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Lecture #4
Relaxation through Dipolar Coupling

• Topics
– Solomon equations
– Calculating transition rates
– Nuclear Overhauser Effect

• Handouts and Reading assignments
– Levitt, Chapters 19.1-3, 20.1-3, 
– Kowalewski, Chapter 3.
– Solomon, I, “Relaxation process in a system of two spins”, 

Physical Review, 99(2):559-565, 1955.
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Dipolar Coupling
• The dominant source of random magnetic field variations is due to 

dipolar coupling and molecular tumbling.  

Water 
molecule 

in a 
magnetic 

field

Spins remain 
aligned with B0

€ 

B = B0 + ΔB(t)

€ 

ΔB(t)

€ 

t

with 
tumbling 

Called �tumbling� rather than 
�rotating� since molecules 

constantly bumping into each other.

• We need to take a close look at the properties of 

€ 

ΔB(t).

• While                  , the instantaneous effect is not negligible.  

€ 

ΔB(t) = 0
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Random fields model

€ 

1
T1

= γ 2 B2 J(ω0)the relaxation of Mz was given as:

1
T1
∝
γ 4

r6
J ω0( ).

Rapid decrease 
with distance

• Assume the magnetic field seen by a spin is given by

B0
!z +Bx (t)

!x +By (t)
!y +Bz (t)

!z

€ 

Bx
2 = By

2 = Bz
2 = B2where

large main field small perturbation isotropic tumbling

• Given the field from a dipole falls off as 1/r3

• The seminal work of Bloembergen, Purcell, and Pound 
(BPP), Physical Review, 73(7) 1948, recognized the 
importance of dipolar coupling to NMR relaxation. 

1
T2
∝
γ 4

2r6
J(0)+ J ω0( )( ).Similarly

Nobel Prize Physics 
1981

Bloembergen

Primarily intramolecular rotational rather than 
intermolecular translational motion.
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Complete Dipolar Effect
• A more complete derivation taking into account the correlated 

perturbations among coupled spins was provided by Solomon 
Physical Review, 99(1) 1955.
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New term corresponds to both I
and S spins flipping together, i.e. 

double quantum coherence.

That diagram looks an 
awful lot like the diagram 
you drew for J-coupling?  
Aren�t we dealing with 
dipolar coupling here?

• Let’s look at this derivation more closely…

For identical spins, e.g. water,

E
1
T1
=
3
20

µ0
4π
!

"
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γ 4!2

r6
J(ω0 )+ 4J(2ω0 )( )
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Spin Population Dynamics*

• Transition rates:

*see Solomon for details.

• At a given point in time, the energy levels are occupied by a 
certain number of spins, given by N++, N+-, N-+, and N--.  

N++

N+- N-+

N--

– W0 and W2 = probability/time of zero of double quantum transition. 

W0

W2

– WI and WS = probability/time spin I or S change energy levels. 

WIWS

WI
WS

• Consider a general dipolar coupled two-spin system.

Note: J=0, but nuclei I 
and S are close enough 

in space that dipolar 
coupling is significant.
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The Solomon Equations

€ 

dN++

dt
= −(WS +WI +W2)N++ +WSN+− +WIN−+ +W2N−−

€ 

dN+−

dt
= −(W0 +WS +WI )N+− +W0N−+ +WIN−− +WSN++

€ 

dN−+

dt
= −(W0 +WS +WI )N−+ +W0N+− +WIN++ +WSN−−

€ 

dN−−

dt
= −(WS +WI +W2)N−− +WSN−+ +WIN+− +W2N++

• Given the transition rates and the populations, 
let’s compute the dynamics.  Namely…

N++

N+-
N-+

N--

W0

W2 WIWS

WI
WS
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Correction for finite temperatures
• Before proceeding further, we need to make a small addition, 

known as the finite temperature correction.
• The differential equations on the previous slide assumed equality of 

the transition probabilities, e.g. just looking at the I spin…

• To achieve a finite temperature, we can make an ad hoc correction 
reflecting the slightly increased probability of a transition that 
decreases the energy of the system.

N−+ → N++ = N++ → N−+ =WI

N++

N-+

WI
WIE

Under this assumption, the system will 
evolve until the energy states are 
equally populated, which, using the 
Boltzmann distribution, corresponds to 
an infinite temperature!

N++

N-+

WI(1-b)
WI(1+b)E

This Boltzmann factor can be derived 
explicitly if we treat both the spin system 
and the lattice as quantum mechanical 
systems.  See Abragam p. 267.

where b = γ!B0
kT

Boltzmann factor
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Solomon Equations: Mz
• Let’s first look at T1 relaxation.

€ 

ˆ I z ∝ (N++ − N−+) + (N+− − N−−)

€ 

ˆ S z ∝ (N++ − N+−) + (N−+ − N−−)

d Îz
dt

= −(W0 + 2WI +W2 ) Îz − Iz
eq( )− (W2 −W0 ) Ŝz − Sz

eq( )
d Ŝz
dt

= −(W0 + 2WS +W2 ) Ŝz − Sz
eq( )− (W2 −W0 ) Îz − Iz

eq( )

• Substituting yields a set of coupled differential equations indicating 
longitudinal magnetization recovers via a combination of two 
exponential terms…

direct relaxation cross relaxation
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General Solution
• The solution can also be written

d
dt

Îz

Ŝz

!

"

#
#
#

$

%

&
&
&
= −

ρI σ IS

σ IS ρS
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eq

Ŝz − Sz
eq

!

"
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#
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%
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• The general solution is of the form

Iz
eq =

γ IB0
2kT

Sz
eq =

γSB0
2kT

with

d
dt
!
V = −R

!
V −
!
V eq( )

ρI =W0 + 2WI +W2

ρS =W0 + 2WS +W2

σ IS =W2 −W0

where R is called the 
relaxation matrix with 
elements given by:

Îz =α11e
−λ1t +α12e

−λ2t

Ŝz =α21e
−λ1t +α22e

−λ2t
(not a single exponential)
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Identical Spins
• For the case of S and I identical (i.e. ωI = ωS and WI = WS = W1)

d Îz + Ŝz( )
dt

= −2(W1 +W2 ) Îz + Ŝz − Iz
eq − Sz

eq( ) (pure exponential)

€ 

1
T1

= 2(W1 +W2)

• We now need explicit expressions for the transition probabilities 
W1, and W2.
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Time-dependent Perturbation Theory
• To compute the transition probabilities, we need to use a branch 

of QM known as time-dependent perturbation theory. Consider 
the case where:

€ 

ˆ H (t) = ˆ H 0 + ˆ H 1(t)    with    ˆ H 1 << ˆ H 0 .

perturbation

• Let                           be the eigenkets of the unperturbed 
Hamiltonian with energies Ej.

  

€ 

m j ,  j =1…N

Ĥ0 mj = 1
! Ej mj    with   j =1,…N

• Assuming the system starts in state        , then, to 1st order, the 
probability of being in state        at time t is given by

€ 

m j

€ 

mk

(see homework 
for proof)    

€ 

Pkj =
1
!2 mk

ˆ H 1( " t ) m j e− iω kj " t d " t 
o

t
∫

2

    

€ 

where   ωkj = (Ek − E j ) /!
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Fermi’s Golden Rule
• Consider a sinusoidal perturbation

Ĥ1(t) = V̂1 cosωt =
V̂1
2
eiωt + e−iωt( ) This is actually quite general as we can 

always analyze the Fourier decomposition 
of any perturbation.

• The transition rate is then given by

Wkj = limt→∞

Pkj

t
= lim
t→∞

1
t

mk Ĥ1( #t ) mj e
−iωkj !t d !t

o

t
∫

2 Note, we can take the limit of              
if our measurements are much 
longer than          .1 ωkj

€ 

t→∞

Interaction term Conservation of energy

E

Ej

Ek

Ej

Ek

Absorbing a photon 
of energy Ek-Ej

Emitting a photon of 
energy Ek-Ej

Wkj =
mk V̂1 mj

2

4
δEk−Ej ,−!ω

+δEk−Ej ,+!ω( )
This is a famous result known 
as Fermi’s Golden Rule.
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Example: Rf Excitation
• For a two spin system (rotating frame, on resonance) …

– No excitation if Rf is �off resonance� (conservation of energy)

– No excitation of double or zero quantum coherences (zero interaction)

€ 

ˆ H =ΩI
ˆ I z +ΩS

ˆ S z + 2πJ( ˆ I x ˆ S x + ˆ I y ˆ S y + ˆ I z ˆ S z) +ω1
I ˆ I x +ω1

S ˆ S x

€ 

ˆ H 0

€ 

ˆ H 1
• The interaction term (matrix form with eigenkets of      as the 

basis) is given by …

€ 

ˆ H 0

€ 

H1∝

€ 

−−
€ 

+ −

€ 

−+
€ 

+ +

€ 

−−

€ 

+ −

€ 

−+

€ 

+ +

€ 

0 1− i 1− i 0
1+ i 0 0 1− i
1+ i 0 0 1− i
0 1+ i 1+ i 0

# 

$ 

% 
% 

& 

' 

( 
( 

(Simple case of γI = γS) 



Dipolar Coupling

Ĥdipole = −
γ IγS!
r3

µ0
4π
!̂
I ⋅
!̂
S − 3

r2
(
!̂
I ⋅ !r )(

!̂
S ⋅ !r )

#

$
%

&

'
( where      is the vector 

from spin I to spin S
  

€ 

! r 

•  The complete dipolar coupling Hamiltonian is given by

Note, with molecular 
tumbling, both q and f
are functions of time.

zero quantum term

single quantum terms

double quantum terms

whereHd = −
µ0
4π

γ IγS!
r3

A+B+C +D+E +F( )

€ 

A = ˆ I z ˆ S zF0

€ 

B = − 1
4

ˆ I + ˆ S − + ˆ I − ˆ S +( )F0

€ 

C = ˆ I + ˆ S z + ˆ I z ˆ S +( )F1

€ 

D = ˆ I − ˆ S z + ˆ I z ˆ S −( )F1
*

€ 

E = ˆ I + ˆ S +F2

€ 

F = ˆ I − ˆ S −F2
*

F0 (t) =1−3cos
2θ

€ 

F1(t) = 3
2 sinθ cosθe

− iφ

€ 

F2(t) = 3
4 sin

2θe−2iφ

•  Using the raising and lowering operators: 
the the Hamiltonian can be written in polar coordinates as:

Î+ = Î x + iÎ y  and Î− = Î x − iÎ y
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Example: Calculating W1
• Assumption:

€ 

F(t)F *(t + τ ) = F(0) 2 e− τ τ c

time average

• For a given pair of like spins:
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2 e−τ τ ce−iω0τ
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∞

∫ dτW1 = limt→∞

1
t
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2
γ 2!
r3

F1( !t )e
−iω0 !t d !t

0

t

∫
2

• For an ensemble of spins:

W1 =
µ0
4π
!

"
#

$

%
&
2
γ 4!2

4r6
F1(0)

2 τ c
1+ω0

2τ c
2

€ 

F1(0)
2

=
1
4π

9
4

0

π

∫
0

2π

∫ sin2θ cos2θ sinθdθdφ

W1 =
µ0
4π
!

"
#

$

%
&
2 3γ 4!2

40r6
J(ω0 )
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Transition Probabilities
• Using similar equations, the full set of transition rates are:

€ 

WI = 3
2 qJ(ω I )

€ 

WS = 3
2 qJ(ωS )

€ 

W0 = qJ(ω I −ωS )

€ 

W2 = 6qJ(ω I +ωS ) q = 1
10

µ0
4π
!

"
#

$

%
&
2
γ I
2γS
2!2

rIS
6

€ 

J(ω) =
2τ c

1+ω 2τ c
2

where

sum of chemical 
shifts

difference of 
chemical shifts

rapid fall 
off with 
distance
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Identical Spins

€ 

1
T1

= 2(WI +W2)=
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r6
J(ω0 )+ 4J(2ω0 )( )

• If we crunch through the numbers…
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• For the case of S and I identical (i.e. ωI = ωS and WI = WS = W1)
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narrowing

• Later in the course, we’ll develop Redfield theory and not have to 
“crunch the numbers” every time.

Extreme 
narrowing
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T1 and T2 of water
• Some numbers for pure water….

τ c = 5.0×10
−12

K =
µ0
4π
!

"
#

$

%
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2 3
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γ 4!2
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water

T1 ≈ T2 ≈ 3.92 s

(extreme narrowing condition)



19

Cross Relaxation
• Let’s try to gain some more physical insight/intuition into 

the phenomenon of cross relaxation.

• We’ll start by examining the results of a series of saturation
recovery experiments in which the z magnetization from the I 
or S spins (or both) are saturated, and we then watch the 
recovery of the longitudinal magnetization over time. 

The Solomon Equations 

d
dt

Îz

Ŝz

!

"

#
#
#

$

%

&
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&
= −

ρI σ IS

σ IS ρS
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$

%
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Îz − Iz
eq

Ŝz − Sz
eq

!

"

#
#
#

$

%

&
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Saturation Recovery
• Case (a)

RFI

90o

signal

Saturation pulse

RFS

t

Initial conditions
Saturate Mz for I spins
Leave S spins untouched

Experiment
Observe recovery of Mz

for I spins

Recovery curve is not a 
single exponential!
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Saturation Recovery
• Case (a*)

RFI

90o

signal

Saturation pulse

RFS
90o

t

Shapes of the curves 
depends on the strength of 

the dipolar coupling.

Experiment
Observe recovery of Mz

for I spins
Observe recovery of Mz

for S spins

Initial conditions
Saturate Mz for I spins
Leave S spins untouched
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Saturation Recovery
• Case (b)

RFI

90o

signal

Saturation pulse

RFS Saturation pulse

t

Initial conditions
Saturate Mz for I spins
Saturate Mz for S spins

Experiment
Observe recovery of Mz

for I spins

curve not a single 
exponential.
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Saturation Recovery
• Case (c)

RFI

90o

signal

Saturation pulse

RFS Saturation pulse

t

Initial conditions
Saturate Mz for I spins
Saturate Mz for S spins

Experiment

Observe recovery of Mz
for I spins

Continue keeping Mz
for S spins saturated

This curve does recover exponential 
with the true T1 of spin I.  However it 

does not recover to Izeq!
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Nuclear Overhauser Effect (NOE)
• The NOE is the change in the equilibrium magnetization of 

one nuclei with the RF irradiation of a nearby nuclei 
(nearby defined in terms of dipole coupling)

• The change in magnetization can be positive (generally 
with small rapidly tumbling molecules) or negative (as 
with slower tumbling molecules)

Albert Overhauser

• The effect was first proposed by Albert Overhauser in 1953.

• We will describe NOE… 
- mathematically
- graphically (via energy diagrams)
- with in vivo examples
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Calculating the NOE
• Start:

d Îz
dt

= −(W0 + 2WI +W2 ) Îz − Iz
eq( )+ (W2 −W0 ) Ŝz − S0( )

• At steady state…

€ 

d ˆ I z
dt

= 0

€ 

ˆ S z = 0• Saturate Sz

Îz
Iz
eq =1+ S0

Iz
eq

W2 −W0

W0 + 2WI +W2

"

#
$

%

&
'

• Rewriting in a more convenient form and letting Ie be the 
steady state magnetization…

€ 

NOE =1+
γ S
γ I

W2 −W0

W0 + 2WI +W2

$ 

% 
& 

' 

( 
) =1+η

This is often just expressed as:

Ie = 1+η( ) Izeq

€ 

η =
γ S
γ I

W2 −W0

W0 + 2WI +W2

% 

& 
' 

( 

) 
* where

enhancement factor 
(can be positive or 

negative)
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€ 

ˆ I z + ˆ S z

P. J. Hore, NMR, Oxford University Press, p 62.

Energy Diagram Formulation
• Using an energy diagram notation…  

(ignores WI and WS relaxation pathways)

€ 

+ −

€ 

−+

€ 

+ +

€ 

−−

€ 

ˆ I z

Population excess
Population deficit

€ 

ˆ S z

€ 

+ −

€ 

−+

€ 

+ +

€ 

−−

Starting conditions

Increased I
polarization

Decreased I
polarization

Population 
difference



27

S spin on small 
mobile 

molecule

S spin on large 
immobile 
molecule

€ 

η

NOE versus tc

€ 

NOE =1+
γ S
γ I

W2 −W0

W0 + 2WI +W2

$ 

% 
& 

' 

( 
) 

€ 

W0 = qJ(ω I −ωS )

€ 

W2 = 6qJ(ω I +ωS )

solid

liquid

€ 

ω 2τ c
2 <<1⇒ NOE =1+

γ S
2γ I
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31P Muscle NOE Example

RF
Gz

90o

signal

31Psaturate
1H nuclei

off-resonance RF

conventional

w/ decoupling

w/ decoupling 
and NOE

Typical in vivo NOE enhancement 
factors for 31P-1H and 13C-1H 

interactions are 1.4-1.8 and 1.3-2.9 
respectively.
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Transverse Cross Relaxation
• NOE based on cross relaxation of longitudinal magnetization, but 

can cross relaxation of transverse magnetization be observed?
• Answer: usually no, but sometimes yes

• Hence, cross relaxation of transverse magnetization is not 
observed between spins with different chemical shifts.

• No effects for identical spins.  But consider a dipolar-coupled 
system with the two spins having different chemical shifts. 

Transferred magnetization 
components cancel



30

Spin Locking
• Consider the following pulse sequence:

• Relaxation during a spin-lock pulse is characterized by a time 
constant T1r, (more in upcoming lecture on cartilage).

• Cross relaxation of transverse magnetization can now occur

RT
auto =

K
20

5J 0( )+ 9J ω0( )+ 6J 2ω0( )( ) RT
cross = −

K
10

2J 0( )+3J ω0( )( )

The spin-lock Rf pulse inhibits 
chemical shift evolution.

€ 

π
2
# 

$ 
% 
& 

' 
( 
x1H acquire

t

Spin lock
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Next Lecture: Chemical Exchange


