Lecture #4
Relaxation through Dipolar Coupling

* Topics
— Solomon equations
— Calculating transition rates
— Nuclear Overhauser Effect
 Handouts and Reading assignments
— Levitt, Chapters 19.1-3, 20.1-3,
— Kowalewski, Chapter 3.

— Solomon, I, “Relaxation process in a system of two spins”,
Physical Review, 99(2):559-565, 1955.



Dipolar Coupling

e The dominant source of random magnetic field variations 1s due to
dipolar coupling and molecular tumbling.
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 While (AB(r)) = 0, the instantaneous effect is not negligible.

* We need to take a close look at the properties of AB(t).



Random fields model
* Assume the magnetic field seen by a spin 1s given by

B+ B (0% +B, (Ytﬁ +B.()Z  where (BZ)=(B;)=(B2)=(B")
large main field small perturbation

isotropic tumbling
1
. y*(B*)J(w,)

1
 Given the field from a dipole falls off as 1/r’

4

4
iocy—6,](a)0). Similarly : X y6(1(0)+1(wo))’

the relaxation of M, was given as:

T, r T, 2r
Rapid decrease Primarily intramolecular rotational rather than
with distance intermolecular translational motion.

e The seminal work of Bloembergen, Purcell, and Pound
(BPP), Physical Review, 73(7) 1948, recognized the
importance of dipolar coupling to NMR relaxation.
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Complete Dipolar Effect

* A more complete derivation taking into account the correlated

perturbations among coupled spins was provided by Solomon
Physical Review, 99(1) 1955.

For 1dentical spins, e.g. water, I
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awful lot like the diagram|
you drew for J-coupling?
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Aren’ t we dealing with
dipolar coupling here?
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T, - 40 (47[) -6 (3‘](0) +3J(wy) +2J (2w, )) and S spins flipping together, i.e.
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e Let’s look at this derivation more closely...



Spin Population Dynamics”

e Consider a general dipolar coupled two-spin system.

N
-
\U4
WI 5 l I Note: J=0, but nuclei I
W and S are close enough
N ~ I 1 4/0/ N -+ in space that dipolar
114 coupling is significant.
2
W, W,
N1l

* At a given point in time, the energy levels are occupied by a
certain number of spins, givenby N, N,.,N_,,and N_..

e Transition rates:
— W;and W = probability/time spin 7 or S change energy levels.
— W, and W, = probability/time of zero of double quantum transition. S

*see Solomon for details.



The Solomon Equations

N1
* Given the transition rates and the populations, w/ XVS
let’s compute the dynamics. Namely... v Wyl A
+5 WZ
Wy Wi
dN Nt

dt++ =—W.+W,+W)N,  +W.N_+WN_, +W,N__

anN.,. =W, +W. +W) )N, +W.N +WN _ +W.N
dl_ 0 S 1 + 0 + 1 STV 4+
dN
= t=—-(W,+ W +W)N_ + W N, _+W,N,_ +WN__
dN__

7 =W, +W, +W)ON_+WN_ +W N _+W,N_,



Correction for finite temperatures

e Before proceeding further, we need to make a small addition,
known as the finite temperature correction.

* The differential equations on the previous slide assumed equality of
the transition probabilities, e€.g. just looking at the 7 spin...

Under this assumption, the system will

equally populated, which, using the

N, )
ET W evolve until the energy states are
1 W] N_+ e N++ = N++ —_— N_+ = ‘/‘/I . .

N++11

Boltzmann distribution, corresponds to
an infinite temperature!

* To achieve a finite temperature, we can make an ad hoc correction
reflecting the slightly increased probability of a transition that
decreases the energy of the system.

W,(1-b)
ET : //VI(lH?) where p = )/le

Boltzmann factor

This Boltzmann factor can be derived
explicitly if we treat both the spin system
and the lattice as quantum mechanical
systems. See Abragam p. 267.
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Solomon Equations: M, | %

Ws

e

e Let’s first look at 7', relaxation. o

(LY (N,,~N_)+(N,_-N_)  {(8.)«x(N,, =N, )+(N_, ~N_)

—

e Substituting yields a set of coupled differential equations indicating

longitudinal magnetization recovers via a combination of two
exponential terms...

direct relaxation cross relaxation
d<i > / —" ~ "~ ~
= —(W, +2W, +W. )(<
dt

>

\/

d(8.

dt

>—I§q)—(W2—WO)(<3’Z>—S§q)

=—(WO+2WS+W2)(<§Z>—S;“1)—(W2—WO)(<IAZ>—I )



General Solution

e The solution can also be written

) (i.)-1e - 1
d Z Pr Oips < < : © 2kT
— = — with
dt < Q > O Ps < Q >_ A S _ YsBy

i < - - - < < - Z 2kT
d - B where R 1s called the 0, =W, +2W, +W,
7 V=-R (V -V relaxation matrix with — p. =W, +2W, +W,

elements given by: o.=W,-W,

* The general solution 1s of the form

7\ _ ~ Mt — Myt
(not a single exponential)

o\ _ — Mt — Mt
S )=a,e " +a,e

S
~_—



Identical Spins

e For the case of S and I 1dentical (i.e. ;= wgand W;= Wy=W))

d(<1;>+<3;>)

dt

= _2(‘}[/1 + WZ)(<iz> + <§Z> — ]Z“I — SZ‘%I) (pure exponential)

= —=2(W, + W)

1
I

* We now need explicit expressions for the transition probabilities
W], and W2.
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Time-dependent Perturbation Theory

e To compute the transition probabilities, we need to use a branch
of QM known as time-dependent perturbation theory. Consider
the case where: perturbation

A .
H(t)=H,+ H (1) with

Va\

H,

VaN

H,

<<

e Let ‘m j>, J =1...N be the eigenkets of the unperturbed
Hamiltonian with energies E..

VaN

H,

mj>=%Ej‘mj> with j=1,...N

e Assuming the system starts in state ‘m j>, then, to 1% order, the
probability of being in state ‘m k> at time 7 1s given by

2

1

Py =— [ (m,|H,@)

- l(l)k] t, /
m; >€ dt (see homework

for proof)

where w, =(E, - E;)/h
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Fermi’s Golden Rule

e Consider a sinusoidal perturbation

This is actually quite general as we can

N\ e\ V . 3
H | (l‘ ) = ‘/1 COSWIt = El (elwt + € 1t ) always analyze the Fourier decomposition

of any perturbation.

* The transition rate 1s then given by

Note, we can take the limit of t — o©
if our measurements are much
longer than 1/a)kj.

2
—iw,..t
>e Nt dt

W, =lim— =1lim- ‘
J t7—00 l— t—0 l—

2
This 1s a famous result known

m,)

ij = Oy, Eoho T Oy, _E. +ho as Fermi’s Golden Rule.
4 kK~ k==
\ Y ] | Y )

Interaction term Conservation of energy

E f E |

k v k v

E T Absorbing a photon Emitting a photon of
of energy E;-E, energy Ey-E;
E. AN E. A 12

J | J



Example: Rf Excitation

e For a two spin system (rotating frame, on resonance) ...

H=QI +QS, +22J(IS +1S,+15)+0/l +0S,
\ ) | J
| \

Va\ A

H 0 H 1
* The interaction term (matrix form with eigenkets of Has the
basis) 1s given by ...

)=l

++)( 0 1-i 1-i 0
H +-)[1+i 0 0 1-i (Simple case of y; = Ys)
1 )1+ 0 0 1=

‘__> O 1+ 1+i O

— No excitation if Rf is “off resonance” (conservation of energy)

— No excitation of double or zero quantum coherences (zero interaction)
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Dipolar Coupling

e The complete dipolar coupling Hamiltonian is given by

I—AI __ Vﬂ/sh Hy f . § _ i(f . ;;)(g ‘7) where r is the vector
dipole 3 2 . .
r’ 4m r from spin I to spin S
* Using the raising and lowering operators: [, =1 +il andI_ =1 -il,
the the Hamiltonian can be written in polar coordinates as:

H,=-*o y’yfh(A+B+C+D+E+F) where
_JSF 4 r

Zero quantum term

- (1.5 +18,)F," Fy(t)=1-3cos’ @
S

. F(t)=2sinOcosOe "
7 single quantum terms 2

F,(t) = >sin’ 6™
o . / double quantum terms Note, with molecular
= 490,00 tumbling, both 6 and ¢

N Fz* are functions of time.




Example: Calculating W,

e Assumption: <F (t)F*(t + r)> = <\ F(o)‘2>e—\r\/rc

™ time average
e For a given pair of like spins:

2
. 1|, v
[’[’1 =11m— fir—3

t’eool- 0

Fi(tl)e—ia)ot' dt!

— ( Ho )2 rn }<|E(O)|2>e_|r|/rce'i“’°’dt

4 ) 4r° 9

e For an ensemble of spins:

47 | 407°

2 432

—
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Transition Probabilities

e Using similar equations, the full set of transition rates are:

W, =2qJ)(w,)
2T,
. J(w) =
W =5 qJ(wy) where Iro T
W, =6qJ(w, + wy) _ 1 (M 2 A
" sum of chemical 10\4x ris
shifts >a id fall
=qJ((1)I—(1)S) off with

distance
™ difference of

chemical shifts
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Identical Spins

e For the case of S and I identical (i.e. w; = wgand W;= W= W))

1 _3 (s ZW'ZZ
Tl—2(W,+W2) 20(%) = (J(wy) +4J(2w,))

2
3 (Mo )2 v'R* (T, L 4T, | 5(1“0 ) 3y'n’,
“10\dx ) £ l+w,t) 1+4w.T’ Exteme — \ 477 2r°

narrowing

e If we crunch through the numbers...

1 _ 3 (u, )W“hz
= 3J(0)+5J(w,)+2J 2w
T, 40(4n r (3700457 (@y)+2 Q)

2
3 (uo ) y'w(, .St .2t ) (g \ 3T,
20\47x ) r° C o ltopr, 1+4epT) Beeme 4 ) 2

e Later in the course, we’ll develop Redtfield theory and not have to
“crunch the numbers” every time. -




T, and T, of water

* Some numbers for pure water....

— water
7 =50x107"

2 432
K=(’“‘0) SV 1 02x10"
4m) 10 r

1 © T 4T — T1 ~ T2 ~392 5
= C + c
T l+w.t> 1+4w;T’ | N
¢ (extreme narrowing condition)
1 K 5T, 2T,
— =37+ 2 2T 22
T, 2 l+w;t. 1+4w,T;




Cross Relaxation

e Let’s try to gain some more physical insight/intuition into
the phenomenon of cross relaxation.

The Solomon Equations

— Pr O | <AZ>_IZ€Q
i O Ps | <A>_S“1

QL

S
~ >
~_—

Y

=\
S
>
~_

e We’ll start by examining the results of a series of saturation
recovery experiments in which the z magnetization from the I
or S spins (or both) are saturated, and we then watch the
recovery of the longitudinal magnetization over time.
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Saturation Recovery

e Case (a)

Initial conditions

Saturate M, for I spins

1

Experiment
Observe recovery of M,

Leave S spins untouched k jL for I spins

t

I90°
RF; gy -——

v

RF,

signal de-'

v

0-8 o

0.6}

0.4}

0.2}

1z(a)

™

Recovery curve is not a
single exponential!

time (s)




Saturation Recovery

e Case (a") 1
Initial conditions Experiment
Saturate M, for I spins ObS@foe reIC;)Vf;lfsy of M,
Leave S spins untouched Observeoiecolz/ ery of M
for S spins
¢ I90° T
RF, o oslisz(a)
RFq I R 0.6}
. 0 ™~ Shapes of the curves
s1gna] ww.» | 1z(a) depends on the strength of
- the dipolar coupling.
% i 2 3 4 |

time (s)



Saturation Recovery

Initial conditions

e Case (b) 1
S

Saturate M, for I spins

Saturate M, for S spins Jk k

t

RF, —
RFs

signal Vm—'

I90°

v

v

!
|

Experiment

Observe recovery of M,

for I spins
1t
0.81\Sz(a)
0.6}
Iz(b
0.4} 2(b)
1z(a)
02t \ .
' curve not a single
exponential.
00 2 3 B 5

time (s)



Saturation Recovery

e Case (¢) 1 1
S l

Initial conditions Experiment

Saturate M, for I spins Continue keeping M,

: for S spins saturated
Saturate M, for S spins Observe recovery of M,
for I spins

90° i
o
RF, » 08liSz(a)
AR Suiionpuse— NER
1z(b)
: 0.4}
signal W"‘-’ 1z(a)
. . 0.2}
This curve does recover exponential 1z(c)
with the true T; of spin I. However it 0 : 5 5 5
does not recover to 1,¢4! /e/ time (s)




Nuclear Overhauser Effect (NOE)

The NOE 1s the change in the equilibrium magnetization of
one nuclei with the RF 1rradiation of a nearby nuclei
(nearby defined in terms of dipole coupling)

The change 1n magnetization can be positive (generally
with small rapidly tumbling molecules) or negative (as
with slower tumbling molecules)

The effect was first proposed by Albert Overhauser in 1953.

We will describe NOE...
- mathematically

- graphically (via energy diagrams)

Albert Overhauser

- with 1n vivo examples

24



Calculating the NOE

=—(W, +2W, +W2)(<IAZ>—I§Q)+(W2 —Wo)(<§z>—50)

e Start: d<IAZ>
dt

e Saturate S, = <S‘Z> =0

e At steady state... d<IZ> -0 = <IZ> — 14+ S, W, -W,
dt I [T\ W, +2W, + W,

e Rewriting in a more convenient form and letting /, be the
steady state magnetization...

-W
I,=(1+n)I¢ where n=y5( W, =W, )

Y, \W,+2W, + W,
This 1s often just expressed as:

enhancement factor
NOE =1+ /s W2 — WO =]+ N (can be positive or
Vi WO + ZWI + VV2 negative)

25



Energy Diagram Formulation

e Using an energy diagram notation...

. N I +S.
Starting conditions . —
(a) BBg Population . N
Y= di fﬁrence et (b) O
R ‘_ _> 2A sa ;ra e 2A
L — X => | —O— —0—
B|0~s aIBS
R g S P ZN oA
Decreased [
OO —— L
m o0 | S J polarization
w/ N\
r o) © \ (@ I
5, == OO —O—
3A A
-+)—@— —O|+-) \ \
e W ——
—— o o
[++) Increased / —o—

@ Population excess
O Population deficit

polarization

(&

J

(ignores W;and W relaxation pathways)

26

P.J. Hore, NMR, Oxford University Press, p 62.



W,

NOE versus T,

NOE =1

= 06gJ(w, + wy)
= qJ(a)I - ws)

[OREE

=5x107 s NOlidé

T

voad 11

el \\ liquid

T
c

SRS UNSURUNUSNUEE SRS, .

=5x10"" g,

10°

102 10* 10° 10® 10 10%

frequency (Hz)

W, +2W, + W,

S spin on large
immobile
molecule

L S spin on small
mobile

=1 molecule

0.01 0.1

ALl

10 100

/‘ rotation correlation time (ns)

0’7? <<1=> NOE =1+ 25
2V1
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SIP Muscle NOE Example

3 IP
saturate
'H nuclei 90°
RF off-resonance RF G A V
GZ _l—>
signal dpns

Typical in vivo NOE enhancement
factors for 3'P-'H and 3C-'H
interactions are 1.4-1.8 and 1.3-2.9
respectively.

w/ decoupling
and NOE

LN S

w/ decoupling

RN

conventional

I I 1 I 1 1 1 1 1 I

16 8 0 -8 -16
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Transverse Cross Relaxation

 NOE based on cross relaxation of longitudinal magnetization, but
can cross relaxation of transverse magnetization be observed?

* Answer: usually no, but sometimes yes

* No effects for identical spins. But consider a dipolar-coupled
system with the two spins having different chemical shifts.

ZA ZA za A
| |
Spins I, ( =P o ) =—>( s =M W
\...-_é_/ L e R e .
x| xK']; x* x* |

e ——— . 4 N AT
,Cross-ro?axa!:cn‘ E‘,rossrelaxahonl kCross-rmaxat:on -\Cross-rolaxano:y
. X - —=

— -~

f

- e ———— . .
TZa Tza Tza 7 Transferred magnetization
' f, \ / components cancel
\ !
Spins 1, { Y _l_>;. |V '—)’ - -* E N/
SEa oy S a I Ry N £ ey N A
e x* xx X ’
“{Precessionf” “{Precession/”  ~{Precession’

* Hence, cross relaxation of transverse magnetization 1s not
observed between spins with different chemical shifts. 29



Spin Locking

* Consider the following pulse sequence:

gl .",

z z

T -
n . .
5 ’ | | x Magnetization

1 H |7 Spin lock \ \acqwre < / 4?‘~ .";«:f_-: J”_'[\f};*i.\ i
UA\ J} \V[\V[\—* > : qagng;:; | Rotation axis
t v 0 Jaw ‘
v

The spin-lock Rf pulse inhibits
chemical shift evolution.

e (Cross relaxation of transverse magnetization can now occur

R, =%(51(o)+91(%)+61(2%)) R', - —%(2](0)+3J(a)0))

e Relaxation during a spin-lock pulse 1s characterized by a time
constant T, ,, (more in upcoming lecture on cartilage).



Next Lecture: Chemical Exchange
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