - Levitt, sections 15.5 and 15.6
 - van de Ven, sections 2.4, 2.5, and 6.1.2

Chemical Exchange

- Cross relaxation can lead to exchange of magnetization between coupled spins *I* and *S*.
- However, uncoupled spins can manifest themselves as an apparent coupled spin systems, if the spins are engaged in chemical exchange.
- Consider spins A and B on two molecules undergoing chemical exchange with rate constants k_A and k_B respectively.

A
$$\stackrel{k_A}{\longrightarrow}$$
 B $\stackrel{1}{\swarrow}_{ex} = k_{ex} = \stackrel{k_A}{\swarrow}_{k_b}$
Exchange time Exchange rate

• We'll assume any transition from A to B is instantaneous, but happens at an average rate of $1/\tau_{ex}$.

Chemical exchange and τ_c

- Chemical exchange stochastic modulations relaxation
- Exchange rates (µs to ms time scales) << molecular tumbling
 - Too slow to effect anisotropic interactions such as CSA or dipole coupling
 - Can effect isotropic interactions such as chemical shift or J coupling
- Example: Let spins I and S be J coupled with the bond between them regularly broken by an exchange process.

J-coupling is modulated If $1/\tau_e >> J$ then $G(\tau) = \langle J(t)J(t+\tau) \rangle = J^2 e^{-|\tau|/\tau_e}$

and
$$\frac{1}{T_{1,sc}} = \frac{(2\pi J)^2}{2} \frac{\tau_e}{1 + (\omega_I - \omega_S)\tau_e^2}$$

The name for this particular effect is "scalar relaxation of the 1st kind".

In a few lectures, we'll see why $J(\omega)$ is probed at ω_I - ω_S

Hence, the exchange time can look just like a rotational correlation time!

Longitudinal Magnetization

- Chemical exchange can lead to the flow of longitudinal magnetization between sites.
- Bloch-McConnell equations

Note, same form as the Solomon equations for dipolar coupling.

Longitudinal Magnetization

Some interesting limiting cases...

Case 1: slow exchange $\tau_{A}^{-1} + \tau_{B}^{-1} << T_{1A}^{-1} + T_{1B}^{-1} \implies \alpha_{A} \approx T_{1A}^{-1}, \alpha_{B} \approx T_{1B}^{-1}$

Case 2: $T_{1B}^{-1} >> \tau_A^{-1}, \tau_B^{-1} >> T_{1A}^{-1} \implies \alpha_A \approx \tau_A^{-1}, \alpha_B \approx T_{1B}^{-1}$ Almost all relaxation at site B

Case 3: site B has very rapid relaxation and very small population, e.g. free water rapidly exchanging with a small pool of bound water.

$$\alpha_{A} = \frac{1}{T_{1A}} + \frac{p_{B}}{p_{A}T_{1B} + p_{B}\tau_{A}}$$
fractional pool sizes

Important case for water in tissue as well as contrast agents

Transverse Magnetization

• Chemical reactions can have profound effects on NMR linewidths, with the effects strongly dependent on the exchange rate.

Lineshape Calculations

• Modified Bloch equations with coupling:

$$\frac{dM_x^A}{dt} = -\frac{1}{T_2^A} M_x^A + \cos(\Omega_A t) M_y^A - k_A M_x^A + k_B M_x^B$$
$$\frac{dM_y^A}{dt} = -\frac{1}{T_2^A} M_y^A - \sin(\Omega_A t) M_x^A - k_A M_y^A + k_B M_y^B$$
(analogous equations for the B spin)

Similar to the Bloch-McConnell equations, but now for transverse magnetization.

• Using $M_{xy} = M_x + iM_y$, compact notation for both A and B spins:

$$\frac{dM_{xy}^{A}}{dt} = -(i\Omega_{A} + 1/T_{2}^{A})M_{xy}^{A} - k_{A}M_{xy}^{A} + k_{B}M_{xy}^{B}$$

$$\frac{dM_{xy}^{B}}{dt} = -(i\Omega_{B} + 1/T_{2}^{B})M_{xy}^{B} - k_{B}M_{xy}^{B} + k_{A}M_{xy}^{A}$$

Lineshape Calculations

• Rewriting...

 $\frac{d\vec{M}_{xy}}{dt} = \underline{L}\vec{M}_{xy} \quad \text{where} \quad \underline{L} = -\underline{\Omega} + \underline{k}$ and $\underline{\Omega} = \begin{pmatrix} i\Omega_A + 1/T_2^A & 0\\ 0 & i\Omega_B + 1/T_2^B \end{pmatrix} \quad \underline{k} = \begin{pmatrix} -k_A & k_B\\ k_A & -k_B \end{pmatrix}$

• Solution:

$$\vec{M}_{xy}(t) = e^{\underline{L}t} \vec{M}_{xy}(0)$$

Slow Intermediate Exchange

- Before giving the general solution, let's look at two special cases.
- Spin A (similar for spin B) \implies Slow exchange: $|\Omega_A \Omega_B| >> k_A, k_B$

Fast Exchange

- Fast exchange: $\Rightarrow |\Omega_A \Omega_B| \ll k_A, k_B$
- In many ways, the opposite of slow exchange.
 - Spins hop back and forth so fast that we observe a single resonance at the weighted average chemical shift:

 $\overline{\Omega} = f_A \Omega_A + f_B \Omega_B$ where f_A and f_B are the molar fractions of A and B

- Linebroadening due to chemical exchange. As k_A and k_B increases line gets *sharper*.

Detailed Calculations

- Starting with $\vec{M}_{xy}(t) = e^{\underline{L}t} \vec{M}_{xy}(0)$
- Taking the Fourier Transform and assuming that...

 $k_A >> 1/T_2^A$ and $k_B >> 1/T_2^B$ (i.e. chemical exchange is much faster than T_2 relaxation)

yields (after considerable algebra):

Real part of
spectrum
$$S(\omega) = \frac{f_A f_B (\Omega_A - \Omega_B)^2 \tau_{ex}^{-1}}{(\Omega_A - \omega)^2 (\Omega_B - \omega)^2 + (\overline{\Omega} - \omega)^2 \tau_{ex}^{-2}} M_0$$

where
 $\overline{\Omega} = f_A \Omega_A + f_B \Omega_B, \quad f_A + f_B = 1, \quad \frac{f_A}{f_B} = \frac{k_B}{k_A}, \quad \tau_{ex} = \frac{1}{k_A + k_B}, \quad \frac{1}{\tau_{ex}} = \frac{1}{\tau_A} + \frac{1}{\tau_B}$
molar fractions
of A and B
 $A \stackrel{k_A}{\xrightarrow{k_B}} B$
molar fractions related
to reaction rates:
 $A \stackrel{k_A}{\xrightarrow{k_B}} B$
 $T_A = \frac{1}{k_A + k_B}, \quad \frac{1}{\tau_{ex}} = \frac{1}{\tau_A} + \frac{1}{\tau_B}$
measure of
interconversion
rate between A
and B
 $T_A = \frac{1}{k_B} + \frac{1}{\tau_B}$

Detailed Calculations

$$S(\omega) = \frac{f_A f_B (\Omega_A - \Omega_B)^2 \tau_{ex}^{-1}}{(\Omega_A - \omega)^2 (\Omega_B - \omega)^2 + (\overline{\Omega} - \omega)^2 \tau_{ex}^{-2}} M_0$$

• Three values of ω which correspond to spectral peaks

•
$$S(\omega \approx \Omega_A) = \frac{f_A \tau_A}{(\Omega_A - \omega)^2 + \tau_A^{-2}} M_0$$

Lorentzian at Ω_A with width $1/\tau_A = k_A$. If τ_A is very short, peak very broad.

⇒ peak visible under *slow exchange*

•
$$S(\omega \approx \Omega_B)$$
: analysis same as for A.

•
$$S(\omega \approx \overline{\Omega}) = \frac{f_A f_B (\Omega_A - \Omega_B)^2 \tau_{ex}}{f_A^2 f_B^2 \tau_{ex}^2 (\Omega_A - \Omega_B)^4 + (\overline{\Omega} - \omega)^2} M_0$$

Lorentzian at $\overline{\Omega} = f_A \Omega_A + f_B \Omega_B$ increases with τ_{ex} Linewidth: $\pi \Delta \nu = f_a f_b (\Omega_a - \Omega_b)^2 \tau_{ex}$

➡ peak visible under *fast exchange*

2-Spin System with Chemical Exchange

Example 1: Fast Exchange

• $S(\omega) = \frac{f_A f_B (\Omega_A - \Omega_B)^2 \tau^{-1}}{(\Omega_A - \omega)^2 (\Omega_B - \omega)^2 + (\overline{\Omega} - \omega)^2 \tau^{-2}} M_0$...derived under assumptions that...

 $k_A >> 1/T_2^A$ and $k_B >> 1/T_2^B$ (i.e. chemical exchange much faster than T_2)

 \implies Not necessarily true for contrast agents.

- Some parameters to consider.
 - Chemical shift difference between water when free and when coordinated with the agent/metal.
 - T_2^B of water bound to the agent (typically dominated by the unpaired electron spin).
 - Lifetime, τ_B , of the water in the coordination sphere of the contrast agent.
- To be discussed in detail later...

Example 2: Intermediate Exchange

Example 3: Fast Exchange

- $H_2 PO_4^- \Longrightarrow HPO_4^{2-} + H^+$ (inorganic phosphate) $\Omega_A = 3.2 \text{ ppm}$ $\Omega_B = 5.7 \text{ ppm}$
- Under fast exchange, the ³¹P peak will be at $\overline{\Omega} = f_A \Omega_A + f_B \Omega_B$
- Henderson-Hasselbach relationship

 $pH = pK_A + \log\left(\frac{f_A}{1 - f_A}\right)$

• Combining the above and expressing things in terms of chemical shift yields ...

$$pH = pK_A + \log\left(\frac{\omega - \Omega_A}{\Omega_B - \omega}\right)$$

Example 4: Fast Exchange

Temperature mapping via water chemical shift

The resonance frequency of the in vivo water ¹H peak is known to shift with temperature at a rate of ~0.01ppm/°C. This affect can be explained via a two-site exchange process.

Temperature mapping with H_2O

- The earliest reference I found was Hindman JC, "Proton Resonance Shift of Water in the Gas and Liquid States", *J. Chemical Physics*, 44, 4583 (1966).
- Hydrogen bonds decrease the electron density at the involved proton site and hence lead to a positive frequency shift.
- Liquid water can be modeled as a mixture of two components: a hydrogen-bonded "ice-like" fraction and a non-hydrogen-bonded monomeric fraction.
- The chemical shifts for these two components, which are in fast exchange, are...

shielding constant for monomeric water, $\sigma_w \approx -0.4 \times 10^{-6}$ shielding constant hydrogen-bonded water, $\sigma_p \approx \sigma_w - 5.5 \times 10^{-6}$

Temperature mapping with H₂O

- Under fast exchange, water chemical shift is $\overline{\Omega} = f_A \Omega_A + f_B \Omega_B$
- Combining with the data provided below,

Table VI. Calculation of the fraction of zero-bonded water from thermal, dielectric, and chemical-shielding data.

Temp (°C)	Thermal	Shielding	Dielectric
0	(0.155)	(0.155)	0.16
25	0.19	0.21	0.19
50	0.22	0.26	0.22
75	0.25	0.31	0.25
100	0.29	0.35	0.29

yields a water proton frequency shift of $\Delta \approx 0.008 \text{ ppm/}^{\circ}\text{C}$.

Next Lecture: In vivo water